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Abstract— Advances in the VLSI field have been a ma-
jor driving force behind the information revolution being
witness today. In this paper we describe a formal method
for checking the equivalence between two descriptions of
the target system, one before and the other after schedul-
ing.The descriptions are represented as finite state ma-
chines with datapaths (FSMD). Hence, the checking is
between FSMDs. The basic principle is to show that any
computation of one FSMD is covered by a computation
on the other, a computation being characterized by a con-
catenation of paths in the FSMD. These notions are for-
malized in the paper. The method is strong enough to
accommodate merging of the segments in the original be-
haviour by the typical scheduler such as DLS, a feature
common in scheduling. The method also works for lim-
ited arithmatic transformations.

I. INTRODUCTION

High-level synthesis is the process of generating the
register transfer level (RTL) design from the behavioural
description. The synthesis process consists of several
inter-dependent sub-tasks such as, specification, compila-
tion, scheduling, allocation and binding. The operations
in the behavioural description are assigned time steps
through the scheduling process. Input to the scheduling
phase is a control data flow graph (CDFG)[1]. While
a CDFG is better suited to scheduling algorithms, an
FSMD is a more appropriate model for verification. We
therefore construct FSMDs from the CDFGs before and
after scheduling. In the process of scheduling, operations
are often moved across basic block boundaries for var-
ious optimizations. In general several transformations
may be made to improve the performance of a design.
For example, path based scheduling techniques [2], per-
form several such non-trivial path based transformations.
Hence, it is important to ensure that the scheduling pro-
cess preserves the behaviour of the original specification,
irrespective of the scheduling technique that is used. The
objective of this work is to check that the design descrip-
tions before and after scheduling, as represented by FS-
MDs, are computationally equivalent.

Most of the algorithms proposed in the literature can
successfully verify the basic block based scheduling but
apparently fail to verify when structure of the scheduled
FSMD differs from the input FSMD due to path based
transformation. In this paper, we propose a scheduling
verification method which is strong enough to work even
when the basic path structure is changed by the sched-
uler. This method formally establishes equivalence be-
tween the FSMDs before and after scheduling.

This paper is organized as follows. In section II, FS-

MDs and the notions of computations on FSMDs and
the equivalence of FSMDs are defined. The verification
method is described in section III. Some experimental re-
sults have been given in section IV. The paper is con-
cluded in section V.

II. FSMDS AND THEIR EQUIVALENCE

A. Finite state machines with data paths

An FSMD (finite state machine with data-path) is a
universal specification model, proposed by Gajski in [3],
that can represent all hardware designs. The model is
used in the present work with the addition of a reset state,
for encoding the designs to be verified. This reset state
is also called the start state of the FSMD. The FSMD is
defined as an ordered tuple 〈Q,q0, I,V,O, f ,h〉, where
1. Q = {q0,q1,q2, . . . qn} is the finite set of control
states,
2. q0 ∈ Q is the reset state,
3. I is the set of primary input signals and ΣI is the input
alphabet,
4. V is the set of storage variables and Σ is the set of all
data storage states or simply, data states,
5. O is the set of primary output signals and ΣO is the
output alphabet,
6. f : Q×S→ Q, is the state transition function and
7. h : Q×S→U , is the update function of the output and
the storage variables, where U and S are as defined below.

(a) U = {x⇐ e|x∈O∪V and e∈ E} represents a set of
storage or output assignments, from variables (storage or
output) or expressions constructed over (input or storage)
variables. Thus, E = {g(x,y,z, . . .) |x,y,z, . . .∈ I∪V} rep-
resents a set of arithmetic expressions over the set I∪V.

(b) S = {R(a,b)|a,b ∈ E and R is any arithmetic re-
lation} represents a set of status signals as a result of
comparisons (=, 6=,>,≥,<,≤) between two expressions
from the set E.

Since, state transitions and updates have been repre-
sented as functions, an FSMD model is inherently deter-
ministic.

B. Walks and transformations along a walk

A (finite) walk α from qi to q j, where qi,q j ∈ Q, is
a finite transition sequence of states of the form 〈qi =
q1 −→c1

q2 −→c2
, . . . , −→cn−1

qn = q j〉 such that ∀l,1≤ l ≤ n−
1,∃cl ∈ S such that f (ql ,cl) = ql+1, and qk, 1≤ k≤ n−1,
are all distinct. The state qn may be identical to q1. In the
rest of the paper a (finite) walk 〈q1 −→c1

q2 −→c2
. . . −→cn−1

qn〉
is also represented as 〈q1 ⇒ qn〉 for brevity whenever it
is possible to do so without ambiguity. The condition of
execution of the walk α = 〈ql0 −→c0

ql1 −→c1
ql2 . . . −→ck−1

qlk〉,



Rα, is a logical expression over the variables in V such
that Rα is satisfied by the (initial) data state at ql0 iff the
walk α is traversed.

We assume that inputs and outputs occur through
named ports. The ith input from port P is a value rep-
resented as Pi. Thus if some variable v stores input from
port P (for the ith time along a walk), it is equivalent to
the assignment v⇐ Pi.

The simple data transformation of a walk α over V
(sα): It is an ordered tuple 〈ei〉 of algebraic expressions
over the variables in V and the inputs in I such that the
expression ei represents the value of the variable vi after
the execution of the walk in terms of the initial data state
(i.e., the values of the variables at the initial control state)
of the walk.

Taking into account outputs that may occur in a walk,
the data transformation rα of a walk α over V is the tu-
ple 〈sα,Oα〉, where the output list Oα = [OUT(Pi1 ,e1),
OUT(Pi2 ,e2), . . .]. For every expression e output to port
P along the walk α, there is an OUT(P,e) in the list, in
the order in which the outputs occurred.

Fig. 1
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Computation of the condition of execution Rα can be
by backward substitution or by forward substitution. The
former is more readily described and is based on the fol-
lowing rule: If a predicate c(y) is true after execution of
y← g(y), then the predicate c(g(y)) must have been true
before the execution of the statement [4]. The transfor-
mation sα is found indirectly using the same principle.
The forward substitution method of finding Rα is based
on symbolic execution.

C. Characterization of walks and their concatenations

The characteristic formula τα of a walk α with ini-
tial storage and input variables as v, final variables as
v f and outputs along the walk as O is τα(v,v f ,O) =
Rα(v)∧ (v f = sα(v))∧ (O = Oα(v)), where sα is the data
transformation and Oα output list in the walk α.

Let τα(v,v f ,O) : Rα(v)∧ (v f = sα(v))∧ (O = Oα(v))
be the characteristic formula of the walk α and
τβ(v,v f ,O) : Rβ(v)∧ (v f = sβ(v))∧ (O = Oβ(v)) be the
characteristic formula of the walk β. The characteristic
formula for the concatenated walk αβ is ταβ(v,v f ,O) =
∃vα∃O1∃O2(τα(v,vα,O1) ∧ τβ(vα,v f ,O2)) = Rα(v) ∧
Rβ(sα(v))∧(v f = sβ(sα(v)))∧ (O = Oα(v)Oβ(sα(v))). O
is the concatenated output list of Oα(v) and Oβ(sα(v)).
The detail of incrementing the input indices on each port
in the formulas for β to start after the last index of the
corresponding port in α has been omitted for notational
clarity.

D. Computations on FSMDs and their path covers

A computation of an FSMD is a finite walk from the re-
set state q0 back to itself without having any intermediary
occurrence of q0 (as a new computation starts from the re-
set state). A computation c of an FSMD M may be char-
acterized as τc(vi,v f ,O) : Rc(vi)∧ (v f = sc(vi))∧ (O =
Oc(vi)), where vi is the vector of initial input and data
state with which the computation is started, Rc is a satis-
fiable condition over the domain of I and V , sc is a func-
tion over this domain to the co-domain of values over V
and Oc is the concatenation of the output lists resulting
from output operations along c. It means that if Rc is sat-
isfied by vi, then the computation c takes place and after
completion of c the data state is given by sc(vi) and the
sequence of outputs is given by Oc(vi).

Two computations c1 and c2 having the characteristic
formulae τc1 and τc2 , respectively, are said to be equiv-
alent if Rc1 = Rc2 , rc1 = rc2 . The computational equiv-
alence of two walks p1 and p2 is denoted as p1 ' p2.
Equivalence checking of walks, therefore, consists in es-
tablishing the computational equivalence of the respec-
tive conditions of execution and the respective data trans-
formations.

A finite set of paths1 P = {p0, p1, p2, . . . , pk} is said
to cover an FSMD M if any computation c of M can be
looked upon as a concatenation of paths from P. P is said
to be a finite path cover of the FSMD M.

E. Equivalence of FSMDs

Let M0 be the FSMD representation of the CDFG given
as the input to the scheduler and M1 be the FSMD of the
scheduled behaviour. Our main goal is to verify whether
M0 behaves exactly as M1. This means that for all possi-
ble input sequences, M0 and M1 produce the same se-
quences of output values and eventually, when the re-
spective reset states are re-visited, they are visited with
the same storage element values. In other words, for ev-
ery computation from the reset state back to itself of one
FSMD, there exists an equivalent computation from the
reset state back to itself in the other FSMD and vice-
versa.

Thus two FSMDs M0 and M1 are said to be computa-
tionally equivalent if for any computation c0 of M0, there

1 A path is a walk in which all the states (nodes) are distinct.
A cycle is like a path where the first and last nodes are identical
but all other nodes are distinct. Here we allow our paths to be
cycles also.



exists a computation c1 of M1 such that c0 and c1 are
computationally equivalent and vice-versa.

The following theorem, stated without proof, is key to
our algorithm for checking the equivalence of two FS-
MDs.

Theorem 1: Two FSMDs M0 and M1 are computa-
tionally equivalent if there exists a finite cover P0 =
{p00, p01, . . . , p0l} of M0 for which there exists a set P0

1 =
{p0

10, p0
11, . . . , p0

1l} of paths of M1 such that p0i ' p0
1i,

0 ≤ i ≤ l and vice-versa.
The following (inductive) notion of correspond-

ing states will be used in the algorithm to be pre-
sented. Let M0 = 〈Q0, q00, I,V0,O, f0,h0〉 and M1 =
〈Q1,q10, I,V1,O, f1,h1〉 be the two FSMDs having iden-
tical input and output sets, I and O, respectively, and
q0i,q0k ∈ Q0 and q1 j,q1l ∈ Q1.

• The respective reset states q00,q10 are corresponding
states.
• If q0i ∈ Q0 and q1 j ∈ Q1 are corresponding states and
there exist q0k ∈Q0 and q1l ∈Q1 such that, for some path
α from q0i to q0k in M0, there exists a path β from q1 j
to q1l in M1 such that α ' β, then q0k and q1l are corre-
sponding states.

III. VERIFICATION METHOD

The above discussion suggests a verification method
which consists of the following steps:

1. Construct the set P0 of paths of M0 so that P0 covers
M0. Let P0 = {p00, p01, · · · , p0k}
2. Show that ∀p0i ∈ P0, there exists a path pi j of M1 such
that p0i ' p1 j.
3. Repeat steps 1 and 2 starting from M1.

Because of loops it is difficult to find a finite set cover
of the whole computation comprising only finite paths.
So any computation is split into paths by putting cutpoints
at various places in the FSMD so that each loop is cut in
at least one cutpoint. The set of all paths from a cutpoint
to another cutpoint without having any intermediary cut-
point is a path cover of the FSMD. The method of decom-
posing an FSMD by putting cutpoints is identical to the
Floyd-Hoare’s method of program verification [5], [6],
[7]. Choice of cutpoints, however, is non-unique and it is
not guaranteed that a path cover of one FSMD obtained
from any choice of cutpoints in itself will have the cor-
responding set of equivalent paths for the other FSMD.
Therefore, it will be necessary to search for a suitable
choice of cutpoints. The question remains whether such
a choice can be algorithmically hit upon. The equivalence
problem of FSMDs (programs) is undecidable [8]; more-
over, the problem is not even partially decidable as shown
for flowchart schemas [8]. Therefore, we can at best de-
vise a good strategy for setting the cutpoints which would
work for most of the cases but not for all cases. In the fol-
lowing we propose one such method which combines the
first two steps listed above into one. More specifically,
the method construct a path cover of M0 and also finds its
equivalent path set in M1 hand-in-hand. The method for
verification is as follows.

A. Verification algorithm

Step 1:
Let η, the set of corresponding states, Initially, {<
q00,q10 > };
Insert cutpoints in Mo by the following rules.
• reset state is a cutpoint,
• any state with more than one outward transition is a
cutpoint;
Let C be the set of cutpoints;
Let P0i be the set of paths of M0, where each path spans
from a cutpoint to a cutpoint with no intermediary cut-
point;
Step 2:
P′oi = Poi. /* P′0i is the working set */
while ( P′oi is not empty)
do

β = getPath(P′0i);
if (β = NULL) then

if ( anyUncovered(η,C,P′0i,P0i ) ) then
Report “M0 and M1 may not be equivalent”;
else;

else /* β 6= NULL */
do

Let β =< q0i ⇒ q0 f > and 〈q0i,q1 j〉 ∈ η

α = f indEquivalent(β,q1 j);
if α = empty then

do
/* Extend β of the form (q0i⇒ q0 f ) in M0 by
moving through cutpoint q0 f till some subsequent
cutpoint, but without moving through the reset state
or any cutpoint more than once; search for any equiv-
lent path in M1. Returns a set E of ordered pairs
〈βm,αm〉, where βm’s are extensions of β (in all poss-
ible ways) satisfying the above constraint and αm’s
are the corresponding equivalent paths in M1. */
E = φ;
E = extendEquivalent(β,q1 j,η,E);
if (E 6= φ) then

Delete β from P′0i;
∀r = 〈βm,αm〉 ∈ E

if ( αm 6= empty) then
Add βm to P0;
Add αm to P0

1 ;
η = η

S
{< endSt(βm),endSt(αm) >}

else notEquivalent (βm); /* report. */
else notEquivalent (β); /* report. */

end do /* if α = empty */
else /* α nonempty */

Add β to P0.
Add α to P0

1 .
Delete β from p′0i;
η = η

S
{< endSt(β),endSt(α) >}.

end do /* if β = NULL - else */
end do /* P′oi is not empty */
Step 3:
Identify the cutpoints in M1;
Find P1i, initial path cover of M1;
Step 4:
Repeat the same procedure as described in Step 2 for M1;
Step 5:



If both Step 2 and Step 4 succeed then report M0 and M1
are computationally equivalent.
Otherwise report a failure.
Function : extendEquivalent (β,q1 j,η,E)
Let β be 〈q0i ⇒ q0 f 〉;
∀ β′′ ∈ P0i such that β′′ emerges from q0 f .
do

β′ = β;
β′ = concat(β′,β′′);
α = f indEquivalent(β′,q1 j);
if α = empty then

if (endSt(β′) is node of β or endSt(β′) = q00)
then E← E

S
{〈β′,empty〉};

else E← E
S

extendEquivalent(β′,q1 j,η,E);
else do

η = η
S
{〈endSt(β′),endSt(α)〉};

E = E
S
{〈β′,α〉};

end do /* if α = empty - else */
end do /* ∀β′′ ∈ P0 and β′′ emerges from q0 f */
return E;

Other functions used are specified as follows.
• getPath(P′0i) : Returns a path β of the form 〈q0i⇒ q0 f 〉
from the path list P′0i such that q0i has a corresponding
state, q1 j say, in M1; i.e. 〈q0i,q1 j〉 ∈ η. If such a path
does not exist in P′0i, then return NULL.
• anyUncovered : It tries to find the paths in P′0i which
are already covered by some paths in P0 and need not
be considered for equivalence checking. If it finds such
paths then they are deleted from P′0i and ‘false’ is re-
turned; otherwise return ‘true’.
• f indEquivalent(β,q1 j) : It tries to find a path α in M1
starting from qi j so that Rα = Rβ and rα = rβ. If such an
α exists, then this function returns α, otherwise returns
“empty” path.
• concat(α,β) : returns the concatenated path αβ.
• endSt(β) : returns the state where the path β terminates.

IV. EXPERIMENTAL RESULTS

Name #state in
FSMD

#path in
cover

#path
extn

CPU
time
in ms

M0 M1 M0 M1

DIFFEQ 4 12 3 3 0 2.442
EWF 4 35 1 1 0 1.820
GCD 7 4 11 7 3 3.976
DCT 3 29 1 1 0 1.754
TLC 7 8 13 14 2 4.196

MODN 6 7 8 12 2 4.324
PERFECT 9 6 7 5 2 4.028

TABLE I
RESULTS FOR DIFFERENT HIGH-LEVEL SYNTHESIS

BENCHMARKS

The proposed algorithm has been implemented in ‘C’
and has been run for some standard high-level synthe-
sis benchmarks as shown in table I. These have been run
on an Intel Pentium 4, 1.70 MHz, 256MB RAM ma-
chine. The number of states, number of paths explored

in each FSMD M0 and M1, number of consecutive path
segments merged by the scheduler and the CPU time are
tabulated for each benchmark example. It is evident from
table that execution time is sensitive on number of paths
explored. It also may be noted from the table that run
time of this algorithm is less sensitive on the number of
states in the FSMDs. For example, in table I, the run
times of EWF and DCT are small compared to GCD and
MODN even though EWF and DCT have greater num-
ber of states. These examples also suggest that the upper
bound is not necessarily hit for practical scheduling veri-
fication cases.

V. CONCLUSIONS

Advances in VLSI technology have enabled its de-
ployment into complex circuits. Synthesis flow of such
circuits comprises various phases where each phase per-
forms the task algorithmically providing for ingenious in-
terventions of experts. The gap between the original be-
haviour and the finally synthesized circuits is too wide to
be analyzed by any reasoning mechanism. The validation
tasks, therefore, must be planned to go hand in hand with
each phase of synthesis. The present work concerns it-
self with the validation of the scheduling phase. Both the
behaviours prior to and after scheduling have been mod-
eled as FSMDs. The validation task has been treated as
an equivalence problem of FSMDs.

The method is strong enough to accommodate merg-
ing of the segments in the original behaviour by the typ-
ical scheduler such as, DLS [2]. It is also able to handle
arithmetic transformations and expected to handle simple
code motion. Similar methods reported in the literature
have been found to fail under such situations. The initial
experiments show that the algorithm is usable for practi-
cal equivalence checking cases of scheduling.
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