
Design Space Exploration for Data Path Synthesis

C. A.Manda1’ P. P.Chakrabarti2 S.Ghose2

Department of Computer Science & Engineering
Jadavpur University, Calcutta 700032, INDIA
Department of Computer Science & Engineering

Indian Institute of Technology , Kharagpur 721302, INDIA

Abstract
In this paper we examine the multi-criteria optim-

ization involved in scheduling for data path synthesis
(DPS). We present a method to find non-dominated
schedules using a combination of restricted search and
heuristic scheduling techniques. Our method supports
design with architectural constraints such as the total
number of functional units, buses, etc. The sched-
ules produced have been taken to completion using GA-
BIND [3] and the results are promising.

1 Introduction
Data path synthesis (DPS) involves first schedul-

ing of operations, and then allocation and binding of
abstract design entities to their physical counterparts.
At the end of DPS we are required to find one or more
“optimized” implementations for a design problem in-
put to the synthesis system. We seek to optimize not
only the area cost estimate of the data path but also
its performance, measured as a function of the length
of the schedule. This makes the synthesis problem a
multi-criteria optimization problem.

A feature of most multi-criteria optimization prob-
lems is that the criteria are often non-commensurate
and sometimes conflicting. It is therefore difficult to
combine the criteria into a single cost function. We
take the approach of representing the cost of a design
as a tuple of costs of the individual objectives. This
is similar to the approach taken in Stewart et al. [7].
One cost tuple is said to be better than another distinct
tuple if the cost of each criterion of the first tuple is no
worse than the corresponding costs of the other tuple.
A design whose cost tuple is better than that of another
design as saad to dominate that desagn. The global
problem of optimization is to find the set of designs
which are not dominated by any other designs. The
set of feasible designs satisfying the design parameters
constitute the design space. Each design point in the

design space corresponds to an estimate of hardware
requirement and performance computed as a function
of the schedule time. Thus an algorithm for DPS
needs to consider techniques not only for schedul-
ing and allocation but also for a systematic explora-
tion of the design space to locate these non-dominated
designs. The starting point of design space exploration
often revolves round the basic scheduling problem. In
our work, we do design space exploration (DSE) us-
ing a combination of controlled search, and heuristic
scheduling techniques.

We employ a multi-objective search approach to
perform design space exploration and scheduling. In
our scheme we have a state space generation mech-
anism coupled with an estimator for obtaining vari-
ous <hardware cost, performance> estimates. A con-
trolled depth first branch and bound is used to determ-
ine the hardware cost estimate and produce a partial
schedule for a given time constraint. This actually
corresponds to a localized exact or near exact explor-
ation of a region of the entire design space. In order
to contain the combinatorial explosion, the computa-
tional effort to be spent on DSE can be controlled by
certain parameters.

At the heart of the DSE mechanism is the con-
trolled search based Resource Estimation and Partial
Scheduling (REPS) algorithm. The basic DSE tech-
nique makes use of the REPS algorithm to estimate
the hardware requirement, as tightly as possible, so
that the design parameters are also satisfied. REPS
also returns a partial or complete schedule depending
on the situation. The design points obtained may be
approximate (lower bounds) and the schedules may be
partial in the sense that the degree of freedom of some
operation may still be more than one. To meet this
situation a local DSE mechanism has been developed
to explore the neighborhood of such a design point to
obtain one or more non-dominated design points for

0-8186-7755496 $05.00 0 1996 IEEE
166

Idh International Conference on VLSI Design -January 1997

which feasible schedules will exist.
In the following we present details of our solution

to the problem of design space exploration (DSE) to
generate a set of schedules which will represent non-
dominated designs. The inputs for design space ex-
ploration are explained in the next section. The es-
timates used by REPS for hardware cost and sched-
ule time are discussed in section 3. REPS itself is
presented in section 4 Then the overall DSE mechan-
ism (which uses REPS) is explained in section 5. The
experimental results are presented in section 6.

2 Inputs to DSE
1. Operation Precedences.

2. Design Parameters: Our design space exploration
(DSE) scheme uses the following parameters.

NFUS This indicates the number of sites
where hardware operators will be clustered.
However, FUs need not be formed during
scheduling.

NBUS This is the maximum number of logic-
ally distinct buses in the system. Presently,
each communication path between units is
abstracted as a bus. In our model of imple-
mentation two or more units are connected
to each main bus. The connection may be
switched or direct.

NVREF This is the maximum number of dis-
tinct variable references permitted in any
time step.

Though the above parameters are independent
they are well co-related.

3 Measures for DSE
We shall often have to consider a region of the

design space and efficiently determine the design point
or points in this region which will be feasible and worth
retaining. In general we shall have to resort to schedul-
ing to answer this question. However, scheduling could
be computationally intensive. We, shall therefore rely
on heuristic measures not only to aid scheduling but
also to arrive at our decision as early as possible.
3.1 Estimation of Resources for Specific

Operations
Given a DAG, we would like to estimate the number

of each hardware operator for realizing each kind of
operation to schedule the DAG in (say) n time steps.
This estimate can be obtained as a lower bound. The
method of determining the lower bound is similar to
the techniques proposed in [6, 13 using the concept of
windows.

3.2 Estimation on the Total Number of

This met,ric is required to ensure that the parameter
NFUS is not violated. This metric is found using an
extension oE the method mentioned above, for the pre-
vious metric. Only, in this case, no distinction is made
between the different types of operations, and all the
operations occurring in a window are counted.

3.3 Estimation for Buses
The bus requirement is estimated by examining the

transfers that take place in various windows. Each op-
erand of an operation contributes to a transfer. Trans-
fers also arise due to variable assignments. As usual
we consider the transfers that will be restricted within
the window under consideration and then compute the
lower bound on the number of concurrent transfers.
Common variables which form inputs to operations
need to be lhandled carefully. For the purpose of com-
puting a lower bound transfers arising from the same
variable to operations which are neither ancestors or
descendents of one another may be counted only once,
otherwise they may be considered distinct.

3.4 Estimation for Variable Accesses
The number of distinct variable accesses is determ-

ined by exaimining the variable accesses that take place
in various windows. Each input and output operand
of an operakion contributes to a variable access. As
usual we cclnsider the accesses that will be restricted
within the window under consideration to compute the
lower bound.

The above estimation methods are applicable to in-
dividual DAG’S. For multiple DAG’S these estimators
need to be applied to each of those DAG’S. The global
1.b. is obtained by merging the individual l.b.’s.

Operations per Time Step

4 Search Algorithm for Resource Es-
timation and Partial Scheduling

The resource estimation and partial scheduling al-
gorithm uses the estimators described in the previ-
ous section to determine the resource cost for a given
schedule time. It also returns a complete schedule if re-
quired. This requirement is controlled by a threshold.
If the threshold W is set to one then it returns a
complete schedule. If W > 1 then it returns a par-
tial schedube in the sense that the degrees of freedoms
(DOF) of all operations are suitably reduced but some
may still have non-zero DOF. It is, however, ensured
that the DOF of all operations will be less than W .
Thus the REPS algorithm partitions the DAG, if neces-
sary, into srnaller DAG’S, applies the estimator to these
partitions a,nd combines the estimates for the different

167

partitions to arrive at the final estimate. The sched-
ules of partitions are combined to return the partial
schedule obtained.

4.1 The Search Scheme
The partitioning scheme requires splitting the n time

steps, in which to schedule (a partition of) the DAG, if
n > W , into bands each of at most W time steps. Each
operation of the DAG is restricted to lie in only one of
these bands. For operations whose, ASAP and ALAP
times, t , and t o , lie within a band, nothing needs to be
done. For other operations it is necessary to take a de-
cision regarding the band where it should be restricted
to be scheduled. A poor decision regarding the band
where the operation should be placed could give rise
to a high and sub-optimal resource cost estimate. A
search must, therefore, be conducted on the DAG to
take the right set of decisions. We have employed a
depth first branch and bound scheme. The process of
decomposition is done recursively till the size of none
of the partitions of the current DAG are more than W .
We now explain the search mechanism.

The memory requirement for storing the partial
solutions is high. Thus we have chosen depth first
search branch and bound (DFBB) since its memory
requirement is minimal. In the search scheme the par-
titioned DAG’s are treated like separate DAG’s. If the
number of time steps within which the DAG needs to
be scheduled does not exceed W then no more repar-
titioning is done and the current estimates are accep-
ted. Otherwise, it is split into two smaller DAG’s. The
splitting is done near about the middle so that the two
sub-problems generated are of similar size. If there are
one or more operations crossing the boundary then all
the possibilities of distributing these operations need
to be tested out. This is where the search comes in.
We perform the search by explicit backtracking. In or-
der to keep track of the moves a stack is used. For an
operation that crosses the partition boundary there are
three moves to be made: i) it has to be scheduled in
the top half, ii) it has to be scheduled in the lower half
and iii) its original freedom has to be restored. After
making a move the ASAP and ALAP schedules and
the resource estimates are recomputed. If this estim-
ates exceed the estimates of the best design found so
far, then the current move is rejected and backtracking
is initiated. Move rejection followed by backtracking
also takes place if the resource estimate is found to be
infeasible with respect to the design parameters.

When partitioning is done, it becomes necessary to
handle multiple basic blocks. A list is used to handle
these b.b.’s. Attempt is made to ensure that the sizes
of the b.b.’s in the list are near about the same. When

the list becomes empty, it is assured that the sizes
of all the (partitioned) b.b.’s is less than or equal to
W . When this condition is satisfied no more parti-
tioning needs to be done. If W = 1, then this is also
the complete schedule and corresponds to a feasible
design point. Otherwise, the design point found is an
approximate one. If this point corresponds to a design
with a better (lower) resource estimate than that of
the best stored design then it replaces that design.
The algorithm terminates with a failure if there exists
a partition where the design parameters of NFUS and
NBUS cannot be possibly satisfied.

The requirement for each resource is generated in
the form of the a tuple < m, w, j >, where m is the
number of units of that entity occurring in a window
of size w in the b.b. j. Such tuples are generated
for the maximum number of operations per time step,
the bus requirement, the storage access point require-
ment and the requirement for hardware operator for
each type of operation. is the 1.b. on that re-
source. Tuples, instead of the resource requirement,
are generated because this information is needed by
the exploration heuristic used in the DSE tool (section
5.1).

The search mechanism explained above has one an-
omaly. The problem is that when REPS is being done
with a relaxed time constraint then the search space
turns out to be far larger than when REPS is being
done with a tighter time constraint. This situation
is addressed to by running an approximate schedul-
ing algorithm on the current b.b. before going ahead
to partition it into smaller b.b.’s. If the approximate
scheduling algorithm terminates successfully then the
current b.b. may be assumed to satisfy the 1.b. on the
resource estimate and need not be examined by the
search mechanism any more.

4.2 Special Handling of Operations
REPS handles multi-cycle operations in the follow-

ing manner. Suppose that the time frame of a multi-
cycle operation of k time steps crosses the partition
boundary set at timet. Up to k possibilities need to be
examined. These are, initiating the operation at times
earlier than time step t - IC, initiating the operation at
times t - k, . . . , t , and at times later that t. Initiation
of the operation at specific times is the additional over-
head for handling multi-cycle operations. When more
than a single operation crosses the partition boundary,
partitioning is initiated with the operation requiring
the least number of cycles for its execution. Hand-
ling of pipelined operations is as follows. Consider a
p-stage pipelined implementation with a stage delay of
d, of an operation of type 2. The result of such an

168

operation will be obtained p - 1 time steps after initi-
ation. Therefore, while scheduling the number of time
steps to complete operations of type 2 should be taken
a p . The 1.b. is obtained as for a multicycle operation,
the stage delay d being used in place of the number of
time steps k of the multi-cycle operation.

5 Scheme for DSE
We now describe the overall scheme for design space

exploration. At the heart of the DSE technique is the
resource estimation and partial scheduling algorithm
(REPS) which is repeatedly invoked with varying time
constraints. The time constraints with which REPS
is invoked is determined by the exploration heuristic
described in section 5.1. With each invocation REPS
either indicates that the time constraint is not feasible
or it returns a design point and a schedule. When a
new design point is obtained one of the three conditions
will be true.

Dominated: If the point is dominated by existing
design points then this design point is discarded.

Dominating : If the point dominates a set of the exist-
ing design points then all these are discarded and
the new point is incorporated in the design space.

Non Dominated : If it neither dominates, nor is it
dominated by other design points the it is simply
incorporated in the design space.

If W > 1 then REPS will generally return a partial
schedule and an approximate hardware requirement.
In the latter case it is desirable to obtain the complete
feasible schedules, which will be needed for performing
subsequent allocation and binding. These schedules
will have to be obtained using approximate scheduling
algorithms.
5.1 Exploration Heuristic

The resource cost estimation scheme described
above requires the number of time steps for each b.b.
to be specified. To start with, the number of time
steps for each DAG is set to its critical length, and
then REPS is invoked. The resulting resource re-
quirements are computed from the tuples, as explained
above, and examined. It was mentioned that the re-
quirement for each hardware resource or the require-
ment of FUs, buses, etc. are generated in the form
of the a tuple < m, w, j >, where m is the number of
units of that entity occurring in a window of size w
in the b.b. j. In case any of the design parameters is
violated a corrective action is taken as follows. Sup-
pose that a design parameter X having the value vx
is violated, i.e. > vx. Consider the effect of

adding i, i > 0, time steps to the DAG of the b.b. j x .
Now the earliest time of each operation 0, ta,o remains
unaltered, but tl,o goes up by i. Therefore, each op-
eration previously restricted to lie in a window of size
w will now lie in a window of size w + i. A minimal
number of time steps tx > 0 is added to wx so that
i.e. [* ~ 1 I: vx. REPS is invoked after making
the correction.

The DSE retains the set of mutually non-
dominating design points that have been found. When
a design point is found to be feasible it is compared
with the stored design points. If is dominated by any
point then it is not included in the set. If it dominates
any point of the set then it replaces that point. Explor-
ation continues with a new set of constraints, generated
as follows. For each operation 0 whose requirement
exceeds unity, we identify the DAG’s where it is re-
quired maximally. In each of these DAG’s we determ-
ine the timet by which the time constraint of that DAG
should be relaxed so that the new requirement of the
operator wiill be one less, i.e. [--tl = - 1.
Let to be the maximum of all the times computed
above. Let DO be the DAG where this relaxation may
be effected. Let 0“ be the operation for which t o has
the minimum (non-zero) value of all the to’s. Let DO*
be the corresponding DAG.

We now relax the time constraint on the b.b. for

W O + W O

is the heuristic used to conduct the exploration of the
design space. Exploration is terminated when the re-
source requirements of all the operations become unity.
5.2 Scbeduling Schemes for Use with DSE

We have noted that the REPS generates (hardware
cost, performance) estimates and a schedule for a given
design input. For subsequent allocation and binding
complete schedules are needed. Most of the existing
scheduling algorithms, like FDLS [4], can be adapted
to work wi1,h the partially scheduled DAG’s generated
by REPS. However, the performance of such modified
heuristic algorithms may not match the performance
of the original algorithm.

There is a second and more important aspect that
needs to be addressed. It may be noted that the re-
source estiimates are lower bounds and not exact es-
timates. It is, therefore, quite possible that for a time
constraint and a set of hardware operators, as indic-
ated by a design point, a feasible solution might not
exist. Even if such a solution does exist, it might be
missed out by the approximate scheduling algorithm.
However, feasible solutions will be present in the neigh-
borhood of a design point. We, therefore, resort to
a systematic generation of schedules in the neighbor-

169

hood of a design point reported by REPS and retained
by the DSE mechanism as a non-dominated design
point. Such a local exploration scheme should be cap-
able of examining the neighborhood of a design point
for feasible non-dominated solutions using approxim-
ate scheduling algorithms. The choice of polynomial
time techniques here is emphasized, for otherwise an
exact method could be used to obtain the schedule in
the first place.

Thus after the first phase of DSE we have a set of
design points. With each design point we also have
the set of partitioned DAG’s which had lead to its
FU estimate component. At this juncture we com-
plete the schedules of these partitioned DAG’s using
standard algorithms like FDLS [4] or the scheduling
method proposed in El]. The solutions obtained from
this completion gives us upper bound (u.b.) estim-
ates. If these match with the lower bound estimates
obtained through DSE, we can terminate with accur-
ate design points and schedules. On the other hand, if
the u.b.’s and the 1.b.’~ differ, we explore around the
estimated design point for feasible schedules leading
to non-dominated <performance, FU requirement>
design points. That is, we make limited search (in
polynomial time) around the estimated design points
obtained earlier.

6 Experimentation
The techniques proposed in this paper have been

implemented and tested on some common examples
like Facet [8], differential equation solver [5] and el-
liptic wave filter [2].

Tables 1,2 and 3 indicate the design points obtained
after design space exploration of Facet, Diffeq. and
Elliptic Wave Filter, respectively. All these designs
are for single cycle implementations of the operations.
The first two columns indicate design parameters. The
design points obtained after design space exploration
are indicated under “DSE” , while the actual results
obtained after allocation and binding are indicated
alongside. While computing the costs of the FUs, the
cost of each hardware operator is taken as follows:

2O,cost(<) = lO,cost(l) = 10 and cost(&) = 10. The
allocation and binding has been done by the alloca-
tion and binding tool GABIND [3]. Each block of
rows in a table indicates the design points obtained for
a particular set of parameters. For Facet the design
points obtained by DSE match the actual designs ob-
tained after allocation and binding. This is also true
for the elliptic wave filter example in table 3. For Dif-
feq. the actual implementation of the design points
indicated in rows 2, 3 and 4 of table 2, require an

cost(/) = 160,cost(*) = 160,cost(+) = 20,cost(-) =

additional adder in each case. For two FUs and seven
time steps for Diffeq. the operations scheduled in three
time steps were as follows: < * + >; < * - >; and
< + - >. Therefore, although at most one + and
one - are scheduled in any time step, it is not pos-
sible to have an FU configuration using two FUs where
at least a + or - is not repeated. For the case with
three FUs and seven time steps, however, such a prob-
lem did not exist. Yet an additional + was used to
keep the switch cost low. The implementation of Dif-
feq. using two FUs in seven time steps is especially
nice, requiring only three switches. The design point
indicated in row 2 is for designing with only two FUs,
whereas there are four types of operations distributed
over seven time steps. For the design point indicated
in row 3 of table 2 the number of time steps is four,
exactly equal to the length of the critical path in the
data flow graph.

References
A. Kumar, A. Kumar, and M. Balakrishnan.
A novel integrated scheduling and allocation al-
gorithm for data path synthesis. Proceedings of
VLSI Design ’91, New Delhi, pages 212-218,1991.

S Y Kung, H J Whitehouse, and T Kailath. VLSI
and Modern Signal Processing. Prentice Hall, 1984.

C A Mandal, P P Chakrabarti, and S Ghose. Al-
location and binding for data path synthesis using
a genetic approach. In Proceedings of VLSI Design
’96, pages 122-125, 1996.

P. G. Paulin and J. P. Knight. Algorithms for high-
level synthesis. IEEE Design & Test, December
1989.

Pierre G. Paulin. High Level Synthesis of Digital
Circuits Using Global Scheduling and Binding Al-
gorithms. PhD thesis, Carleton University, Janu-
ary 1988.

C. V. Ramamoorthy, K. M. Chandy, and Mario J.
Gonzalez. Optimal scheduling strategies in a mul-
tiprocessor system. IEEE Transactions on Com-
puter, C-21(2):137-146, February 1972.

B S Stewart and C C White. Multiobjective A*.
JA CM, 88 (4) :775-8 14, 199 1.

C. J. Tseng and D. P. Siewiorek. Automated
synthesis of data paths in digital systems. IEEE
Transactions on Computer Aided Design, CAD-
5(3), July 1986.

170

/’

F.U. num. num. num. h/w opr. req.
of of cost time
F.U.s bus steps

5
4

DSE

2 6 1*, 1/, 1+, 1-, l&, 1- 380
3 9 1*, 1/, 2+, 1-, l&, 1- 400

1*, 1/, 1+, 1-, 1&, 1- 380 5

Table 1: DSE results for Facet.

After Synthesis with GABIND
h/w opr. req.

steps
1*, 1/, 1+, 1-, 1&, 1-
1*, 1/, 2+, 1-, l&, 1-
1*, 1/, 1+, 1-, l&, 1-

num. of num. h/w opr. req. DSE F.U. num.
F.U.s of cost time

bus steps
2 6 2*, 1+, 1-, 1< 370 6

1*, 1+, 1-, 1< 210 7
3 9 2*, 1+, 1-, 1< 370 4

1*, 1+, 1-, 1< 210 7

Table 2: DSE results for Diffeq.

After Synthesis with GABIND

hI-1 steps
2*, 1+, 1-, 1< 370 6
1*,2+, 1-, 1< 230 7
2*, 2+, 1-, 1< 390 4
1*, 2+, 1-, 1< 230 7

4

num. of
F.U.s

3

DSE After Synthesis W I

num. F.U. num. h/w
of opr . cost time
bus req. steps req.

2*, 2+ 2*, 2+
1*, 2+ 200 1*, 2+ 200
1*, 1+ 180 1*, 1+

;h GABIND
num.
time
steps

27

Table 3: DSE results for Elliptic Wave Filter.

171

