
Human Activity Recognition 



Personal Sensing Applications 

 Body Sensor Networks 

 Athletic Performance 

 Health Care 

 Activity Recognition 

Pulse Oximeter 

Heart Rate Monitor 

Mobile Phone Aggregator 
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A Practical Solution to Activity Recognition 

 Portable 

 Entirely user controlled 

 Computationally lightweight 

 Accurate 
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On-Body Sensors 

+Sensing Accuracy 

+Energy Efficiency 

Phone 

+User Interface 

+Computational Power 

+Additional Sensors 

 



Application requirement  
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 Activity recognition 

 

 Data comes from different sensors  

 

 Classify typical daily activities, postures, and environment 

 

 Classification Categories: 

Environment Indoors, Outdoors 

Posture Cycling, Lying Down, Sitting, Standing, Walking 

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading, 

Walking, Watching TV, Working 



Challenges to Practical Activity Recognition 
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 User-friendly 

 Hardware configuration 

 Portable sensors , easy to wear 

 Software configuration 

 Intuitive interface, adding, removing, config. sensors 

 Accurate classification 

 Classify difficult activities in the presence of dynamics 

 Noisy env., orientation of sensors  

 Efficient classification 

 Computation and energy efficiency 

 Less reliance on ground truth 

 Labeling sensor data is invasive 



PBN: Practical Body Networking 
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Tools 

 TinyOS-based motes + Android phone 

Goals 

 Lightweight activity recognition appropriate for motes and phones 

 Retraining detection to reduce invasiveness 

 Identify redundant sensors to reduce training costs 

 Classify difficult activities with nearly 90% accuracy 



PBN system  
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 Crossbow IRIS on body sensor motes 

 TelosB base station  

 Connected with HTC smartphone  

TinyOS sensing support 

 Implement sensing application in TiniOS for motes 

 Runtime configuration of active sensors, sampling rate, 
local aggregation  

 Communication scheme =>base station=>phone 

Android kernel support for USB  

 Prepare for external USB 

 Driver installation   
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Hardware support 

 Ext. battery power for the motes 

TinyOS support on Android  

 Enable TinyOS and Android communication  

 

Android App 

 User friendly front end 

 Easy configuration  

 Runtime deployment 

 Labelling 

 User control for both phone and motes 

 Receives feedback if retraining is needed 

 

 

 



Android App 
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 Sensor configuration  

Easy config for phone and motes 

Add/remove sensors 

Adjust sampling rate, local aggregation interval  

Save on XML  

 

 Runtime control 

User is able to start/stop data sampling and activity recog. 

Retraining => enter current activity  

 



Software: Android Application 
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Sensor Configuration Runtime Control and Feedback Ground Truth Logging 



Data Collection Setup 
 2 subjects, 2 weeks 

 Android Phone 
 3-axis accelerometer, WiFi/GPS Localization 

 5 IRIS Sensor Motes 
 2-axis accelerometer, light, temperature, acoustic, RSSI 

Node ID Location 

0 BS/Phone 

1 L. Wrist 

2 R. Wrist 

3 L. Ankle 

4 R. Ankle 

5 Head 
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Signal strength  



Sensor 

Selection 

PBN Architecture 
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Sensor Node 

Phone 

Base Station Node 

Local Agg. 
Sensor Sensor Sensor 

Sample 

Controller 

Sample 

Controller 

Sensor Sensor Sensor 

Local Agg. 

GUI 
TinyOS 

Comm. Stack 

Sensor 

Selection 

Ground Truth 

Management 

Activity 

Classification 

Retraining 

Detection 

Activity Decision, Request Ground Truth Agg. Data 

Agg. 

Data 

Labeled Data 

Agg. Data Start/Stop 

Input Sensors Activity Prob, Agg. Data 

Training Data 

USB 

802.15.4 
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 Phone and mote sensors sample data  

Aggregate => single packet  

 

 Fed to classification system  

AdaBoost => classifier , each activity training  

Two minutes period 

Updated using retraining 

Sensor selection 

 

 

PBN Architecture 



AdaBoost Activity Recognition 
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 Ensemble Learning: AdaBoost.M2 (Freund, JCSS ‘97)\\\\\\\\\\ 

 Lightweight and accurate 

 Maximizes training accuracy for all activities 

 Many classifiers (HMM) are more demanding 

 

 Iteratively train an ensemble of weak classifiers 

 Training observations are weighted by misclassifications 

 At each iteration: 

 Train Naïve Bayes classifiers for each sensor 

 Choose the classifier with the least weighted error 

 Update weighted observations 

 

 The ensemble makes decisions based on the weighted decisions of each 

weak classifier 

 



AdaBoost 
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Ensemble classifier 

Weak classifier  

Combined to make a single classifier  

 

Initialize the weight vector D 
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Final outcome of AdaBoost 
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ai 

Given a observation o, weak classifier ht returns a vector [0,1] 

 

ai 

ht 

hk 

Activity ai 

ht 

hm 

hk 

ai 

 
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Retraining Detection 
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 Body Sensor Network Dynamics affects accuracy during runtime: 

 Changing physical location 

 User biomechanics 

 Variable sensor orientation 

 Background noise 

 Achieve high accuracy with limited initial training data 

 Can also used if existing data is not accurate  

 

 How to detect that retraining is needed without asking for ground truth? 

 Constantly nagging the user for ground truth is annoying 

 Perform with limited initial training data 

 Maintain high accuracy 



Retraining Detection 
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 Measure the discriminative power of each sensor: K-L divergence 
 Quantify the difference between sensor reading distributions 

 

 

 

 

 

 

 

 

 

 

 

 Retraining detection with K-L divergence: 
 Compare training data to runtime data for each sensor 

Sensors 



Kullback–Leibler divergence 
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K-L divergence measures the expected amount of information required to 

transform samples from a distribution P into a second distribution 

Q. 



Retraining Detection 
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 Training 

 Compute “one vs. rest” K-L divergence for each sensor and activity 

1,LIGHT 

1,ACC 

2,MIC 

… 

Walking Driving Working 

Training Data Ground Truth: 

Sensors 

DKL(Twalking,Tother) = √ 

Walking  

Training Data Distribution 

√ 

{Driving, Working}  

Training Data Distribution 

Walking Data Partition: 

vs. 

For each sensor: 



Retraining Detection 
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 Runtime 

 At each interval, sensors compare runtime data to training data for 

current classified activity 

1,LIGHT 

1,ACC 

2,MIC 

… 

Sensors Current AdaBoost Classified Activity: Walking 

DKL(Rwalking,Twalking) = √ 

Walking  

Runtime Data Distribution 

vs. √ 

Walking  

Training Data Distribution 

For each sensor: 



Retraining Detection 
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 Runtime 

 At each interval, sensors compare runtime data to training data for 

current classified activity 

 Each individual sensor determines retraining is needed when: 

 

DKL(Rwalking,Twalking)       >      DKL(Twalking,Tother)  

√ 

Walking  

Runtime Data Distribution 

vs. 
√ 

Walking  

Training Data Distribution 

√ 

Walking  

Training Data Distribution 

√ 

{Driving, Working}  

Training Data Distribution 

vs. 

Intra-activity divergence Inter-activity divergence 



Retraining Detection 
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 Runtime 

 At each interval, sensors compare runtime data to training data for 
current classified activity 

 Each individual sensor determines retraining is needed 

 The ensemble retrains when a weighted majority of sensors 
demand retraining 

 

 



Ground Truth Management 
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 Retraining: How much new labeled data to collect? 
 Capture changes in body dynamics 

 Too much labeling is intrusive 

 

 Decide to retrain 
 Prompt user to log ground truth for a window of N 

 Use logs the current activity  

 Balance number of observations per activity 
 AdaBoost relies on creating weight distribution D for training observations 

 Based on classification difficulty  

 Loose balance hurts classification accuracy 

 Restrictive balance prevents adding new data 

 Balance multiplier 
 Each activity has no more than δ times the average 

 Balance enforcement: random replacement 
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Importance of  

Further increase does not ensure balance  



Sensor Selection 
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 AdaBoost training can be computationally demanding 

 Train a weak classifier for each sensor at each iteration 

 > 100 iterations to achieve maximum accuracy 

 

 Can we give only the most helpful sensors to AdaBoost? 
 Identify both helpful and redundant sensors 

 Train fewer weak classifiers per AdaBoost iteration 

 Bonus: use even fewer sensors 

 

 Key idea: different weak classifier must have diverse 
prediction results  

 Less correlation  

 Exclude the redundant sensors   



Sensor Selection 
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Raw Data Correlation 

Sensors 

Use correlation information  

between different sensors 

 

Accs, are correlated 

Light, temp are correlated  

 

Remove them from AdaBoost training  



Sensor Selection 
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 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

 

2,TEMP 

Selected 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

AdaBoost All Sensors 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 
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 Sensor selection consists of two components  

 Threshold adjustment  

 Threshold is computed to discriminate the sensors  

 Performed during training 

 Selection  

 Select the set of sensors for retraining  



Threshold 
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 Initialize the threshold during initial training  

 Find the correlation between sensors 

 Outlier identifies the threshold  



2,TEMP 

Sensor Selection 
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 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

AdaBoost 

Selected 

All Sensors 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

correlation(2,TEMP; 1,LIGHT) 



2,TEMP 

Sensor Selection 

35 

 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

AdaBoost 

Selected 

All Sensors 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

correlation(2,TEMP; 1,LIGHT) 

correlation(3,MIC; 3,TEMP) 



2,TEMP 

Sensor Selection 
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 Goal: determine the sensors that AdaBoost chooses using correlation 

 Find the correlation of each pair of sensors selected by AdaBoost 

 Use average correlation as a threshold for choosing sensors 

AdaBoost 

Selected 

Set threshold α based on average correlation: 

All Sensors 

Unused 

1,ACC 

2,MIC 

1,LIGHT 

3,MIC 

3,TEMP 

2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

correlation(2,TEMP; 1,LIGHT) 

correlation(3,MIC; 3,TEMP) 

… 

α = μcorr + σcorr 



Selection  
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 During retraining 

 Choose the set of sensors S* using the threshold α 

No two sensors have r>α 



1,ACC 

1,LIGHT 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

correlation(1,ACC; 1,LIGHT) ≤ α 



2,TEMP 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

1,ACC 

1,LIGHT 

correlation(2,TEMP; 1,ACC) > α 

acc(2,TEMP) > acc(1,ACC) 



2,TEMP 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

1,ACC 

1,LIGHT 

3,TEMP 

correlation(1,ACC; 3,TEMP) ≤ α 



3,MIC 

2,MIC 

2,TEMP 

Sensor Selection 
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 Choose sensors for input to AdaBoost based on the correlation threshold 

 

AdaBoost 

All Sensors 

Unused 
2,MIC 

1,ACC 

3,MIC 

3,TEMP 

2,TEMP 

1,LIGHT 

Selected 

1,ACC 

1,LIGHT 

3,TEMP 



Evaluation Setup 
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 Classify typical daily activities, postures, and environment 

 2 subjects over 2 weeks 

 Classification Categories: 

Environment Indoors, Outdoors 

Posture Cycling, Lying Down, Sitting, Standing, Walking 

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading, 

Walking, Watching TV, Working 



Classification Performance 
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Initial training 100 observations/activity 



Classification Performance 
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Classification Performance 
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User 1 has accuracy 98%, 85%, 90% 

User 2 has accuracy 81%, 82%, 76% 



Sensor Weight per activity  
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16 sensors unused 



Retraining Performance 
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30 new data 



Sensor Selection Performance 
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