
A Technique for Algorithm Animation over the Web
Chittaranjan Mandal1, Christopher M P Reade2

1Dept of Computer Sc & Engg, IIT Kharagpur, INDIA, chitta@iitkgp.ac.in
2Kingston Business School, Kingston University, UK, Chris.Reade@kingston.ac.uk

Abstract— We discuss a novel technique for animat-
ing algorithms over the web. Although there are several
existing software environments for the animation of algo-
rithms, some of which are web-enabled, ours is designed
specifically to simplify the process of adapting an algo-
rithm for animation and delivering the animation over
the web with a simple web interface. This provides a first
stage for more advanced development of web-based inter-
actions to support animation. Our goal is to provide gen-
eral web-based support to enable much more widespread
use of animation in teaching. In particular we want to
address the active participation of the observer in using
algorithm animation technology. We describe the current
implementation of the animation engine which is based
on a simple co-processing method with CGI implemen-
tation on a web-server, along with plans to use this as a
base to include emerging technologies (web-services with
XML to markup examples and asynchronous interaction).
We also illustrate the current web interface with some ex-
amples.

I. INTRODUCTION

An important aid in teaching early courses in algo-
rithms and many other process-related subjects is to ani-
mate the particular process that is being described. This
is a challenging task that has been addressed many times
before but solutions are still not sufficiently simple for
widescale use. Regular class room teaching without com-
puter aids can address the problem only partially, by il-
lustrating the steps for a specific example (usually) on
slides. However, such illustrations are limited when it
comes to demonstrating a process with different sets of
inputs. Even leading edge animation techniques usually
provide a high quality rendering of only a specific prob-
lem instance. As recently noted in [1], the real benefits of
animation for effective teaching come from active partic-
ipation of the learner in using the animation rather than
from high quality graphics. In this paper we describe a
simple animation technique that provides a general solu-
tion within a limited context. It works over the web for
maximum flexibility and does not require the student to
have anything more than a web browser to get started. We
have applied this technique to teach an initial course on
‘C’ programming to a class of nearly 700 students.

The target users were students with initially minimum
understanding of the tools and techniques of program-
ming. Some of the objectives of this work were as fol-
lows:

• avoid reliance on tools that a user may not have or may

have difficulty using at the early stages
• make it a web-based technique so that it is usable with

nothing more than a web browser
• it should be interactive and should be able to work with

user supplied data sets
• it should be possible for the instructor to create tutoring

examples with relatively little effort

Initial learners usually have a problem with grasping
the basic paradigm of programming. A good way to get
them started is to walk them through simple programs.
That way they can understand how the execution of a
program progresses through various statements. They
get to see the working of various control flow constructs
and also how variables get updated. Hard-to-grasp con-
cepts such as parameter passing and function calls can be
graphically illustrated. Each of these aspects can make
the learning process much easier. These aids are already
available, but not readily accessible by novice program-
mers because they often require some initial knowledge
of programming before they can be used. Another option
is to provide personal assistance, but this is an increas-
ingly scarce resource. Using a web-based solution opens
up new possibilities for supporting a wider range of stu-
dents of programming from novice to more advanced lev-
els where standard algorithms for sorting and searching
would be typically covered.

The rest of the paper is organized as follows. In sec-
tion II an outline of the technique is given. In section III
some examples are given to illustrate the technique. The
underlying protocol used for the animation is described
in section IV. This is followed by a discussion and com-
parison with related work in section V.

II. OUTLINE OF TECHNIQUE

The technique essentially relies on running a program,
which is to be demonstrated, at the server. If the pro-
gram should require some data, this is collected from the
user’s browser and fed to the program. The trace of the
program as it executes, and the outputs that are produced,
are returned to the user’s browser. The program proceeds
from point to point within the program. In addition to the
start and end points, numerous additional points may be
chosen within the program. If necessary, a point can be
placed between every adjacent pair of statements.

The basic program is augmented with additional state-
ments to do the following as it reaches a chosen point in
the program.

• return display matter to the user’s browser, as appropri-
ate. This will include information regarding the:



– outputs generated by the program
– values stored in variables that need to be displayed
– run-time data structures indicating currently active

function calls
• collect inputs that may be required by the program
• proceed to the next point once the user is ready or after

some period of time
To make the overall scheme more practical, it should

operate in user space rather than a superuser space. That
way, an instructor can setup such animations without de-
manding special system privileges. Only a regular web
server is required.

It may be noted that the user’s browser does not inter-
act with the program directly. Instead it interacts with
the web server on the server – this the normal modus
operandi for browser interaction. This system relies on
the standard CGI programming interface. There are sup-
porting methods for the following:
• start the program that is to be demonstrated
• collect display matter generated by the program and re-

turn that to the user’s web browser
• collect inputs from the user that are required by the

demonstration program and feed them to the program
• close the interaction session once the demonstration

program has terminated

A. Algorithm encoding

The algorithm that is being animated needs to be coded
in a special way so that animation is made possible.
Presently, the animation is done using Perl. In the future,
‘C’ programs will be animated directly in ‘C’. This avoids
the complications of trying to emulate one language with
another.

The text of the algorithm is placed in an array
(@program in this case). The program starts with a
call to initInteraction() to make necessary initial-
izations. Thereafter, the program continues in mini ses-
sions which involves opening the session, doing the re-
quired processing (which may involve some combination
of collecting inputs, executing and generating outputs),
and finally closing the session. Once the mini session
is closed everything generated in the current session is
returned to the client’s bowser where the animation is
being viewed. A mini session is opened by a call to
openInteraction. Helper functions such as retrieve,
htmlStart, displayProg, htmlFinish, etc. assist the
input/output operations. A call to closeInteraction in
conjunction with htmlFinish is required to close the in-
teraction mini session. The encoding procedure is highly
mechanical in nature and may be automated.

As a next step we plan to use XML to encode example
programs and animation markup. This will allow us to
develop an interaction to support the example developer
in the generation of the animation with as much automa-
tion as possible. This could then become a web service
with an option to add the result to the animation server.
To enrich the interaction, we plan to use (AJAX-style)

technology to allow the end-user more control over the
layout of the animation. This is particularly important
when more complex examples need to be displayed, so
the user has control of the focus.

III. ANIMATION EXAMPLES

A. Comparing two numbers

First, a very simple example is presented to illustrate
the working of the system in figure 1. This example com-
pares two numbers n1 and n2. Only the open screen, and
one of the steps has been shown. The following features
of the system are illustrated via this example.

• interactive abilities; user inputs can be accepted, out-
puts are displayed

• ability to display values of selected variables
• program tracing highlighting current statement in red
• buttons for stepping or running through to completion

Fig. 1. Screen shot - 1 of an example to compare two
numbers

Fig. 2. Screen shot - 2 of an example to compare two
numbers



Fig. 3. Screen shot - 1 from selection sort

Fig. 4. Screen shot - 2 from selection sort

B. Selection sort

Next, screen shots are shown for the more complex ex-
ample of selection sort in figure 3. This example illus-
trates additional features, such as
• function calls
• highlighting a set of statements
• distinctive highlighting of comments and program

statements
• call parameters of activation records with function calls
• more complex graphics; at present all graphics are im-

plemented by means of HTML constructs; this is not
essential

IV. PROTOCOL FOR ANIMATION

The protocol is illustrated in figure 5. The animation is
initiated and continued over the web using the CGI gate-
way. Each CGI request is received by the HTTP server in
a stateless manner. The protocol works by storing enough
state information to be able to execute the program be-
ing demonstrated; receiving inputs from the user; and re-
turning appropriate output. The user supplies inputs via
HTML FORMs.

There are two form actions, startup for initiating the
animation and carryOn to continue with the animation

signal

sleep

collect inputs

dump inputs

do processing

dump outputs

signal

sleep

collect outputs

print to stdout

terminate

m
in

i−
se

ss
io

n

reopen standard fd’s

of Program

fork()

startNew()

startupcarryOn

persistent process

carryOn()

Fig. 5. Animation protocol

until it ends. The startup receives a path to the executable
code along with the necessary inputs. A call is made
to a function called startNew which essentially forks to
create a process for the program to be animated, and it-
self continues to form the first mini session. After a pro-
cess is spawned for animation, its first job is to reopen its
standard file descriptors of stdin, stdout and stderr.
Thereafter it goes to sleep. If it is not awakened within a
certain (reasonably long) time interval it assumes that the
user has abandoned the animation and it terminates.

The process participating in a mini session, continues
with carryOn, whose job is to collect inputs sent by the
user via the form; dump them into a file; signal the sleep-
ing animation process; and then go to sleep. The pro-
cess for the animation, on waking up, collects the inputs;
does necessary processing; dumps necessary outputs into
a file; signals the sleeping co-process of the mini-session;
and then readies itself for the next mini-session by going
to sleep. The co-process, on waking up, collects the out-
put dumped by the animation process from the file; prints
it to its stdout and terminates.

All subsequent mini-sessions are initiated by a sepa-
rate script called carryOn. The form is submitted when
the user clicks on the step button. The button click is
performed automatically after a certain period of time
if Run is enabled. This directly enters the mini-session,
as shown in the diagram of figure 5 and as explained
above. When the animation comes to an end, the last
mini-session generates plain HTML output without the
form. The animation process terminates once the anima-
tion comes to an end.

V. DISCUSSION AND RELATED WORK

Our goal is to provide general web-based support to
enable much more widespread use of animation in teach-



ing and to support more interactive use of animations in
the learning process. The implementation technique de-
scribed here provides support for simple adaptation of
an algorithm so that an animation can be delivered over
the web for viewing and controlling via a web browser.
The advantages of this approach are two-fold. Firstly,
the development of an animation does not require exper-
tise in using complex animation software and is thus a
much lower hurdle for teachers wishing to produce ex-
amples. Secondly, the delivery and viewing of animations
requires a minimal, platform-independent capability to be
available to the end user (i.e. just a web-browser) so that
the potential audience is maximized.

At the moment, only examples in the ‘C’ programming
language are being considered, and we do not provide full
automation for the process of creating animations from
example ‘C’ programs. In future work we plan to maxi-
mize the automation using XML to markup programs and
a web-service to upload examples and provide fine tun-
ing control of the animation generation through a web
interface. We also recognize the need to support more
graphical displays of complex data and objects for more
widespread use of the animation tool. However, we feel
that a higher priority is to develop support for more in-
teraction from the end user in running, controlling and
changing animated algorithms. We believe that our sim-
ple approach to algorithm generation will enable more
flexible and adaptable interactions than has been practi-
cal with traditional approaches.

Since the early days of algorithm animation, there has
been an emphasis on the use of advanced graphics and
support from large animation development environments
(such as Zeus [2]). More recently the emphasis has re-
turned to effective use in the learning process. With stud-
ies such as those discussed in [3] and [4] the importance
of interaction rather than simple observation has been
recognized. This new direction was also discussed in [1]
where Jhavé was also described. Jhavé is a Java based
animation tool which has been designed to take plugins
for new animation techniques, and thus can act as a con-
trolling shell for animations. This is relatively platform
independent through the use of Java and can support an
extensible set of interaction and animation styles. An-
other Java specific animation tool is Jeliot 3 [5] which
has evolved from Jeliot 2000 and uses self-animating data
types and is designed to allow easy uploading of exam-
ples by end-users. In [6] it is argued that smarter tools are
needed to cater for and to adapt to the different abilities
of users, referring to studies of taxonomies of software
visualization tools.

Our tool presently used mostly HTML and just a few
lines of JavaScript on the client side. It is, nevertheless,
a light weight and yet capable animation tool. We have
coded over thirty six animation examples (manually) and
used these to teach a first-level programming course. One
important advantage of our approach is that the client
CPU is not significantly loaded.

REFERENCES

[1] T. L. Naps, “Jhavé: Supporting algorithm visualization,”
IEEE Computer Graphics and Applications, vol. 25, no. 5,
pp. 49–55, 2005.

[2] M. H. Brown, “Zeus: A system for algorithm animation and
multi-view editing,” IEEE Workshop on Visual Languages,
pp. 4–9, October 1991.

[3] S. Hansen, H. Narayanan, and D. Schrimpsher, “Helping
learners visualize and comprehend algorithms,” Interac-
tive Multimedia Electronic J Computer-Enhanced Learn-
ing, vol. 2, 2000.

[4] C. Hundhausen, S. Douglas, and J. Stasko, “A meta-study
of algorithm visualization effectiveness,” J. Visual Lan-
guages and Computing, vol. 13, no. 3, pp. 259–290, 2002.

[5] E. Sutinen, J. Tarhio, and T. Terasvirta, “Easy algorithm
animation on the web,” Multimedia Tools and Applications,
vol. 19, no. 2, pp. 179–194, 2003.

[6] R. Bednarik, A. Moreno, N. Myller, and E. Sutinen, “Smart
program visualization technologies: Planning a next step,”
Proceedings of the 5th IEEE International Conference on
Advanced Learning Technologies (ICALT 2005), pp. 717–
721, 2005.


