
Architecture Of An Automatic Program Evaluation System
Amit Kumar Mandal1, Chittaranjan Mandal1, Christopher M P Reade2

1SIT, IIT Kharagpur, WB 721302, INDIA, {amitm, chitta}@sit.iitkgp.ernet.in
2Kingston Business School, Kingston University, UK, Chris.Reade@kingston.ac.uk

Abstract— We describe a scheme and implementation
for the automatic evaluation of programming oriented as-
signments. The implementation described covers both the
internal working of the automatic evaluation and the web
interface. Presently, this system can handle only C pro-
grams.

I. INTRODUCTION

This paper presents an automated tool that assists the
students by automatically evaluating, marking and pro-
viding critical feedback for the programming assign-
ments submitted by them. The tool also helps the evalu-
ators by providing easier way to set up assignment state-
ment, develop model solution of the problem, supply user
defined inputs. The ’Automatic Program Evaluation Sys-
tem’ will be integrated with the Web-based course man-
agement (WBCM) tool (Mandal et al 2004). WBCM1

helps an instructor to upload assignments, put up course
material, collect student submission and provide online
marks and feedback. The problem of automatic and semi-
automatic evaluation have been highlighted several times
in the past and a considerable amount of innovative work
has been suggested to overcome the problem, in this pa-
per we will be discussing the key approaches in the litera-
ture. Although our approach is limited to evaluating only
C programs, but we have designed and implemented the
system in such a way that both students and the evaluators
have minimum burden on their part and as the system can
be accessed from the web it helps a lot in distant learning
programs.

II. MOTIVATION

The scheme was motivated by the need to handle pro-
gramming assignments with large cohorts of students (ap-
proximately eight hundred students). In a semester each
student is required to complete about nine assignments
and three exams. That amounts to 9600 submissions of
programs of varying levels of complexity. Even after the
load is distributed among 21 evaluators, each person is re-
quired to evaluate over 450 programs per semester. The
evaluators are busy most of time in testing and grading
work and losing their attention towards setting up useful
assignments for the students, as a result of which standard
of education is getting affected.

1WBCM is a course management tool that is being used at
IIT Kharagpur.

III. RELATED WORKS

After researching for a considerable amount of time we
came to know that a lot of relevant work has been done
in the field of automatic and semi-automatic evaluation
of programming assignments. Some of the early systems
include TRY[1] and ASSYST[2]. Scheme-robo[3] is an
automatic assessment system for programming exercises
written in scheme programming language, Scheme-robo
takes as input a solution to an exercise and checks for cor-
rectness of function by comparing return values against
the model solution. The automatic evaluation system that
is being developed nowadays has a web interface, so that
the system can be assessed universally through any plat-
form, these sort of system include GAME[4] and Sub-
mit![4] and Juedes’ system[5]. Other systems such as that
from Baker et al [6], Submit![4] developed a mechanism
for providing a detailed and rapid feedback to the student.
Systems from Luck and Joy [7], Benford et al [8] are in-
tegrated with a course maker system in order to manage
the files and records in a better way.

IV. OVERVIEW OF THE SYSTEM

A. Our focus and approach

Our focus during the development was to build a flex-
ible system that has the capability to test the assign-
ment from all possible dimensions i.e. testing on random
numbers, testing on user specified inputs, testing on the
amount of execution time needed by the program. The
main focuses during the development are (1) Automatic
Evaluation of the Programs i.e. Dynamic as well as Static
assessment. (2) Minimum burden on the evaluators as
well as the students. (3) Security of the system. (4)Care-
ful Grading of the programs. (5)Returning a quick and
detailed feedback.

Our approach is to perform White Box test, instead of,
Black box or Grey box testing. White box testing helps
the evaluator determine whether the programs have been
written in a particular way, following a particular algo-
rithm and using certain data structures

B. Example

Let us start with an example that is very common for
a data structures course, for example: MergeSort Pro-
gram. As the regular structure of a C program consist of a
main function and a number of other functions perform-
ing different activities, we have decided to break down
the Mergesort Program into two functions (1) Mergesort



function - This function performs the sorting by recur-
sively calling itself and the merge function. (2) Merge
function - This function will be accepting two sorted ar-
rays as input and then merging them into a third array. As
our approach is to perform a white box testing, therefore
testing and awarding marks on correct output generated
by the program will be of no use because, by that we can-
not be sure of the sorting algorithm (Quick sort, Selection
sort, Heap sort, Insertion sort etc.) applied by the student.

B.1 Our approach

In this section we will discuss one approach by which
we can test the mergesort program. Our aim is to test
that, the student writes the mergesort and the merge func-
tion correctly. Our strategy is to check each and every
step in the mergesort program. Fig 1 explains the general
working of the mergesort program. Our approach is to
get catch of each and every step i.e. merge #1,2,3,4,5,6,7.
This can be done by using an extra two dimensional ar-

Fig. 1
WORKING PRINCIPLE OF MERGESORT ALGORITHM

ray of size (n) * (n-1). The idea is to transfer the array
contents to this two dimensional array at the end of the
merge function. At the end of the program execution, the
two-dimensional array will look very similar to fig 2. We
can compare this array with the array which is formed
by the model solution and if both the array matches ex-
actly, the student will be awarded marks. As we have
mentioned earlier that each time the merge function is
called the contents of the array should be moved to the
two dimensional array. To perform this operation a func-
tion is required; this function should be provided with the
assignment statement so that the students can reach the
submission stage easily. The details of the function are
shown in fig 3.

B.2 Assignment statement for the mergesort program

Assignment statement is one of the most crucial part
of the whole autoevaluation process. If the assignment

0 1 2 3 4 5 6 7
0 2 4 23 42 9 45 12 1
1 2 4 23 42 9 45 12 1
2 2 4 23 42 9 45 12 1
3 2 4 23 42 9 45 12 1
4 2 4 23 42 9 45 1 12
5 2 4 23 42 1 9 12 45
6 1 2 4 9 12 23 42 45

Fig. 2
TWO DIMENSIONAL ARRAY

transfer(int *b,int size,int *a)
{ int i;
for(i=0;i<size;i++){
*(b+depth*size+i) = *(a+i); }

depth = depth+1;
}

Fig. 3
AN AUXILIARY TRANSFER FUNCTION

statement is not setup up in a correct manner, it would be
difficult for the student to understand the problem state-
ment properly and most of them will end up with a faulty
submission. We have thought up some of the general pur-
pose properties that an assignment statement should have
(1) Simple and easy to understand language should be
used, so that it becomes easy for the student to understand
the problem statement. (2) Prototypes of the function to
be submitted by the student must be specified clearly in
the statement. (3)Necessary makefile and the auxiliary
function should be supplied as a part of the assignment
statement to make it easier for the student to reach the
submission stage.

B.3 Teachers’ interaction with the system

The Automatic Evaluation process cannot be accom-
plished without the valuable support of the evaluator. The
evaluator needs to communicate a large number of inputs
to the system. Since the number of inputs is large, provid-
ing a web interface is not a good idea to accept the values
because it is cumbersome both for the evaluator to enter
the values and for the system to accept and manage the
data properly. Our idea is that, the evaluator will provide
the inputs in a single XML file. As the system is to be
integrated with WBCM[9], we can use WBCM to upload
the XML file from the evaluator. In this XML file the
evaluator is required to use predefined xml tags and at-
tributes to specify the inputs. The XML is used to specify
the following information: (1)Name of the files to be sub-
mitted by the students (2)How to generate the test cases
(3)How to generate the makefile (4)Marks distribution for
each function to be tested (5)Necessary inputs to carry
out static analysis of the program. Apart from the XML
file the evaluator is also required to submit the model so-



<source files>
<file name=”main mergesort.c”>

<text>File containing the main function</text>
</file> <file name=”merge.c”>

<text>File containing the merge function</text>
</file> <file name=”mergesort.c”>

<text>File containing the mergesort function
</text></file></source files>

Fig. 4
XML SPEC FOR CHECKING FILE SUBMISSION

<xs:element name = ”source files”>

<xs:complexType><xs:sequence>
<xs:element name=”file”maxOccurs=’unbounded’>
<xs:complexType><xs:sequence>
<xs:element name=”text”minOccurs=”0”>

<xs:simpleType><xs:restriction base=”xs:string”>

<xs:minLength value=”0”/>
<xs:maxLength value=”75”/>
</xs:restriction></xs:simpleType>
</xs:element></xs:sequence>
<xs:attribute name=”name” type=”xs:string”>

</xs:attribute></xs:complexType>
</xs:element></xs:sequence>
</xs:complexType></xs:element>

Fig. 5
XML SCHEMA VALIDATING XML IN FIG 4

lution for the problem. After the XML file is uploaded,
the system will test the validity of the XML file against
a XML schema2. The purpose of the XML Schema is to
define legal building blocks of an XML document. An
XML Schema can be used to define the elements that can
appear in a document, defines attribute that can appear in
a document, defines datatypes of elements and attribute
etc. Fig 4 shows only a part of the main XML file that is
submitted. This portion of the XML is used by the mod-
ule that checks for proper file submissions. Fig 5 shows
the part of the XML schema that is used to validate this
part of the XML file as shown in fig 4.

B.4 Students’ interaction with the system

As the system is to be integrated with WBCM, we can
use the WBCM to generate dynamic web pages specific
to a particular assignment to receive student’s submis-
sion. The students have the freedom to resubmit the files
any number of times within the starting and closing dates
of a particular assignment. As we are talking about the
multiple submissions, one of the reasons for the multiple
submissions during the initial stages is the presence of
compilation errors in the student’s program. The compi-
lation error may occur because the student has not prop-

2 XML Schema describes the structure of the XML document,
XML Schema is a XML based alternative to DTD

random integers:
(array/single)
(un-sorted/sorted ascending/sorted descending)
(positive/negative/mixed)
random floats:
(array/single)
(un-sorted/sorted ascending/sorted descending)
(positive/negative/mixed)
strings:
(array/single)
(fixed length/variable length

Fig. 6
SUPPORTED INPUT GENERATION OPTIONS

erly obeyed to the constraints mentioned in the assign-
ment statement. It may be possible that the code works
well on the student’s computer but whenever he/she is
submitting the same to the system, the system is giving
compilation error. This may occur due to many reasons
for example: the student have not confirmed to the func-
tion prototype mentioned in the assignment statement. If
at all there is any compilation error the system will imme-
diately provide necessary feedback to the student about
the compilation errors. The student has to correct the
code and resubmit the programs within the closing date.

B.5 Input generation and testing The programs

The Automatic Program Evaluation System is a so-
phisticated tool, which evaluates the program on fol-
lowing criteria: (1)Correctness on dynamically gener-
ated random numbers (2)Correctness on user defined in-
puts (3) Correctness on time as well as space complexity
(4)Style Assessment (5)Number of Looping statements
(5)Number of Conditional statement. Initially the pro-
grams are tested on randomly generated inputs. Evalua-
tors have the option to write down their own routines to
generate inputs, alternatively the system provides some
assistance in the generation of inputs. Currently the op-
tions are supported are shown in fig 6.

The evaluator can express his/her choice of the ran-
dom numbers on which he/she wants the programming
assignments to be tested in the XML file. Fig 7 shows the
example of the XML statement that is used to generate an
array.

In fig 7 an array(vartype=’array’) of size 50
(<arraysize>50 </arraysize>)is generated. The array
contains positive (range=”positive”) float (type =”float”)
ascending(sequence=’ascend’)values in the range of
10(min= ”10”) to 5000(max=”5000”). Above procedure
is iterated 50 (iterations=”50”) times. Fig 7 also shows
that, two user defined inputs have been provided by the
evaluator in the XML (source = ”included”) file itself;
these user defined inputs are supplied as it is to the test-
ing procedures. The evaluator has the choice to provide



<testing>

<generation type=”automatic”iterations=”50”>

<input vartype=”array”type=”float”range= ”positive”
min=”10”max=”5000”sequence=”ascend”>

<arraysize>50</arraysize>
</input>
</generation>

<user specified source=”included”>

<input values=”6,45,67,32,69,2,4”></input>
<input values=”5,89,39,95,79,7”></input>
</user specified>

</testing>

Fig. 7
XML SPEC. FOR INPUT GENERATION

the inputs either directly in the XML file or separately in
a text file (if the quantity of inputs is more). The question
that arises is about the need for the user defined inputs.
As the programs are tested on randomly generated inputs,
it may be possible that the programs are not tested for the
boundary conditions where the errors are more likely to
occur. Therefore to ensure that, the programs are tested
for the boundary conditions and other error prone situa-
tions, we require some user defined inputs.

V. CONCLUSIONS AND FURTHER WORK

We appreciate our work, as our system has the poten-
tial to open up new horizons in the field of Automatic
Evaluation of programming assignments by making the
mechanism relatively simple to use. We have tried to put
our point very simply and explained the whole automatic
evaluation process with an example in a very systematic
way and ordering the phases serially as they will occur in
the practical environment i.e. we have started with decid-
ing the testing approach, then designing the assignment
statement, the next step explained is the teacher’s interac-
tion with the system, which is followed by student’s in-
teraction with the system and at last testing the programs.

Presently we have built the system to work with a sin-
gle programming language i.e. C language, this is done
to avoid our work, from getting weird up. But while de-
veloping the system doors have been kept open, so that
the system can be upgraded to test programming assign-
ments in other popular languages. In the near future our
goal is to extend the system, so that it can evaluate C++
and java programs. As C++ and java compilers are al-
ready available on LINUX platform, the system can be
upgraded to compile and execute programs in these lan-
guages. The evaluator has to supply sufficient informa-
tion for the preparation of the makefile (for c++ and java
programs) in the XML document. Most of the other func-
tions such as checking proper file submission, test case
generation, and style analysis for example: Average char-
acters per line, Total Program length, Percentage of space

characters, Percentage of blank lines etc. are language in-
dependent.

REFERENCES

[1] K. A. Reek, “The try system or how to avoid testing stu-
dents programs,” in Proceedings of SIGCSE, pp. 112–116,
1989.

[2] D. Jackson and U. M., “Grading student programming us-
ing assyst,” in Proceedings of 28th ACM SIGCSE Tech.
Symposium on Computer Science Education, pp. 335–339,
1997.

[3] R. Saikkonen, L. Malmi, and A. Korhonen, “Fully auto-
matic assessment of programming exercises,” in Proceed-
ings of the 6th annual conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE), pp. 133–
136, 2001.

[4] Y. Pisan, D. Richards, A. Sloane, H. Koncek, and
S. Mitchell, “Submit! a web-based system for auto-
matic program critiquing,” in Proceedings of the fifth Aus-
tralasian Computing Education Conference (ACE 2003),
pp. 59–68, 2003.

[5] D. W. Juedes, “Experiences in web based grading,” in 33rd
ASEE/IEEE Frontiers in Education Conference, Nov 5-8
2003.

[6] R. S. Baker, M. Boilen, M. T. Goodrich, R. Tamassia,
and B. A. Stibel, “Tester and visualizers for teaching data
structures,” in Proceedings of the ACM 30th SIGCSE Tech.
Symposium on Computer Science Education, pp. 261–265,
1999.

[7] M. Luck and M. Joy, “A secure online submission system,”
In Software-Practice and Experience, no. 8, pp. 721–740,
1999.

[8] S. D. Benford, K. E. Burke, and E. Foxley, “A system to
teach programming in a quality controlled environment,”
The Software Quality Journal pp 177-197, pp. 177–197,
1993.

[9] C. Mandal, V. L. Sinha, and C. M. P. Reade, “A web-
based course management tool and web services,” Elec-
tronic Journal of E-Learning, no. 1, 2004.


	Introduction
	motivation
	Related Works
	Overview Of The System
	Our focus and approach
	Example
	Our approach
	Assignment statement for the mergesort program
	Teachers' interaction with the system
	Students' interaction with the system
	 Input generation and testing The programs


	Conclusions and Further work

