Human Activity Recognition
Personal Sensing Applications

- Body Sensor Networks
 - Athletic Performance
 - Health Care
 - Activity Recognition

- Heart Rate Monitor
- Pulse Oximeter
- Mobile Phone Aggregator
A Practical Solution to Activity Recognition

- Portable
- Entirely user controlled
- Computationally lightweight
- Accurate

On-Body Sensors
 + Sensing Accuracy
 + Energy Efficiency

Phone
 + User Interface
 + Computational Power
 + Additional Sensors
Application requirement

- Activity recognition
- Data comes from different sensors
- Classify typical daily activities, postures, and environment
- Classification Categories:

<table>
<thead>
<tr>
<th>Environment</th>
<th>Indoors, Outdoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posture</td>
<td>Cycling, Lying Down, Sitting, Standing, Walking</td>
</tr>
<tr>
<td>Activity</td>
<td>Cleaning, Cycling, Driving, Eating, Meeting, Reading, Walking, Watching TV, Working</td>
</tr>
</tbody>
</table>
Challenges to Practical Activity Recognition

- User-friendly
 - Hardware configuration
 - Portable sensors, easy to wear
 - Software configuration
 - Intuitive interface, adding, removing, config. sensors

- Accurate classification
 - Classify difficult activities in the presence of dynamics
 - Noisy env., orientation of sensors

- Efficient classification
 - Computation and energy efficiency

- Less reliance on ground truth
 - Labeling sensor data is invasive
PBN: Practical Body Networking

Tools
- TinyOS-based motes + Android phone

Goals
- Lightweight activity recognition appropriate for motes and phones
- Retraining detection to reduce invasiveness
- Identify redundant sensors to reduce training costs
- Classify difficult activities with nearly 90% accuracy
PBN system

- Crossbow IRIS on body sensor motes
- TelosB base station
 - Connected with HTC smartphone

TinyOS sensing support

- Implement sensing application in TiniOS for motes
- Runtime configuration of active sensors, sampling rate, local aggregation
- Communication scheme =>base station=>phone

Android kernel support for USB

- Prepare for external USB
- Driver installation
Hardware support

- Ext. battery power for the motes

TinyOS support on Android

- Enable TinyOS and Android communication

Android App

- User friendly front end
- Easy configuration
- Runtime deployment
- Labelling
- User control for both phone and motes
- Receives feedback if retraining is needed
Android App

- Sensor configuration
 Easy config for phone and motes
 Add/remove sensors
 Adjust sampling rate, local aggregation interval
 Save on XML

- Runtime control
 User is able to start/stop data sampling and activity recog.
 Retraining => enter current activity
Software: Android Application

Sensor Configuration

Runtime Control and Feedback

Ground Truth Logging
Data Collection Setup

- 2 subjects, 2 weeks
- Android Phone
 - 3-axis accelerometer, WiFi/GPS Localization
- 5 IRIS Sensor Motes
 - 2-axis accelerometer, light, temperature, acoustic, RSSI

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BS/Phone</td>
</tr>
<tr>
<td>1</td>
<td>L. Wrist</td>
</tr>
<tr>
<td>2</td>
<td>R. Wrist</td>
</tr>
<tr>
<td>3</td>
<td>L. Ankle</td>
</tr>
<tr>
<td>4</td>
<td>R. Ankle</td>
</tr>
<tr>
<td>5</td>
<td>Head</td>
</tr>
<tr>
<td>Node</td>
<td>ID</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>Phone</td>
<td>0</td>
</tr>
<tr>
<td>IRIS</td>
<td>1</td>
</tr>
<tr>
<td>IRIS</td>
<td>2</td>
</tr>
<tr>
<td>IRIS</td>
<td>3</td>
</tr>
<tr>
<td>IRIS</td>
<td>5</td>
</tr>
</tbody>
</table>

Signal strength
PBN Architecture

Sensor Node

- Local Agg.
- Sensor
- Sample Controller

Base Station Node

- Agg. Data
- Start/Stop
- 802.15.4

Phone

- Sample Controller
- Sensor
- Local Agg.

- GUI

- TinyOS Comm. Stack

- Labeled Data
- Activity Decision, Request Ground Truth
- Agg. Data

- Retraining Detection
- Ground Truth Management
- Activity Classification
- Sensor Selection

- Activity Prob, Agg. Data
- Input Sensors

- USB

- PBN Architecture

- Sensor Node

- Base Station Node

- Phone

- Sample Controller

- Sensor

- Local Agg.

- GUI

- TinyOS Comm. Stack

- Labeled Data

- Activity Decision, Request Ground Truth

- Agg. Data

- Retraining Detection

- Ground Truth Management

- Activity Classification

- Sensor Selection

- Activity Prob, Agg. Data

- Input Sensors

- USB
PBN Architecture

- Phone and mote sensors sample data
 Aggregate => single packet

- Fed to classification system
 AdaBoost => classifier, each activity training
 Two minutes period
 Updated using retraining
 Sensor selection
AdaBoost Activity Recognition

- Ensemble Learning: AdaBoost.M2 (Freund, JCSS ‘97)
 - Lightweight and accurate
 - Maximizes training accuracy for all activities
 - Many classifiers (HMM) are more demanding

- Iteratively train an ensemble of weak classifiers
 - Training observations are weighted by misclassifications
 - At each iteration:
 - Train Naïve Bayes classifiers for each sensor
 - Choose the classifier with the least weighted error
 - Update weighted observations

- The ensemble makes decisions based on the weighted decisions of each weak classifier
AdaBoost

Ensemble classifier
Weak classifier
Combined to make a single classifier

Using Algorithm 1, we describe AdaBoost training. We define a set of activities $A = \{a_1, \ldots, a_a\}$, sensors $S = \{s_1, \ldots, s_m\}$, and observation vectors O_j for each sensor $s_j \in S$, where each sensor has n training observations. The training output is an ensemble of weak classifiers $H = \{h_1, \ldots, h_T\}$, where $h_t \in H$ represents the weak classifier.

Initialize the weight vector D
Algorithm 1 AdaBoost Training

Input: Max iterations T, training obs. vector O_j for each sensor $s_j \in S$, obs. ground truth labels

Output: Set of weak classifiers H

1: Initialize observation weights D_1 to $1/n$ for all obs.
2: $\textbf{for } t = 1 \textbf{ to } T \textbf{ do}$
3: $\quad \textbf{for } \text{sensor } s_j \in S \textbf{ do}$
4: $\quad \quad$ Train weak classifier $h_{t,j}$ using obs. O_j, weights D_t
5: $\quad \quad$ Get weighted error $\varepsilon_{t,j}$ for $h_{t,j}$ using labels $[8]$
6: $\quad \textbf{end for}$
7: \quad Add the $h_{t,j}$ with least error ε_t to H by choosing $h_{t,j}$ with least error ε_t
8: \quad Set D_{t+1} using D_t, misclassifications made by h_t $[8]$
9: $\textbf{end for}$
Final outcome of AdaBoost

Given a observation o, weak classifier h_t returns a vector $[0,1]$

$$h(o) = \arg\max_{a_i \in A} \sum_{t=1}^{T} \left(\log \frac{1-\varepsilon_t}{\varepsilon_t} \right) h_t(o,a_i)$$

$$w(o,a_i) = \sum_{t=1}^{T} \left(\log \frac{1-\varepsilon_t}{\varepsilon_t} \right) h_t(o,a_i)$$
Retraining Detection

- **Body Sensor Network Dynamics** affects accuracy during runtime:
 - Changing physical location
 - User biomechanics
 - Variable sensor orientation
 - Background noise

- Achieve high accuracy with limited initial training data
 - Can also used if existing data is not accurate

- How to detect that retraining is needed without asking for ground truth?
 - Constantly nagging the user for ground truth is annoying
 - Perform with limited initial training data
 - Maintain high accuracy
Retraining Detection

- Measure the discriminative power of each sensor: K-L divergence
 - Quantify the difference between sensor reading distributions

Retraining detection with K-L divergence:
- Compare training data to runtime data for each sensor
Kullback–Leibler divergence

K-L divergence measures the expected amount of information required to transform samples from a distribution P into a second distribution Q.

$$D_{KL}(P\|Q) = \sum_i P(i) \ln \frac{P(i)}{Q(i)}.$$
Retraining Detection

- **Training**
 - Compute “one vs. rest” K-L divergence for each sensor and activity

![Diagram showing training data ground truth and data partitions for walking, driving, and working activities.](image-url)

For each sensor:

\[D_{KL}(T_{\text{walking}}, T_{\text{other}}) = \sqrt{\text{Walking Training Data Distribution}} \quad \text{vs.} \quad \sqrt{\text{\{Driving, Working\} Training Data Distribution}} \]
Retraining Detection

- **Runtime**
 - At each interval, sensors compare runtime data to training data for current classified activity

For each sensor:

\[
D_{KL}(R_{\text{walking}}, T_{\text{walking}}) = \sqrt{\text{Walking Runtime Data Distribution}} \quad \text{vs.} \quad \sqrt{\text{Walking Training Data Distribution}}
\]
Retraining Detection

- **Runtime**
 - At each interval, sensors compare runtime data to training data for current classified activity
 - Each individual sensor determines retraining is needed when:

\[
D_{KL}(R_{\text{walking}}, T_{\text{walking}}) > D_{KL}(T_{\text{walking}}, T_{\text{other}})
\]

- **Intra-activity divergence**
 - Walking Runtime Data Distribution vs. Walking Training Data Distribution

- **Inter-activity divergence**
 - Walking Training Data Distribution vs. \{Driving, Working\} Training Data Distribution
Retraining Detection

- **Runtime**
 - At each interval, sensors compare runtime data to training data for current classified activity
 - Each individual sensor determines retraining is needed
 - The ensemble retrains when a **weighted majority** of sensors demand retraining
Ground Truth Management

- Retraining: How much new labeled data to collect?
 - Capture changes in body dynamics
 - Too much labeling is intrusive

- Decide to retrain
 - Prompt user to log ground truth for a window of \(N \)
 - Use logs the current activity

- Balance number of observations per activity
 - AdaBoost relies on creating weight distribution \(D \) for training observations
 - Based on classification difficulty
 - Loose balance hurts classification accuracy
 - Restrictive balance prevents adding new data
 - Balance multiplier
 - Each activity has no more than \(\delta \) times the average
 - Balance enforcement: random replacement

\[
\frac{|O_i| - \frac{1}{|A|} \sum_{\forall a_k \in A} |O_k|}{\frac{1}{|A|} \sum_{\forall a_k \in A} |O_k|} \leq \delta
\]
Importance of δ
Further increase does not ensure balance
Sensor Selection

- AdaBoost training can be computationally demanding
 - Train a weak classifier for each sensor at each iteration
 - > 100 iterations to achieve maximum accuracy

- Can we give only the most helpful sensors to AdaBoost?
 - Identify both helpful and redundant sensors
 - Train fewer weak classifiers per AdaBoost iteration
 - Bonus: use even fewer sensors

- Key idea: different weak classifier must have diverse prediction results
 - Less correlation
 - Exclude the redundant sensors
Sensor Selection

Use correlation information between different sensors

Accs, are correlated
Light, temp are correlated

Remove them from AdaBoost training
Sensor Selection

- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors
Sensor selection consists of two components

- **Threshold adjustment**
 - Threshold is computed to discriminate the sensors
 - Performed during training

- **Selection**
 - Select the set of sensors for retraining
Threshold

- Initialize the threshold during initial training
- Find the correlation between sensors
- Outlier identifies the threshold

Algorithm 2 Raw Correlation Threshold for Sensor Selection

Input: Set of sensors S selected by AdaBoost, training observations for all sensors O, multiplier n

Output: Sensor selection threshold α

1. $R = \emptyset$ // set of correlation coefficients
2. for all combinations of sensors s_i and s_j in S do
3. Compute correlation coefficient $r = |r_{o_i,o_j}|$
4. $R = R \cup \{r\}$
5. end for
6. // compute threshold as avg + (n * std. dev.) of R
7. $\alpha = \mu_R + n\sigma_R$
Sensor Selection

- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors

![Diagram showing sensor selection process]

\[\text{correlation}(2, \text{TEMP}; 1, \text{LIGHT}) \]
Sensor Selection

- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors

\[\text{correlation}(2, \text{TEMP}; 1, \text{LIGHT}) \]
\[\text{correlation}(3, \text{MIC}; 3, \text{TEMP}) \]
Sensor Selection

- Goal: determine the sensors that AdaBoost chooses using correlation
- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors

```
correlation(2,TEMP; 1,LIGHT)
correlation(3,MIC; 3,TEMP)
...
```

Set threshold α based on average correlation: $\alpha = \mu_{corr} + \sigma_{corr}$
Selection

- During retraining
 - Choose the set of sensors S^* using the threshold α

No two sensors have $r > \alpha$

Algorithm 3: Sensor Selection Using Raw Correlation

Input: Set of all sensors S, training observations for all sensors O, threshold α

Output: Selected sensors S^* to give as input to AdaBoost

1: $S^* = \emptyset$
2: $E = \emptyset$ // set of sensors we exclude
3: for all combinations of sensors s_i and s_j in S do
4: Compute correlation coefficient $r = |r_{O_i,O_j}|$
5: if $r < \alpha$ then
6: if $s_i \notin E$ then $S^* = S^* \cup \{s_i\}$
7: if $s_j \notin E$ then $S^* = S^* \cup \{s_j\}$
8: else if $r \geq \alpha$ and $\text{acc}(s_i) > \text{acc}(s_j)$ then
9: // use accuracy to decide which to add to S^*
10: if $s_i \notin E$ then $S^* = S^* \cup \{s_i\}$
11: $E = E \cup \{s_j\}; S^* = S^* \\{s_j\}$
12: else
13: if $s_j \notin E$ then $S^* = S^* \cup \{s_j\}$
14: $E = E \cup \{s_i\}; S^* = S^* \\{s_i\}$
15: end if
16: end for
Sensor Selection

- Choose sensors for input to AdaBoost based on the correlation threshold

\[\text{correlation}(1,\text{ACC}; 1,\text{LIGHT}) \leq \alpha \]
Sensor Selection

- Choose sensors for input to AdaBoost based on the correlation threshold

\[
\text{correlation}(2, \text{TEMP}; 1, \text{ACC}) > \alpha \\
\text{acc}(2, \text{TEMP}) > \text{acc}(1, \text{ACC})
\]
Sensor Selection

- Choose sensors for input to AdaBoost based on the correlation threshold

\[\text{correlation}(1, \text{ACC}; 3, \text{TEMP}) \leq \alpha \]
Sensor Selection

- Choose sensors for input to AdaBoost based on the correlation threshold

All Sensors

- 2,MIC
- 3,TMP
- 3,MIC
- 2,TMP

Unused

- 1,ACC

Selected

- 1,LIGHT

AdaBoost

- 3,TMP
- 2,TMP

- 1,LIGHT
Evaluation Setup

- Classify typical daily activities, postures, and environment
- 2 subjects over 2 weeks
- Classification Categories:

<table>
<thead>
<tr>
<th>Environment</th>
<th>Indoors, Outdoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posture</td>
<td>Cycling, Lying Down, Sitting, Standing, Walking</td>
</tr>
<tr>
<td>Activity</td>
<td>Cleaning, Cycling, Driving, Eating, Meeting, Reading, Walking, Watching TV, Working</td>
</tr>
</tbody>
</table>
Classification Performance

Environmental Classification Accuracy

Run Time Accuracy

Initial training 100 observations/activity
Classification Performance

Posture Classification Accuracy

Runtime Accuracy

Total Walking Sitting Standing Cycling Lying
Subject 1 Subject 2

0 0.2 0.4 0.6 0.8 1
Classification Performance

Activity Classification Accuracy

Runtime Accuracy

Subject 1 Subject 2
User 1 has accuracy 98%, 85%, 90%
User 2 has accuracy 81%, 82%, 76%
Sensor Weight per activity

16 sensors unused
Retraining Performance

30 new data

Retraining Instances

Accuracy

Subject 1 Instances

Subject 2 Instances

Subject 1 Accuracy

Subject 2 Accuracy
Sensor Selection Performance

The bar chart illustrates the percentage of sensors excluded for different methods: AdaBoost Only, SS Only, and AdaBoost+SS. The chart compares the performance across two subjects, marked as Subject 1 in the legend. The data suggests that AdaBoost+SS generally excludes a higher percentage of sensors compared to the other methods.