
Computers Math. Applic. Vol. 35, No. 11, pp. 91-97, 1998
P e r g a m o n © 1998 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0898-1221/98 $19.00 + 0.00

PII: S0898-1221(98)00087-X

Complexity of Fragmentable Object
Bin Packing and an Application

C . A . l ~ A N D A L
Department of Information, Systems and Computing

Brunel University, Uxbridge UB8 3PH, U.K.

P . P . C H A K R A B A R T I AND S . G H O S E
Department of Computer Science and Engineering

Indian Inst i tute of Technology, Kharagpur
West Bengal 721 302, India

(Received and accepted July 1997)

A b s t r a c t - - W e examine in this paper a variant of the bin packing problem, where it is permissible
to fragment the objects while packing them into bins of fixed capacity. We call this the Fragmentable
Object Bin Packing problem (FOBP). Fragmentation is associated with a cost, leading to the con-
sumption of additional bin capacity. We show that the problem and its absolute approximation are
both NP-complete. This is an interesting problem because if the cost of fragmentation is nullified
then the problem can be easily solved optimally. If fragmentation is not permitted, then we get the
usual bin packing problem. The application comes from a problem in data path synthesis where it is
some times necessary to schedule data transfers, subject to restrictions arising from the underlying
hardware. We show that FOBP reduces to a simplified version of this problem, thereby proving that
it is also a similar hard problem. © 1998 Elsevier Science Ltd. All rights reserved.

K e y w o r d s - - C o m p l e x i t y of algorithms, Bin packing, Scheduling, High-level synthesis.

1. T H E F R A G M E N T A B L E O B J E C T BIN P A C K I N G P R O B L E M

We define t he fragmentable object bin packing prob lem as follows.

DEFINITION i . Fragmentable object bin packing (FOBP) is the decision problem of packing N
objects each of size ti, i = 1, . . . ,N, into m bins each of size M, M > 1 such that the capacity
used up while packing each object (whether whole or a f te r fragmentation) of size k is k + 1.

T h e c o n s u m p t i o n of add i t i ona l b in capac i ty for ob jec t s w i th or w i thou t f r a gme n ta t i on is illus-

t r a t e d t h r o u g h the following example .

EXAMPLE 1. To pack an ob j ec t of size five uni ts (say) into a bin, t he b in c a p a c i t y used up will

be six uni ts . However, if the b in capac i ty is four (say) then the ob j ec t will have to be f r agmen ted

before pack ing i t in to a bin. I f the f ragments are of sizes two and th ree uni t s t hen the bin c a p a c i t y

used up for pack ing each of these f ragments would be th ree and four uni ts , respect ively, l

We shal l now prove t h a t th is p rob lem is N P - h a r d by reduc ing the p a r t i t i o n p r o b l e m [1] to a

specia l case of F O B P using on ly two bins. The p a r t i t i o n p rob lem is as follows.

DEFINITION 2. Given a finite set A and a size s(a) E Z +, for each a E A; is there a subset

A I C A, such that ZaeA, s(a) = ~~aeA-A' s (a)?

T h e p a r t i t i o n p rob l em has been shown to be N P - h a r d in [2].

Typeset by A.AdS-TEX

91

92 C.A. MANDAL et al.

LEMMA 1. The decision problem for fragmentable object bin packing for two bins (FOBP2) is
NP-hard.

PaOOF. We prove the lemma by reducing the partition problem to FOBP2 in two steps.

STEP 1. Consider the partition problem where given N objects with integer weights wi (wi > 0),
it is necessary to determine whether it is possible to partition these into two sets whose to-
tal weights are the same. Given an instance P of the partition problem, we construct another
instance P2 of partition where the weight of each object in P2 is twice the weight of the corre-
sponding object in P. Clearly P has a partition if and only if P2 has a partition. If any object
is fragmented, then the total capacity required for packing the full and fragmented objects will
exceed W and the packing will fail.

STEP 2. Given a problem P2, we construct an instance of FOBP2 as follows. For an object of P2
of weight wi there is an object in the instance of FOBP2 of weight wi - 1. There are two bins
for packing the objects. Let W = ~-'~ wi, where wi is the weight of each object of P2. Choose the
size of each bin of FOBP2 as W/2.

Clearly, P2 has a partition if and only if the constructed instance of FOBP2 can be packed
into the two bins. |

Lemma 1 leads to the following result.

COROLLARY 1. FOBP is NP-hard.

The generalization of Lemma 1 leads to the following corollary, which will be used for proving
the hardness of the relative approximation of FOBP.

COROLLARY 2. The decision problem for fragmentable object bin packing for N, N >_ 2 bins is
NP-hard.

The bin packing problem posed here is interesting because if the necessity of consuming a unit
additional capacity for packing each fragment is nullified then the packing may be done optimally.
On the other hand, if fragmentation is not permitted, then we get the conventional bin packing
problem, for which an approximate algorithm exists with the relative error being bounded by a
constant. It is also known that the an approximation scheme for the bin packing problem with
the absolute error being bounded by a constant is NP-hard.

We show through the following argument that an approximation scheme for the fragmentable
object bin packing problem with the absolute error being bounded by a constant is NP-hard.

Let OPT be the number of bins required to solve the problem optimally. Now consider a
problem instance when each of these OPT bins would be fully packed without any fragmentation
of the objects. Let the approximate algorithm solve the problem using OPT+k bins. The
additional capacity introduced by the k bins is M k units of bin capacity. Any fragmentation
made by the approximate algorithm would consume at least two units of this additional space.

Now consider another problem instance derived by replicating the above problem instance
(M K + 1) times. If this problem is to be solved using k bins in addition to (M K + 1) OPT bins,
then at least one of these instances would have to be solved optimally. The use of specific problem
instances requiring exactly OPT bins finds justification through Corollary 2, above. This leads
to the following theorem.

THEOREM 3. An absolute approximation scheme with the error being bounded by a constant,
for the fragmentable object bin packing problem is NP-hard.

These are the two results on FOBP that we present in this paper. In the next section, we
describe a practical problem. We then show that FOBP reduces to a simplified version of this
problem, and thereby show that this problem and also its absolute approximation are both NP-
hard.

Complexity of Fragmentable Object 93

2 . T H E A P P L I C A T I O N

We now consider a problem taken from the domain of VLSI design. The input behavioral
specification for the high level synthesis of a digital system often includes looping and branching
constructs. These constructs give rise to numerous Basic Blocks (BBs) in the intermediate repre-
sentation of the behaviour. Most of the statements in a basic block correspond to operations tha t
need to be performed therein. A result produced by an operation in a basic block (BB) is often
used by one or more operations within the same BB, and also by operations in other BBs (when
multiple BBs are present). This gives rise to precedences between operations within the same BB.
Scheduling of operations to meet various objectives and satisfying constraints is an important
problem, and has received much attention. A common feature of operation scheduling for data
pa th synthesis is the presence of precedence constraints and the nonpreemptive character of the
operations. There are several complexity results in scheduling theory which concern scheduling
with precedence constraints [1,3-5].

Often some of the s tatements of a basic block are variable to variable assignments, which assign
variables defined in other basic blocks to variables in the current basic block. Variables are also
defined from values tha t have been defined by operations internal to the current BB. There is

a difference between the two types of assignments and the difference will become clear in the
following paragraphs. As we examine the problem of variable assignments, it will be evident
tha t these assignments too, need to be scheduled. We shall s tudy the problem of performing
variable assignments consistently in a basic block, and examine the computat ional complexity of
the problem.

Behavioral specifications are usually translated to an intermediate representation before initi-
ating the design procedures. The Directed Cyclic Graph (DAG) representation of basic blocks is
dealt with in detail in [6]. We briefly describe the steps relevant to this work, with the help of
Examples 2 and 3. For each operation in the specification there is a corresponding node in the
intermediate (graph) representation containing information regarding the type of the operation
(+, - , etc.), the sources, and the destination. In the textual specification, both the sources
and destination are expressed as variable names. The destination variable name is annotated
as a label in the node of the operation. The labels indicate the specific variables tha t need to
be assigned the value of tha t node. While constructing such a node, if this variable is already
present as a label in one of the nodes constructed earlier, then it is deleted from tha t earlier
node, as shown in Example 2. This represents a new value definition for the variable and the
label updat ing procedure ensures tha t the newly defined value for the variable carries the label
for tha t variable. As the labels can get deleted, it is possible that during the construction of
the intermediate representation, a node may be left with no label at all. The absence of a label
simply means tha t there is no specifically designated variable to which the value of tha t node is
to be assigned. In such a situation a new variable called a temporary variable [6] is put into the

label field.

EXAMPLE 2. We consider the the labeling of nodes for s tatements (a) and (b) below. These
s ta tements define and then redefine x.

(a) x = a + b. Node representing a + b in (a) takes label x.

(b) x = a - b. Node representing a - b in (b) takes label x, after x is removed from the set of
labels for (a). If the label set of (a) becomes empty on removal of x then it is annotated
with a new label representing a temporary variable. II

In order to identify the source of an operation or a pure variable assignment, it is necessary to
identify the node which has the label corresponding to the source variable annotated to it. If this
variable has been defined by an earlier operation in the current BB, then we may be sure tha t

94 C.A. MANDAL et al.

a node carrying such a label will be found. However, for the first use of an externally defined

variable such a label will not be found. In such a case a special node called an entry node is
created. Example 3 depicts the development of the entry nodes and their set of labels. The entry

node is annotated with labels similar to the operation nodes. It has a special field, the entry
field, to indicate the variable which brings in a value into the current BB through this node.

An assignment "a ~- b" is handled as follows. First, a check is made to see if a happens to
be in the set of labels of any node in the current basic block. It is deleted from that set if such

a node is found. The label a is now augmented to the set of labels of the node that carries the

label b.

We shall now restrict our attention to variable assignment statements which lead to the aug-

mentation of the labels of the entry nodes only.

EXAMPLE 3. Assume that a and b were defined outside the current basic block. Consider the

following transfers corresponding to the interchange of the variables a and b within the current

basic block.

1. t ~ - a .
2. a ~ b .

3. b~-- t .

The developments in the entry nodes for a and b as these statements are processed is shown
Figure 1. In the figure, an entry node is represented with a rectangle and a downward pointing
triangle fixed to the base of the rectangle. The variable in the entry field is written inside the
rectangle. |

{a, t}

{t} {b, a}

b~---t: ~ ~

{t, b} {a}

Figure 1. Development of entry nodes.

For convenience the transfers implied by the variable entry node and its labels will be repre-

sented in a more explicit form as a directed graph as follows. Let S be the set of all the variables

in the entry field and labels of each entry node. Construct a graph G, where there is a node for

each variable in S. Construct a directed edge from a node x to node 9, in G, if 9 appears in the

set of labels of the entry node for x. This edge represents a transfer from x to 9 and it is different

from the precedence constraints discussed earlier in this paper.

Each node with a successor in the transfer graph corresponds to the assignment of the value of

the variable of that node to the variables corresponding to its successors. Actually, a single node

in the transfer graph could be associated with several transfers in the specification, as indicated
in Example 4.

Complexity of Fragmentable Object 95

EXAMPLE 4. The following transfers could be represented in the node of Figure 2.

1. b~--a .

2. c*---a.

3. d*---a.

4. e~ - -a . |

c 5 G o 6
Figure 2. 'I~ansfer graph for transfer to multiple destinations.

The representation for the transfers in Example 3 is indicated in Figure 3. This example also
serves to illustrate the formation of cyclic dependencies. A transfer to a variable, as indicated
in the graph, cannot be scheduled before the transfers originating from the variable has been
scheduled.

@ :-@

@
Figure 3. A transfer graph.

The cycles in the transfer graph pose a difficulty in scheduling these transfers. However, these
cycles can be broken, along with the introduction of some additional transfers to consistently
represent the original transfers. We do not explain this technique here, but Figure 4 illustrates
the application of this technique to remove the cycles arising in Example 3. This graph indicates
the following sequence of transfers: t ~-- b; b *-- a; a ~-- t. Though this sequence is not exactly the
same as the original eode sequence, it is still guaranteed to correctly transfer the values. We have
thus shown that the cycles in the transfer graph can be broken to render it definitely schedulable.

@

@

@

©
Figure 4. Cycle free transfer graph.

96 C.A. MANDAL et al.

The variable to variables transfers in the now acyclic transfer graph are scheduled to take place
between the storage devices in the data path, over the available system buses. Memories will
have a fixed number of access ports (one or two usually). The number of transfers that can
take place in each time step will be restricted by the number of available buses and the memory
access ports. Also, the number of buses and storage access points to be present in the data path
are important design parameters that may be specified by the design engineer. It is desirable
to complete the variable assignments in the shortest possible time, subject to the architectural
restrictions. In the next section, we shall consider the relationship between the scheduling of
variable transfers and FOBP.

3. R E L A T I O N S H I P W I T H F O B P

We consider a simplified version of the general variable assignment problem to analyze the
complexity of the problem. In this version, we only consider simple assignments where the set of
variables occurring on the left and right side of assignments are distinct. Several variables may
be assigned from a single source. The resulting transfer graph is a forest of trees of height one,
corresponding to independent transfers. Let M be the sum total of the number of storage access
ports of all the memories in the data path involved in the variable assignments. The maximum
number of assignments that can be made in any time step is bounded by M. We now examine
how the transfers represented by the graph can be effected.

A A
@ @ @ @

Figure 5. Split transfer graph.

Consider a node with k successors in a transfer graph. This transfer could be carried out in
a single time step over one bus and using k + 1 storage access points. One storage access point
would be required for the source and k others for the destinations denoted by each successor node.
However, if sufficient number of storage access points are not available, then the transfer would
have to be split over several time steps. For example, if four variables need to be assigned and only
three storage access points are available, then it would be necessary to split up the transfer and
schedule them over two time steps. The use of the memory ports is illustrated in Figure 5. We
shall now formulate the problem of scheduling these simple transfers as the fragmentable object
bin packing problem which is equivalent to optimally scheduling the transfers in minimum time,
possibly involving splitting some of the trees in the transfer graph which cannot be scheduled as
a whole in a particular time step.

Consider bins of capacity M, M being equal to the number of storage access points. Our
transfer graph consists of, say, N trees of depth one. Let the number of nodes with in-degree
greater than zero (nonroot nodes) in each tree be t~. Consider the problem of packing N objects
each of size t~, i = 1 , . . . , N, using the minimum number of bins of size M. While packing objects
it is permissible to fragment the objects into integral units as desired. However, each object of
size t, whether whole or after fragmentation, consumes a capacity of t + 1 of the bin into which it
is packed. The extra unit capacity is consumed because, as we have already explained earlier, a
node with k successors takes up k + 1 storage access points. The number of bins used corresponds
to the minimum number of time steps in which the transfers can be scheduled. Thus, we note
that FOBP is a special case of the variable assignment problem, and this leads to the following
results.

Complexity of Fragmentable Object 97

THEOREM 4. The problem of scheduling variable assignments in minimum number of steps is
NP-complete.

PROOF. It is easy to see that this problem is in NP. That it is NP-hard follows from Corollary 1. |

COROLLARY 5. The absolute approximation scheme for the problem of scheduling variable as-
signments in minimum time is NP-complete.

PROOF. It may be shown that this problem is in NP. Theorem 3 indicates that this problem is
NP-hard. |

4. C O N C L U S I O N

In this paper, we raised the issue of the complexity of a variant of the bin packing problem
which we call fragmentable object bin packing (FOBP). We have shown that this problem and
also its absolute approximation scheme are both NP-complete. An interesting aspect of FOBP
is that if the cost of fragmentation is removed then the problem is easily solved optimally and
if fragmentation is not permitted, then it is the normal bin packing problem. The issue of a
constant bounded relative approximation scheme remains an open problem.

As an application, we have considered the problem of scheduling variable assignments which
arise during data path synthesis. The complexity of this problem has been analyzed by showing
that FOBP reduces to a simplified version of this problem. From the results on the complexity of
FOBP derived herein, it directly follows that the complexity of the variable assignment problem
and its absolute approximation are both NP-complete. Regarding the scheduling of variable
assignments, we may thus conclude that the problem cannot dealt with well using approximate
algorithms. In [7] a genetic algorithm [8,9] has been used for integrated scheduling of operations
and variable assignments.

R E F E R E N C E S

1. M. Garey and D. Johnson, A Guide to the Theory of NP-Completeness, Freeman, San Fransisco, CA, (1979).
2. R.E. Miller and J.W. Thatcher, Editors, Reducibility Among Combinatorial Problems, Volume 5, pp. 85-103,

Plenum Pre~, (1972).
3. E.G. Coffman, Jr, Editors, Computer and Job Shop Scheduling Theory, John Wiley ~z Sons, (1976).
4. B. Berger and L. Cowen, Complexity results and algorithms for {<, _~, =}-constrained scheduling, In Pro-

ceedings of $nd Annual ACM-SIAM Symposium on Discrete Algorithms, C.A., pp. 137-147, (1991).
5. C.A. Mandal, P.P. Chakrabarti and S. Ghose, Complexity of scheduling in high level synthesis, VLSI Design

(to appear).
6. A.V. Aho, R. Sethi and J.D. Ullman, COMPILERS Principles, Techniques and Tools, Addison-Wesley, (June

1987).
7. C. Mandal and R.M. Zimmer, High-level synthesis of structured data paths, In IFIP TCIO WG 10.5 Inter-

national Conference on Computer Hardware Description Languages and their Applications, pp. 92-94, April
20-25.

8. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI,
(1975).

9. L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, (1991).

