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Abstract 
In this paper we examine the multi-criteria optim- 

ization involved in scheduling for data path synthesis 
(DPS). We present a method to find non-dominated 
schedules using a combination of restricted search and 
heuristic scheduling techniques. Our method supports 
design with architectural constraints such as the total 
number of functional units, buses, etc. The sched- 
ules produced have been taken to completion using GA- 
BIND [3] and the results are promising. 

1 Introduction 
Data path synthesis (DPS) involves first schedul- 

ing of operations, and then allocation and binding of 
abstract design entities to their physical counterparts. 
At the end of DPS we are required to find one or more 
“optimized” implementations for a design problem in- 
put to the synthesis system. We seek to optimize not 
only the area cost estimate of the data path but also 
its performance, measured as a function of the length 
of the schedule. This makes the synthesis problem a 
multi-criteria optimization problem. 

A feature of most multi-criteria optimization prob- 
lems is that the criteria are often non-commensurate 
and sometimes conflicting. It is therefore difficult to 
combine the criteria into a single cost function. We 
take the approach of representing the cost of a design 
as a tuple of costs of the individual objectives. This 
is similar to the approach taken in Stewart et al. [7]. 
One cost tuple is said to be better than another distinct 
tuple if the cost of each criterion of the first tuple is no 
worse than the corresponding costs of the other tuple. 
A design whose cost tuple is better than that of another 
design as saad to dominate that desagn. The global 
problem of optimization is to find the set of designs 
which are not dominated by  any other designs. The 
set of feasible designs satisfying the design parameters 
constitute the design space. Each design point in the 

design space corresponds to an estimate of hardware 
requirement and performance computed as a function 
of the schedule time. Thus an algorithm for DPS 
needs to consider techniques not only for schedul- 
ing and allocation but also for a systematic explora- 
tion of the design space to locate these non-dominated 
designs. The starting point of design space exploration 
often revolves round the basic scheduling problem. In 
our work, we do design space exploration (DSE) us- 
ing a combination of controlled search, and heuristic 
scheduling techniques. 

We employ a multi-objective search approach to 
perform design space exploration and scheduling. In 
our scheme we have a state space generation mech- 
anism coupled with an estimator for obtaining vari- 
ous <hardware cost, performance> estimates. A con- 
trolled depth first branch and bound is used to determ- 
ine the hardware cost estimate and produce a partial 
schedule for a given time constraint. This actually 
corresponds to a localized exact or near exact explor- 
ation of a region of the entire design space. In order 
to contain the combinatorial explosion, the computa- 
tional effort to be spent on DSE can be controlled by 
certain parameters. 

At the heart of the DSE mechanism is the con- 
trolled search based Resource Estimation and Partial 
Scheduling (REPS) algorithm. The basic DSE tech- 
nique makes use of the REPS algorithm to estimate 
the hardware requirement, as tightly as possible, so 
that the design parameters are also satisfied. REPS 
also returns a partial or complete schedule depending 
on the situation. The design points obtained may be 
approximate (lower bounds) and the schedules may be 
partial in the sense that the degree of freedom of some 
operation may still be more than one. To meet this 
situation a local DSE mechanism has been developed 
to explore the neighborhood of such a design point to 
obtain one or more non-dominated design points for 

0-8186-7755496 $05.00 0 1996 IEEE 
166 

Idh International Conference on VLSI Design -January 1997 



which feasible schedules will exist. 
In the following we present details of our solution 

to the problem of design space exploration (DSE) to 
generate a set of schedules which will represent non- 
dominated designs. The inputs for design space ex- 
ploration are explained in the next section. The es- 
timates used by REPS for hardware cost and sched- 
ule time are discussed in section 3. REPS itself is 
presented in section 4 Then the overall DSE mechan- 
ism (which uses REPS) is explained in section 5. The 
experimental results are presented in section 6. 

2 Inputs to DSE 
1. Operation Precedences. 

2. Design Parameters: Our design space exploration 
(DSE) scheme uses the following parameters. 

NFUS This indicates the number of sites 
where hardware operators will be clustered. 
However, FUs need not be formed during 
scheduling. 

NBUS This is the maximum number of logic- 
ally distinct buses in the system. Presently, 
each communication path between units is 
abstracted as a bus. In our model of imple- 
mentation two or more units are connected 
to each main bus. The connection may be 
switched or direct. 

NVREF This is the maximum number of dis- 
tinct variable references permitted in any 
time step. 

Though the above parameters are independent 
they are well co-related. 

3 Measures for DSE 
We shall often have to consider a region of the 

design space and efficiently determine the design point 
or points in this region which will be feasible and worth 
retaining. In general we shall have to resort to schedul- 
ing to answer this question. However, scheduling could 
be computationally intensive. We, shall therefore rely 
on heuristic measures not only to aid scheduling but 
also to arrive at our decision as early as possible. 
3.1 Estimation of Resources for Specific 

Operations 
Given a DAG, we would like to estimate the number 

of each hardware operator for realizing each kind of 
operation to schedule the DAG in (say) n time steps. 
This estimate can be obtained as a lower bound. The 
method of determining the lower bound is similar to 
the techniques proposed in [6, 13 using the concept of 
windows. 

3.2 Estimation on the Total Number of 

This met,ric is required to ensure that the parameter 
NFUS is not violated. This metric is found using an 
extension oE the method mentioned above, for the pre- 
vious metric. Only, in this case, no distinction is made 
between the different types of operations, and all the 
operations occurring in a window are counted. 

3.3 Estimation for Buses 
The bus requirement is estimated by examining the 

transfers that take place in various windows. Each op- 
erand of an operation contributes to a transfer. Trans- 
fers also arise due to variable assignments. As usual 
we consider the transfers that will be restricted within 
the window under consideration and then compute the 
lower bound on the number of concurrent transfers. 
Common variables which form inputs to operations 
need to be lhandled carefully. For the purpose of com- 
puting a lower bound transfers arising from the same 
variable to operations which are neither ancestors or 
descendents of one another may be counted only once, 
otherwise they may be considered distinct. 

3.4 Estimation for Variable Accesses 
The number of distinct variable accesses is determ- 

ined by exaimining the variable accesses that take place 
in various windows. Each input and output operand 
of an operakion contributes to a variable access. As 
usual we cclnsider the accesses that will be restricted 
within the window under consideration to compute the 
lower bound. 

The above estimation methods are applicable to in- 
dividual DAG’S. For multiple DAG’S these estimators 
need to be applied to each of those DAG’S. The global 
1.b. is obtained by merging the individual l.b.’s. 

Operations per Time Step 

4 Search Algorithm for Resource Es- 
timation and Partial Scheduling 

The resource estimation and partial scheduling al- 
gorithm uses the estimators described in the previ- 
ous section to determine the resource cost for a given 
schedule time. It also returns a complete schedule if re- 
quired. This requirement is controlled by a threshold. 
If the threshold W is set to one then it returns a 
complete schedule. If W > 1 then it returns a par- 
tial schedube in the sense that the degrees of freedoms 
(DOF) of all operations are suitably reduced but some 
may still have non-zero DOF. It is, however, ensured 
that the DOF of all operations will be less than W .  
Thus the REPS algorithm partitions the DAG, if neces- 
sary, into srnaller DAG’S, applies the estimator to these 
partitions a,nd combines the estimates for the different 
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partitions to arrive at the final estimate. The sched- 
ules of partitions are combined to return the partial 
schedule obtained. 

4.1 The Search Scheme 
The partitioning scheme requires splitting the n time 

steps, in which to schedule (a partition of) the DAG, if 
n > W ,  into bands each of at most W time steps. Each 
operation of the DAG is restricted to lie in only one of 
these bands. For operations whose, ASAP and ALAP 
times, t ,  and t o ,  lie within a band, nothing needs to be 
done. For other operations it is necessary to take a de- 
cision regarding the band where it should be restricted 
to be scheduled. A poor decision regarding the band 
where the operation should be placed could give rise 
to a high and sub-optimal resource cost estimate. A 
search must, therefore, be conducted on the DAG to 
take the right set of decisions. We have employed a 
depth first branch and bound scheme. The process of 
decomposition is done recursively till the size of none 
of the partitions of the current DAG are more than W .  
We now explain the search mechanism. 

The memory requirement for storing the partial 
solutions is high. Thus we have chosen depth first 
search branch and bound (DFBB) since its memory 
requirement is minimal. In the search scheme the par- 
titioned DAG’s are treated like separate DAG’s. If the 
number of time steps within which the DAG needs to 
be scheduled does not exceed W then no more repar- 
titioning is done and the current estimates are accep- 
ted. Otherwise, it is split into two smaller DAG’s. The 
splitting is done near about the middle so that the two 
sub-problems generated are of similar size. If there are 
one or more operations crossing the boundary then all 
the possibilities of distributing these operations need 
to be tested out. This is where the search comes in. 
We perform the search by explicit backtracking. In or- 
der to keep track of the moves a stack is used. For an 
operation that crosses the partition boundary there are 
three moves to be made: i) it has to be scheduled in 
the top half, ii) it has to be scheduled in the lower half 
and iii) its original freedom has to be restored. After 
making a move the ASAP and ALAP schedules and 
the resource estimates are recomputed. If this estim- 
ates exceed the estimates of the best design found so 
far, then the current move is rejected and backtracking 
is initiated. Move rejection followed by backtracking 
also takes place if the resource estimate is found to be 
infeasible with respect to the design parameters. 

When partitioning is done, it becomes necessary to 
handle multiple basic blocks. A list is used to handle 
these b.b.’s. Attempt is made to ensure that the sizes 
of the b.b.’s in the list are near about the same. When 

the list becomes empty, it is assured that the sizes 
of all the (partitioned) b.b.’s is less than or equal to 
W .  When this condition is satisfied no more parti- 
tioning needs to be done. If W = 1, then this is also 
the complete schedule and corresponds to a feasible 
design point. Otherwise, the design point found is an 
approximate one. If this point corresponds to a design 
with a better (lower) resource estimate than that of 
the best stored design then it replaces that design. 
The algorithm terminates with a failure if there exists 
a partition where the design parameters of NFUS and 
NBUS cannot be possibly satisfied. 

The requirement for each resource is generated in 
the form of the a tuple < m, w,  j >, where m is the 
number of units of that entity occurring in a window 
of size w in the b.b. j. Such tuples are generated 
for the maximum number of operations per time step, 
the bus requirement, the storage access point require- 
ment and the requirement for hardware operator for 
each type of operation. is the 1.b. on that re- 
source. Tuples, instead of the resource requirement, 
are generated because this information is needed by 
the exploration heuristic used in the DSE tool (section 
5.1). 

The search mechanism explained above has one an- 
omaly. The problem is that when REPS is being done 
with a relaxed time constraint then the search space 
turns out to be far larger than when REPS is being 
done with a tighter time constraint. This situation 
is addressed to by running an approximate schedul- 
ing algorithm on the current b.b. before going ahead 
to partition it into smaller b.b.’s. If the approximate 
scheduling algorithm terminates successfully then the 
current b.b. may be assumed to satisfy the 1.b. on the 
resource estimate and need not be examined by the 
search mechanism any more. 

4.2 Special Handling of Operations 
REPS handles multi-cycle operations in the follow- 

ing manner. Suppose that the time frame of a multi- 
cycle operation of k time steps crosses the partition 
boundary set at timet. Up to k possibilities need to be 
examined. These are, initiating the operation at times 
earlier than time step t - IC, initiating the operation at 
times t - k, . . . , t ,  and at times later that t. Initiation 
of the operation at specific times is the additional over- 
head for handling multi-cycle operations. When more 
than a single operation crosses the partition boundary, 
partitioning is initiated with the operation requiring 
the least number of cycles for its execution. Hand- 
ling of pipelined operations is as follows. Consider a 
p-stage pipelined implementation with a stage delay of 
d,  of an operation of type 2. The result of such an 
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operation will be obtained p - 1 time steps after initi- 
ation. Therefore, while scheduling the number of time 
steps to complete operations of type 2 should be taken 
a p .  The 1.b. is obtained as for a multicycle operation, 
the stage delay d being used in place of the number of 
time steps k of the multi-cycle operation. 

5 Scheme for DSE 
We now describe the overall scheme for design space 

exploration. At the heart of the DSE technique is the 
resource estimation and partial scheduling algorithm 
(REPS) which is repeatedly invoked with varying time 
constraints. The time constraints with which REPS 
is invoked is determined by the exploration heuristic 
described in section 5.1. With each invocation REPS 
either indicates that the time constraint is not feasible 
or it returns a design point and a schedule. When a 
new design point is obtained one of the three conditions 
will be true. 

Dominated: If the point is dominated by existing 
design points then this design point is discarded. 

Dominating : If the point dominates a set of the exist- 
ing design points then all these are discarded and 
the new point is incorporated in the design space. 

Non Dominated : If it neither dominates, nor is it 
dominated by other design points the it is simply 
incorporated in the design space. 

If W > 1 then REPS will generally return a partial 
schedule and an approximate hardware requirement. 
In the latter case it is desirable to obtain the complete 
feasible schedules, which will be needed for performing 
subsequent allocation and binding. These schedules 
will have to be obtained using approximate scheduling 
algorithms. 
5.1 Exploration Heuristic 

The resource cost estimation scheme described 
above requires the number of time steps for each b.b. 
to be specified. To start with, the number of time 
steps for each DAG is set to its critical length, and 
then REPS is invoked. The resulting resource re- 
quirements are computed from the tuples, as explained 
above, and examined. It was mentioned that the re- 
quirement for each hardware resource or the require- 
ment of FUs, buses, etc. are generated in the form 
of the a tuple < m, w, j >, where m is the number of 
units of that entity occurring in a window of size w 
in the b.b. j. In case any of the design parameters is 
violated a corrective action is taken as follows. Sup- 
pose that a design parameter X having the value vx 
is violated, i.e. > vx. Consider the effect of 

adding i, i > 0, time steps to the DAG of the b.b. j x .  
Now the earliest time of each operation 0, ta,o remains 
unaltered, but tl,o goes up by i. Therefore, each op- 
eration previously restricted to lie in a window of size 
w will now lie in a window of size w + i. A minimal 
number of time steps tx  > 0 is added to wx so that 
i.e. [ * ~ 1  I: vx. REPS is invoked after making 
the correction. 

The DSE retains the set of mutually non- 
dominating design points that have been found. When 
a design point is found to be feasible it is compared 
with the stored design points. If is dominated by any 
point then it is not included in the set. If it dominates 
any point of the set then it replaces that point. Explor- 
ation continues with a new set of constraints, generated 
as follows. For each operation 0 whose requirement 
exceeds unity, we identify the DAG’s where it is re- 
quired maximally. In each of these DAG’s we determ- 
ine the timet by which the time constraint of that DAG 
should be relaxed so that the new requirement of the 
operator wiill be one less, i.e. [--tl = - 1. 
Let to be the maximum of all the times computed 
above. Let DO be the DAG where this relaxation may 
be effected. Let 0“ be the operation for which t o  has 
the minimum (non-zero) value of all the to’s. Let DO* 
be the corresponding DAG. 

We now relax the time constraint on the b.b. for 

W O  + W O  

is the heuristic used to conduct the exploration of the 
design space. Exploration is terminated when the re- 
source requirements of all the operations become unity. 
5.2 Scbeduling Schemes for Use with DSE 

We have noted that the REPS generates (hardware 
cost, performance) estimates and a schedule for a given 
design input. For subsequent allocation and binding 
complete schedules are needed. Most of the existing 
scheduling algorithms, like FDLS [4], can be adapted 
to work wi1,h the partially scheduled DAG’s generated 
by REPS. However, the performance of such modified 
heuristic algorithms may not match the performance 
of the original algorithm. 

There is a second and more important aspect that 
needs to be addressed. It may be noted that the re- 
source estiimates are lower bounds and not exact es- 
timates. It is, therefore, quite possible that for a time 
constraint and a set of hardware operators, as indic- 
ated by a design point, a feasible solution might not 
exist. Even if such a solution does exist, it might be 
missed out by the approximate scheduling algorithm. 
However, feasible solutions will be present in the neigh- 
borhood of a design point. We, therefore, resort to 
a systematic generation of schedules in the neighbor- 
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hood of a design point reported by REPS and retained 
by the DSE mechanism as a non-dominated design 
point. Such a local exploration scheme should be cap- 
able of examining the neighborhood of a design point 
for feasible non-dominated solutions using approxim- 
ate scheduling algorithms. The choice of polynomial 
time techniques here is emphasized, for otherwise an 
exact method could be used to obtain the schedule in 
the first place. 

Thus after the first phase of DSE we have a set of 
design points. With each design point we also have 
the set of partitioned DAG’s which had lead to its 
FU estimate component. At this juncture we com- 
plete the schedules of these partitioned DAG’s using 
standard algorithms like FDLS [4] or the scheduling 
method proposed in El]. The solutions obtained from 
this completion gives us upper bound (u.b.) estim- 
ates. If these match with the lower bound estimates 
obtained through DSE, we can terminate with accur- 
ate design points and schedules. On the other hand, if 
the u.b.’s and the 1.b.’~ differ, we explore around the 
estimated design point for feasible schedules leading 
to non-dominated <performance, FU requirement> 
design points. That is, we make limited search (in 
polynomial time) around the estimated design points 
obtained earlier. 

6 Experimentation 
The techniques proposed in this paper have been 

implemented and tested on some common examples 
like Facet [8], differential equation solver [5] and el- 
liptic wave filter [2]. 

Tables 1,2 and 3 indicate the design points obtained 
after design space exploration of Facet, Diffeq. and 
Elliptic Wave Filter, respectively. All these designs 
are for single cycle implementations of the operations. 
The first two columns indicate design parameters. The 
design points obtained after design space exploration 
are indicated under “DSE” , while the actual results 
obtained after allocation and binding are indicated 
alongside. While computing the costs of the FUs, the 
cost of each hardware operator is taken as follows: 

2O,cost(<) = lO,cost(l) = 10 and cost(&) = 10. The 
allocation and binding has been done by the alloca- 
tion and binding tool GABIND [3]. Each block of 
rows in a table indicates the design points obtained for 
a particular set of parameters. For Facet the design 
points obtained by DSE match the actual designs ob- 
tained after allocation and binding. This is also true 
for the elliptic wave filter example in table 3.  For Dif- 
feq. the actual implementation of the design points 
indicated in rows 2, 3 and 4 of table 2, require an 

cost(/) = 160,cost(*) = 160,cost(+) = 20,cost(-) = 

additional adder in each case. For two FUs and seven 
time steps for Diffeq. the operations scheduled in three 
time steps were as follows: < * + >; < * - >; and 
< + - >. Therefore, although at most one + and 
one - are scheduled in any time step, it is not pos- 
sible to have an FU configuration using two FUs where 
at least a + or - is not repeated. For the case with 
three FUs and seven time steps, however, such a prob- 
lem did not exist. Yet an additional + was used to 
keep the switch cost low. The implementation of Dif- 
feq. using two FUs in seven time steps is especially 
nice, requiring only three switches. The design point 
indicated in row 2 is for designing with only two FUs, 
whereas there are four types of operations distributed 
over seven time steps. For the design point indicated 
in row 3 of table 2 the number of time steps is four, 
exactly equal to the length of the critical path in the 
data flow graph. 
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F.U. num. num. num. h/w opr. req. 
of of cost time 
F.U.s bus steps 

5 
4 

DSE 

2 6 1*, 1/, 1+, 1-, l&, 1- 380 
3 9 1*, 1/, 2+, 1-, l&, 1- 400 

1*, 1/, 1+, 1-, 1&, 1- 380 5 

Table 1: DSE results for Facet. 

After Synthesis with GABIND 
h/w opr. req. 

steps 
1*, 1/, 1+, 1-, 1&, 1- 
1*, 1/, 2+, 1-, l&, 1- 
1*, 1/, 1+, 1-, l&, 1- 

num. of num. h/w opr. req. DSE F.U. num. 
F.U.s of cost time 

bus steps 
2 6 2*, 1+, 1-, 1< 370 6 

1*, 1+, 1-, 1< 210 7 
3 9 2*, 1+, 1-, 1< 370 4 

1*, 1+, 1-, 1< 210 7 

Table 2: DSE results for Diffeq. 

After Synthesis with GABIND 

hI-1 steps 
2*, 1+, 1-, 1< 370 6 
1*,2+, 1-, 1< 230 7 
2*, 2+, 1-, 1< 390 4 
1*, 2+, 1-, 1< 230 7 

4 

num. of 
F.U.s 

3 

DSE After Synthesis W I  

num. F.U. num. h/w 
of opr . cost time 
bus req. steps req. 

2*, 2+ 2*, 2+ 
1*, 2+ 200 1*, 2+ 200 
1*, 1+ 180 1*, 1+ 

;h GABIND 
num. 
time 
steps 

27 

Table 3: DSE results for Elliptic Wave Filter. 
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