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A b s t r a c t - - W e  examine in this paper a variant of the bin packing problem, where it is permissible 
to fragment the objects while packing them into bins of fixed capacity. We call this the Fragmentable 
Object Bin Packing problem (FOBP). Fragmentation is associated with a cost, leading to the con- 
sumption of additional bin capacity. We show that the problem and its absolute approximation are 
both NP-complete. This is an interesting problem because if the cost of fragmentation is nullified 
then the problem can be easily solved optimally. If fragmentation is not permitted, then we get the 
usual bin packing problem. The application comes from a problem in data path synthesis where it is 
some times necessary to schedule data transfers, subject to restrictions arising from the underlying 
hardware. We show that FOBP reduces to a simplified version of this problem, thereby proving that 
it is also a similar hard problem. © 1998 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - C o m p l e x i t y  of algorithms, Bin packing, Scheduling, High-level synthesis. 

1. T H E  F R A G M E N T A B L E  O B J E C T  BIN P A C K I N G  P R O B L E M  

We define t he  fragmentable object bin packing prob lem as follows. 

DEFINITION i .  Fragmentable object bin packing (FOBP) is the decision problem of packing N 
objects each of size ti, i = 1, . . .  ,N,  into m bins each of size M, M > 1 such that the capacity 
used up while packing each object (whether whole or a f te r  fragmentation) of size k is k + 1. 

T h e  c o n s u m p t i o n  of  add i t i ona l  b in  capac i ty  for ob jec t s  w i th  or w i thou t  f r a gme n ta t i on  is illus- 

t r a t e d  t h r o u g h  the  following example .  

EXAMPLE 1. To pack  an  ob j ec t  of size five uni ts  (say) into a bin, t he  b in  c a p a c i t y  used up  will 

be  six uni ts .  However,  if  the  b in  capac i ty  is four (say) then  the  ob j ec t  will have to  be  f r agmen ted  

before  pack ing  i t  in to  a bin. I f  the  f ragments  are  of  sizes two and th ree  uni t s  t hen  the  bin  c a p a c i t y  

used  up  for pack ing  each of  these  f ragments  would  be th ree  and four uni ts ,  respect ively,  l 

We shal l  now prove t h a t  th is  p rob lem is N P - h a r d  by  reduc ing  the  p a r t i t i o n  p r o b l e m  [1] to  a 

specia l  case of  F O B P  using on ly  two bins. The  p a r t i t i o n  p rob lem is as follows. 

DEFINITION 2. Given a finite set  A and a size s(a) E Z +, for each a E A; is there  a subset 

A I C A, such that ZaeA, s(a) = ~~aeA-A' s (a )?  

T h e  p a r t i t i o n  p rob l em has  been shown to  be N P - h a r d  in [2]. 
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LEMMA 1. The decision problem for fragmentable object bin packing for two bins (FOBP2) is 
NP-hard. 

PaOOF. We prove the lemma by reducing the partition problem to FOBP2 in two steps. 

STEP 1. Consider the partition problem where given N objects with integer weights wi (wi > 0), 
it is necessary to determine whether it is possible to partition these into two sets whose to- 
tal weights are the same. Given an instance P of the partition problem, we construct another 
instance P2 of partition where the weight of each object in P2 is twice the weight of the corre- 
sponding object in P. Clearly P has a partition if and only if P2 has a partition. If any object 
is fragmented, then the total capacity required for packing the full and fragmented objects will 
exceed W and the packing will fail. 

STEP 2. Given a problem P2, we construct an instance of FOBP2 as follows. For an object of P2 
of weight wi there is an object in the instance of FOBP2 of weight wi - 1. There are two bins 
for packing the objects. Let W = ~-'~ wi, where wi is the weight of each object of P2. Choose the 
size of each bin of FOBP2 as W/2.  

Clearly, P2 has a partition if and only if the constructed instance of FOBP2 can be packed 
into the two bins. | 

Lemma 1 leads to the following result. 

COROLLARY 1. FOBP is NP-hard. 

The generalization of Lemma 1 leads to the following corollary, which will be used for proving 
the hardness of the relative approximation of FOBP. 

COROLLARY 2. The decision problem for fragmentable object bin packing for N, N >_ 2 bins is 
NP-hard. 

The bin packing problem posed here is interesting because if the necessity of consuming a unit 
additional capacity for packing each fragment is nullified then the packing may be done optimally. 
On the other hand, if fragmentation is not permitted, then we get the conventional bin packing 
problem, for which an approximate algorithm exists with the relative error being bounded by a 
constant. It is also known that the an approximation scheme for the bin packing problem with 
the absolute error being bounded by a constant is NP-hard. 

We show through the following argument that an approximation scheme for the fragmentable 
object bin packing problem with the absolute error being bounded by a constant is NP-hard. 

Let OPT be the number of bins required to solve the problem optimally. Now consider a 
problem instance when each of these OPT bins would be fully packed without any fragmentation 
of the objects. Let the approximate algorithm solve the problem using OPT+k bins. The 
additional capacity introduced by the k bins is M k  units of bin capacity. Any fragmentation 
made by the approximate algorithm would consume at least two units of this additional space. 

Now consider another problem instance derived by replicating the above problem instance 
( M K  + 1) times. If this problem is to be solved using k bins in addition to ( M K  + 1) OPT bins, 
then at least one of these instances would have to be solved optimally. The use of specific problem 
instances requiring exactly OPT bins finds justification through Corollary 2, above. This leads 
to the following theorem. 

THEOREM 3. An absolute approximation scheme with the error being bounded by a constant, 
for the fragmentable object bin packing problem is NP-hard. 

These are the two results on FOBP that we present in this paper. In the next section, we 
describe a practical problem. We then show that FOBP reduces to a simplified version of this 
problem, and thereby show that this problem and also its absolute approximation are both NP- 
hard. 
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2 .  T H E  A P P L I C A T I O N  

We now consider a problem taken from the domain of VLSI design. The input behavioral 
specification for the high level synthesis of a digital system often includes looping and branching 
constructs. These constructs give rise to numerous Basic Blocks (BBs) in the intermediate repre- 
sentation of the behaviour. Most of the statements in a basic block correspond to operations tha t  
need to be performed therein. A result produced by an operation in a basic block (BB) is often 
used by one or more operations within the same BB, and also by operations in other BBs (when 
multiple BBs are present). This gives rise to precedences between operations within the same BB. 
Scheduling of operations to meet various objectives and satisfying constraints is an important  
problem, and has received much attention. A common feature of operation scheduling for data  
pa th  synthesis is the presence of precedence constraints and the nonpreemptive character of the 
operations. There are several complexity results in scheduling theory which concern scheduling 
with precedence constraints [1,3-5]. 

Often some of the s tatements  of a basic block are variable to variable assignments, which assign 
variables defined in other basic blocks to variables in the current basic block. Variables are also 
defined from values tha t  have been defined by operations internal to the current BB. There is 

a difference between the two types of assignments and the difference will become clear in the 
following paragraphs.  As we examine the problem of variable assignments, it will be evident 
tha t  these assignments too, need to be scheduled. We shall s tudy the problem of performing 
variable assignments consistently in a basic block, and examine the computat ional  complexity of 
the problem. 

Behavioral specifications are usually translated to an intermediate representation before initi- 
ating the design procedures. The Directed Cyclic Graph (DAG) representation of basic blocks is 
dealt with in detail in [6]. We briefly describe the steps relevant to this work, with the help of 
Examples  2 and 3. For each operation in the specification there is a corresponding node in the 
intermediate (graph) representation containing information regarding the type of the operation 
(+, - ,  etc.), the sources, and the destination. In the textual specification, both the sources 
and destination are expressed as variable names. The destination variable name is annotated 
as a label in the node of the operation. The labels indicate the specific variables tha t  need to 
be assigned the value of tha t  node. While constructing such a node, if this variable is already 
present as a label in one of the nodes constructed earlier, then it is deleted from tha t  earlier 
node, as shown in Example  2. This represents a new value definition for the variable and the 
label updat ing procedure ensures tha t  the newly defined value for the variable carries the label 
for tha t  variable. As the labels can get deleted, it is possible that  during the construction of 
the intermediate representation, a node may be left with no label at all. The absence of a label 
simply means tha t  there is no specifically designated variable to which the value of tha t  node is 
to be assigned. In such a situation a new variable called a temporary variable [6] is put into the 

label field. 

EXAMPLE 2. We consider the the labeling of nodes for s tatements (a) and (b) below. These 
s ta tements  define and then redefine x. 

(a) x = a + b. Node representing a + b in (a) takes label x. 

(b) x = a - b. Node representing a - b in (b) takes label x, after x is removed from the set of 
labels for (a). If  the label set of (a) becomes empty  on removal of x then it is annotated 
with a new label representing a temporary variable. II 

In order to identify the source of an operation or a pure variable assignment, it is necessary to 
identify the node which has the label corresponding to the source variable annotated to it. If  this 
variable has been defined by an earlier operation in the current BB, then we may be sure tha t  
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a node carrying such a label will be found. However, for the first use of an externally defined 

variable such a label will not be found. In such a case a special node called an entry node is 
created. Example 3 depicts the development of the entry nodes and their set of labels. The entry 

node is annotated with labels similar to the operation nodes. It has a special field, the entry 
field, to indicate the variable which brings in a value into the current BB through this node. 

An assignment "a ~- b" is handled as follows. First, a check is made to see if a happens to 
be in the set of labels of any node in the current basic block. It is deleted from that set if such 

a node is found. The label a is now augmented to the set of labels of the node that carries the 

label b. 

We shall now restrict our attention to variable assignment statements which lead to the aug- 

mentation of the labels of the entry nodes only. 

EXAMPLE 3. Assume that a and b were defined outside the current basic block. Consider the 

following transfers corresponding to the interchange of the variables a and b within the current 

basic block. 

1. t ~ - a .  
2. a ~ b .  

3. b~-- t .  

The developments in the entry nodes for a and b as these statements are processed is shown 
Figure 1. In the figure, an entry node is represented with a rectangle and a downward pointing 
triangle fixed to the base of the rectangle. The variable in the entry field is written inside the 
rectangle. | 

{a, t} 

{t} {b, a} 

b~---t: ~ ~ 

{t, b} {a} 

Figure 1. Development of entry nodes. 

For convenience the transfers implied by the variable entry node and its labels will be repre- 

sented in a more explicit form as a directed graph as follows. Let S be the set of all the variables 

in the entry field and labels of each entry node. Construct a graph G, where there is a node for 

each variable in S. Construct a directed edge from a node x to node 9, in G, if 9 appears in the 

set of labels of the entry node for x. This edge represents a transfer from x to 9 and it is different 

from the precedence constraints discussed earlier in this paper. 

Each node with a successor in the transfer graph corresponds to the assignment of the value of 

the variable of that node to the variables corresponding to its successors. Actually, a single node 

in the transfer graph could be associated with several transfers in the specification, as indicated 
in Example 4. 
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EXAMPLE 4. The following transfers could be represented in the node of Figure 2. 

1. b~--a .  

2. c*---a. 

3. d*---a. 

4. e~ - -a .  | 

c 5 G o 6  
Figure 2. 'I~ansfer graph for transfer to multiple destinations. 

The representation for the transfers in Example 3 is indicated in Figure 3. This example also 
serves to illustrate the formation of cyclic dependencies. A transfer to a variable, as indicated 
in the graph, cannot be scheduled before the transfers originating from the variable has been 
scheduled. 

@ :-@ 

@ 
Figure 3. A transfer graph. 

The cycles in the transfer graph pose a difficulty in scheduling these transfers. However, these 
cycles can be broken, along with the introduction of some additional transfers to consistently 
represent the original transfers. We do not explain this technique here, but Figure 4 illustrates 
the application of this technique to remove the cycles arising in Example 3. This graph indicates 
the following sequence of transfers: t ~-- b; b *-- a; a ~-- t. Though this sequence is not exactly the 
same as the original eode sequence, it is still guaranteed to correctly transfer the values. We have 
thus shown that  the cycles in the transfer graph can be broken to render it definitely schedulable. 

@ 

@ 

@ 

© 
Figure 4. Cycle free transfer graph. 
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The variable to variables transfers in the now acyclic transfer graph are scheduled to take place 
between the storage devices in the data path, over the available system buses. Memories will 
have a fixed number of access ports (one or two usually). The number of transfers that can 
take place in each time step will be restricted by the number of available buses and the memory 
access ports. Also, the number of buses and storage access points to be present in the data path 
are important design parameters that may be specified by the design engineer. It is desirable 
to complete the variable assignments in the shortest possible time, subject to the architectural 
restrictions. In the next section, we shall consider the relationship between the scheduling of 
variable transfers and FOBP. 

3. R E L A T I O N S H I P  W I T H  F O B P  

We consider a simplified version of the general variable assignment problem to analyze the 
complexity of the problem. In this version, we only consider simple assignments where the set of 
variables occurring on the left and right side of assignments are distinct. Several variables may 
be assigned from a single source. The resulting transfer graph is a forest of trees of height one, 
corresponding to independent transfers. Let M be the sum total of the number of storage access 
ports of all the memories in the data path involved in the variable assignments. The maximum 
number of assignments that can be made in any time step is bounded by M. We now examine 
how the transfers represented by the graph can be effected. 

A A 
@ @ @ @  

Figure 5. Split transfer graph. 

Consider a node with k successors in a transfer graph. This transfer could be carried out in 
a single time step over one bus and using k + 1 storage access points. One storage access point 
would be required for the source and k others for the destinations denoted by each successor node. 
However, if sufficient number of storage access points are not available, then the transfer would 
have to be split over several time steps. For example, if four variables need to be assigned and only 
three storage access points are available, then it would be necessary to split up the transfer and 
schedule them over two time steps. The use of the memory ports is illustrated in Figure 5. We 
shall now formulate the problem of scheduling these simple transfers as the fragmentable object 
bin packing problem which is equivalent to optimally scheduling the transfers in minimum time, 
possibly involving splitting some of the trees in the transfer graph which cannot be scheduled as 
a whole in a particular time step. 

Consider bins of capacity M, M being equal to the number of storage access points. Our 
transfer graph consists of, say, N trees of depth one. Let the number of nodes with in-degree 
greater than zero (nonroot nodes) in each tree be t~. Consider the problem of packing N objects 
each of size t~, i = 1 , . . . ,  N, using the minimum number of bins of size M. While packing objects 
it is permissible to fragment the objects into integral units as desired. However, each object of 
size t, whether whole or after fragmentation, consumes a capacity of t + 1 of the bin into which it 
is packed. The extra unit capacity is consumed because, as we have already explained earlier, a 
node with k successors takes up k + 1 storage access points. The number of bins used corresponds 
to the minimum number of time steps in which the transfers can be scheduled. Thus, we note 
that FOBP is a special case of the variable assignment problem, and this leads to the following 
results. 
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THEOREM 4. The problem of scheduling variable assignments in minimum number of steps is 
NP-complete. 

PROOF. It is easy to see that this problem is in NP. That it is NP-hard follows from Corollary 1. | 

COROLLARY 5. The absolute approximation scheme for the problem of scheduling variable as- 
signments in minimum time is NP-complete. 

PROOF. It may be shown that this problem is in NP. Theorem 3 indicates that this problem is 
NP-hard. | 

4. C O N C L U S I O N  

In this paper, we raised the issue of the complexity of a variant of the bin packing problem 
which we call fragmentable object bin packing (FOBP). We have shown that this problem and 
also its absolute approximation scheme are both NP-complete. An interesting aspect of FOBP 
is that if the cost of fragmentation is removed then the problem is easily solved optimally and 
if fragmentation is not permitted, then it is the normal bin packing problem. The issue of a 
constant bounded relative approximation scheme remains an open problem. 

As an application, we have considered the problem of scheduling variable assignments which 
arise during data path synthesis. The complexity of this problem has been analyzed by showing 
that FOBP reduces to a simplified version of this problem. From the results on the complexity of 
FOBP derived herein, it directly follows that the complexity of the variable assignment problem 
and its absolute approximation are both NP-complete. Regarding the scheduling of variable 
assignments, we may thus conclude that the problem cannot dealt with well using approximate 
algorithms. In [7] a genetic algorithm [8,9] has been used for integrated scheduling of operations 
and variable assignments. 
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