
 1

SAST: AN INTERCONNECTION AWARE
HIGH LEVEL SYNTHESIS TOOL

C. Karfa[1], J.S.Reddy[2], S.Biswas[3], C.R.Mandal[4], D.Sarkar[5]

Abstract

Today’s VLSI technology allows us to construct large, complex systems
with million transistors on a single chip. Most of the existing high level
synthesis systems give more priority to optimization of area, power, re-
source and time steps compared to interconnection cost, whereas the
later becomes predominant with the technology scaling and increase in
complexity. Further, field programmable gate arrays (FPGA) are now
becoming attractive platform for prototyping. Programmable devices
tend to have limited wiring resources between the data path elements.
This work is concerned with the development of a CAD tool for HLS
named, “Structured Architecture Synthesis Tool (SAST)”, which
incorporates structured architecture generation with special emphasis on
optimization of interconnect area. The too takes a behavioral description
written in 3-address form and generates synthesizable RTL codes with
scripts for compliance with standard design tools like Synopsys, Magma
etc.

Key Words: High level synthesis, Structure Architecture, Interconnection,
Genetic Algorithm.

1 Introduction

The high level synthesis (HLS) problem consists of translating a
behavioral specification into an register transfer level (RTL) structural
description containing a data path and a controller so that the data transfers
under the control of the controller exhibit the specified behavior. Thus, the HLS
problem can be formulated as follows: Given a functional specification in the
form of an algorithm, and a set of constraints, synthesize an RTL equivalent of
the algorithm comprising a data path composed of modules obtained from a

[1] C Karfa is an MS student of Dept. of Comp. Sc. & Engg, IIT Kharagpur. Email:
ckarfa@yahoo.co.in
[2] J.S.Reddy was an M.Tech. student in the Dept. of Comp. Sc. & Engg, IIT
Kharagpur. Presently he is with Intel Corp. Bangalore, INDIA. Email :
srinivas_reddy_j@yahoo.com.
[3] S.Biswas is a PhD student Dept. of Comp. Sc. & Engg, IIT Kharagpur. Email:
santoshbiswas402@yahoo.com
[4] C.R.Mandal is an Associate professor of Dept of Comp Sc.& Engg, IIT,
Kharagpur
[5] D.Sarkar is a Professor of Dept of Comp. Sc. & Engg, ,IIT Kharagpur.

 2

module library, and a controller, such that the RTL equivalent exhibits the same
behavior as of the functional specification of the input. High-level synthesis is
divided into several steps, namely, preprocessing, scheduling, allocation and
binding followed by controller design [Gajski & Dutt (‘92)].
 Several works in this field are reported in the literature. Force directed
scheduling [Paulin & Knigh (’89)] attempts to minimize the cost of hardware
operators while trying to find a schedule within a specified number of time
steps. The scheduling algorithm called dynamic loop scheduling (DLS)
[Rahmouni (’95)] is more suitable for scheduling control-oriented design.
[Gupta & Gupta (’02)] described a technique for elimination of dynamic
common sub-expression by aggressive speculative code motions.
A number of systems like HAL [Paulin & Knight (’89)], STAR [Tsai & Hsu
(’92)], SAM [Cloutier (’90)], GABIND [Mandal & Chakrabarti (‘96)] and
SPARK [Gupta & Gupta (’03)] are now available to support the HLS of digital
systems. Over the last several years, these systems have evolved from elemen-
tary systems producing non-optimized data paths to more sophisticated systems
generating data paths optimized with respect to area, time, power and testability.
With the advancement of the VLSI circuit technology, a rapid scaling of the
feature size has been performed. Device scaling implies that the circuit
performance will be increasingly determined by the interconnection
performance. For instance, interconnection contributes 50 percent of total delay
in 0.35 micron technology whereas it is expected to rise up to 70 percent in 0.25
micron technology. Thus, interconnections are expected to play the most critical
role in design of chips in deep sub-micron technologies. The development of
FPGA has also taken place around this time. These are now becoming attractive
platforms for prototyping designs, simulation acceleration, hardware in loop
simulation etc. To the best of our knowledge most HLS tools, however, produce
optimized designs in terms of resources, time steps, power, area etc. without
much emphasis on reduction of long and random interconnections.
The aim of this work is to design a CAD tool named “SAST ” for facilitating an
automated design environment for High-level synthesis. The main contribution
of this paper is that of “Structured Architecture” (SA) for HLS that is described
in the next section. A genetic algorithm based scheduler developed by the
authors supports this structured architecture. The SA enabled the avoidance of
random interconnection between the architectural components. It also uses a few
numbers of buses for interconnection. So generated designs are easy to
implement on programmable device such as FPGA.
The paper is organized as follows. Section 2 gives the introduction of the
structured architecture for the HLS. Section 3 describes the implementation of
the basic steps used in SAST. Section 4 summarizes the experimental results.
Section 5 concludes by underlying the effectiveness of SAST.

2 Structured Architecture (SA)

The schematic diagram of the SA is shown in figure 1. The data path is
organized as architectural blocks (A-block). Each A-block has a local functional
unit (FU), local storage and internal interconnections, as shown in figure 1. A
few global buses interconnect the A-blocks. Each A-block is connected to the
global buses by means of a specific number of access links. SA also permits the
use of memories as architectural components. These are connected to the global

 3

buses like the A-blocks. The structure of the data path is characterized by a set
of architectural constraints like the number of A-blocks, the number of global
memories, the number of global buses interconnecting the A-blocks, the number
of access links or access width which connect an A-block to the global buses
and the maximum number of writes per time step to storage locations in an A-
block. These structured data paths avoid random interconnects between data
path elements. Each A-block has a simple implementation. This makes the
generated design easy to implement on programmable devices such as FPGA.
Global memories help improve the availability of operands and relieve the
storage requirement in individual A-blocks. For example a signal-processing
algorithm for which the hardware is being constructed may require arrays. The
availability of global memories as an architectural component makes it possible
to construct data paths for the hardware implementation of these algorithms
easily by storing the array elements in global memory.

 Figure 1: Schematic of Structured Architecture
3 Implementation

The design flow used by “SAST” comprises the following steps:
1. Preprocessing: Translation of the input control data flow graph (CDFG) [5] to

an intermediate representation (IR) and calculation of necessary information
for scheduling.

2. Schedule of the operations and the transfer of variables in minimum number
of control steps for a given architectural specification. The scheduler
accomplishes functional unit formation.

3. Allocation and binding of variables to registers.
4. Data path generation from the schedule of operations, bus transfers and the

variable mapping to the registers.
5. Generation of synthesizable Verilog code (RTL).
6. Generation of scripts for gate level synthesis using commercial design tools

like Synopsys DA, Magma etc.
This section deals with a detailed description of each step.
3.1 Preprocessing

In translating a CDFG to an RTL design, one needs to know the data depen-
dency information in each basic block for scheduling and data path allocation.
Also, information of incoming and outgoing variables of each basic block is re-

 4

quired for scheduling. This information is computed in the preprocessing step.
Following set of variables are used in computing live incoming and outgoing
variable sets for each basic block i,
usei : set of variables whose values used in i prior to any definition of the
variable.
defi : set of variables defined in i prior to any use of that variable in i.
ini: set of variables live at the entry point of i.
outi: set of variables live at the exit point of i.
Procedure described in [2] to compute these values are used in SAST.

3.2 The GA Based Scheduling Algorithm

A genetic algorithm (GA) based scheduling is implemented which
supports the synthesis of structured data paths. Variables are meant to reside at
specific storage locations in specific A-blocks. So, it may require transferring
one variable from one A-block to another during scheduling. The scheduling
algorithm is versatile enough to handle multi-cycle operations, pipelined
operators and multiple implementations of an operation. SAST uses a slow
adder when there is slack time available that enables reduction in cost of the FUs
and a fast adder otherwise. The scheduler of SAST delivers the following:
• Schedule of operations i.e. assign time step to each operation,
• The A-block in which each operation is scheduled,
• Schedule of all transfers over the global buses satisfying the architectural

constraints, and
 • Composition of the functional unit (FU), in each A-block, in terms of the
specific implementations of the operators from a module database.

Fig2: Data path of functional, storage and interconnection units in an A-block.

 A brief overview of the GA is as follows. In view of the complex nature
of the problem, a structured solution representation has been used, as against a
simple bit string. An initial population of solutions is generated at random. New
solutions are obtained by inheriting values of decision variables from parents
solutions, picked up from the population. But the operations may not inde-

 5

pendent of each other. So the resulting solution representation could correspond
to an infeasible solution. As a result a completion algorithm has to be used to
obtain a feasible solution from the available solution representation obtained
through crossover or by setting the attributes at random while generating the
initial population of the solutions. A scheduling heuristic has also been used
with the completion algorithm and this has been found to improve the perfor-
mance of the GA. A population control mechanism is used to sustain diversity in
the population. At the same time solutions with overall good and partial fitness
are retained. The GA is run up to a fixed number of iterations and this serves as
the stopping criterion. The last improvement in solution cost (i.e. when the best
solution is obtained) usually occurs well before all the iterations are completed.

3.3 Register Allocation and Binding

The scheduler binds operations to the functional unit in an A-block and
data transfers over the global buses. The remaining tasks in the data path
allocation are register optimization and data path construction in each A-block
from the scheduled output. Register optimization computes the minimum
number of registers required in the data path in each A-block. Register
allocation and binding consists of several sub steps explained below.
• Lifetime analysis of variables in an A-block from the schedule of operations
and the bus transfers over the global buses,
• Constructing the compatibility graph from the lifetimes of variables in an A-
block, and
• computing the minimum number of registers required in each A-block from
the compatibility graph.
3.3.3 Clique partitioning
The heuristic given in [Ray(’93)] has been employed to find minimal number of
cliques from the compatibility graph. So, the total number of registers needed in
Ai is the total minimal number of cliques found out from the clique partitioning
method. This method also maps the variables to registers by mapping each the
cliques to a register.
3.4 Data path generation
 Interconnection topology is built from the schedule of operations and variable
transfers over the global buses. Figure 2 shows the RTL data path in an A-block
SAST allows that the data over the global buses can be fed as inputs to the FU
and to the set of registers through switches. Also, output from the FU can be
transferred over the global buses and to the registers. Switches “in” and “out”, as
depicted in figure2, correspond to the data transfers over the global buses
between the A-blocks and the I/O ports. The “in” switches are enabled for the
set of registers, which take values from the global buses. “Out” switches are
enabled for the set of registers whose value is transferred over the global buses.

3.5 Verilog code generations

Final stage in the SAST is to generate the synthesizable verilog code
(RTL) for the Data path and the Controller, which generates control signals for
each A-block and interconnection switches. Finally, scripts are generated based
on structural design constraints like clock frequency, input-output delay, area

 6

etc. A commercial CAD tool like Synopsys DA, MAGMA, and Cadence PKS
etc. for gate level synthesis can directly import it.

 Figure 3: Data path in the A-block A0 and A1.
4. Experimentation

In this paper, two benchmark problems Differential Equation Solver (DIFFEQ)
and 5th order Elliptic wave filter (EWF) have been solved using the proposed
approach. Details of scheduling, register allocation and binding have been
tabulated for DIFFEQ. The architectural parameters for the DIFFEQ are: 3 A-
blocks, 2 global buses, 1 access link (access width) and 2 memory ports per A-
block. The scheduled output with the control steps for each basic block is shown
in table 1. Variable mapping to registers in the A-blocks is depicted in table 2.

 Figure 4: Synopsys DA output for EWF.

The data paths from the scheduled basic blocks and the register allocation
phases are given in figure 3 for A-blocks A0 and A1. Data path for A-block A2
is not shown here for brevity. In control step 5 of the basic block B1, v2 is

 7

output from the FU in A-block A1 and it is transferred over the global bus in that
control step to A2. This is shown in table 1. Further, v2 has no usage in A1 and it
is not considered for register allocation in A1. Here multiplication operations
take 2 cycles to execute. In the table 1, = r p, = w p indicates read from port and
write to port respectively. In table 2, [R] are [V] are order.

Schedule of operations Basic block Time Bus transfer
A0 A1 A2

I 1 p1→dx, p3→a (0, =rp) (4, =rp)
 2 p2→ x, p1 →y (1, =rp) (2, =rp)
 3 p2→u, x(0)→1 (3, =rp)

B1 1 3 (0)→1 (1, *)
 2 dx (0)→1, 2 | *| (0, *)
 3 y (1→0) (4, *) (2, +) | *|
 4 v0 (2→1) | *| (3, *) (7, *)
 5 v2(1→2) (6, *) | *| | *|
 6 v6 (2→1) | *| (9, +) (5, -)
 7 v5(0→2) (8, -)

C1 1 (0, <)
B2 1 x(1→p1) (0, = wp)

 2 u(2→p1) y(1→p2) (1, =wp) (2, = wp)
 Table 1: Schedule for differential equation solver

 A-
block #Registers Variables Register

A0 3 [dx], [x, v3, v5], [y] [R0], [R2], [R3]

A1 5 [a], [y], [x], [3, v1, v6], [dx, v0] [R0], [R1], [R2],
[R3], [R4]

A2 3 [u, v4], [dx, v2, v6], [v0] [R0], [R1], [R2]
Table 2: Variable mapping to registers in the A-blocks of DIFFEQ.

 System Time steps # + # * Bus, Ablk, Accl # Reg.
Elliptic wave filter scheduled in 18 steps using multi-cycle multipliers
SAST 18 3 2 1, 3, 1 14
COBRA 18 3 2 3, 3, - 12
CASS 18 3 2 5, 4, - 16
HAL 18 3 2 — 12
PSGA SYN 18 3 2 — 10

Elliptic wave filter using pipelined multipliers
SAST 18 2 1 2, 3, 2 13
COBRA 18 2 1 3, 3, - 13
HAL 18 3 1 — 12
PSGA SYN 18 3 1 — 10
SAM 19 2 1 — 12
STAR 19 2 1 — 11
PARBUS 19 2 1 — 12
 Table 3: Comparison of results with a few other synthesis tools.

 8

Comparison of results of the current method has been done with ones reported in
the literature for EWF, namely SAM, STAR, HAL, COBRA, etc. and is
illustrated in Table3. It can be observed that the solution given by the SAST is
comparable to other tools in terms of time steps, resources, A-Blocks, registers
but has reduced the number of global buses.
Further, RTL generated by SAST has been synthesized using Synopsys DA with
0.18 Micron CMOS9 library of National Semiconductor Corp., USA. Result has
been illustrated for EWF in Figure4. The structured nature of the interconnection
can be noted from the figure4. The ratio of the interconnection overhead to that
of the cell area is 1.1 percent (reported by Synopsys DA) for EWF.

5 Conclusions

This work is concerned with the development of a CAD tool SAST, for synthe-
sizing structured architectures with a simple and predictable layout structure and
generates synthesizable RTL codes. It uses GA for scheduling. SAST is able to
handle multiple implementations of operations varying in speed, including multi
cycle and pipelined implementations. In all cases the FU cost of designs
synthesized by SAST are comparable with those of other systems. Important
feature of this work is that random long-distance interconnects between data
path elements in the synthesized design are avoided by considering the
structured architecture for synthesis. SAST also uses a very few number of
global busses. Thus it reduces total interconnection area.

References

 [1] Aho,A.V. and Sethi R and Ullman, J. D. (1987) Compliers: Principles,
Techniques and Tools, Addison Wesley publishers, June.
[2] Mandal, C. A. and Chakrabarti, P. P. and Ghose, S (1996), Allocation and
binding for data path synthesis using a genetic approach, in Proceedings of
VLSI design’96, pp.122 –125.
[3] Gajski, D. D. and Dutt, N. D. and Wu, Allen C-H and Steve Y-L Lin (1992),
High Level Synthesis: Introduction to chip and System Design, Kluwer
Academic Publishers.
 [4] Tsai, F. S. and Hsu, Y. C. (1992), Star: An automatic data path allocator,
IEEE Trans. on CAD, September.
[5] Ray, Jay. (1993), Parallel Algorithms for High level Synthesis, Ph. D
dissertation, University of Cincinnati, February.
 [6] Paulin, P. G. and Knight, J. P. (1989), Force Directed Scheduling for
ASIC’s, IEEE Transactions CAD, vol 8, No 6, June.
[7] Cloutier R. J. and Thomas, D. E. (1990), The Combination of scheduling,
allocation and Mapping in a single algorithm, 27th Design Automation
Conference, October.
[8] Rahmouni. M and Jerraya. A. A. (1995), Formulation and evaluation of
scheduling techniques for control flow graphs. In proceedings of European
Design Automation Conference’95, Brighton.
[9] Gupta, S. Dutt, N. Gupta, R. and Nicolau, A. (2003), SPARK: A High-Level
Synthesis Framework For Applying Parallelizing Compiler Transformation,
Proceedings of the 16th International Conference on VLSI Design.

