
Human Activity Recognition

Personal Sensing Applications

 Body Sensor Networks

 Athletic Performance

 Health Care

 Activity Recognition

Pulse Oximeter

Heart Rate Monitor

Mobile Phone Aggregator

2

A Practical Solution to Activity Recognition

 Portable

 Entirely user controlled

 Computationally lightweight

 Accurate

3

On-Body Sensors

+Sensing Accuracy

+Energy Efficiency

Phone

+User Interface

+Computational Power

+Additional Sensors

Application requirement

4

 Activity recognition

 Data comes from different sensors

 Classify typical daily activities, postures, and environment

 Classification Categories:

Environment Indoors, Outdoors

Posture Cycling, Lying Down, Sitting, Standing, Walking

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading,

Walking, Watching TV, Working

Challenges to Practical Activity Recognition

5

 User-friendly

 Hardware configuration

 Portable sensors , easy to wear

 Software configuration

 Intuitive interface, adding, removing, config. sensors

 Accurate classification

 Classify difficult activities in the presence of dynamics

 Noisy env., orientation of sensors

 Efficient classification

 Computation and energy efficiency

 Less reliance on ground truth

 Labeling sensor data is invasive

PBN: Practical Body Networking

6

Tools

 TinyOS-based motes + Android phone

Goals

 Lightweight activity recognition appropriate for motes and phones

 Retraining detection to reduce invasiveness

 Identify redundant sensors to reduce training costs

 Classify difficult activities with nearly 90% accuracy

PBN system

7

 Crossbow IRIS on body sensor motes

 TelosB base station

 Connected with HTC smartphone

TinyOS sensing support

 Implement sensing application in TiniOS for motes

 Runtime configuration of active sensors, sampling rate,
local aggregation

 Communication scheme =>base station=>phone

Android kernel support for USB

 Prepare for external USB

 Driver installation

8

Hardware support

 Ext. battery power for the motes

TinyOS support on Android

 Enable TinyOS and Android communication

Android App

 User friendly front end

 Easy configuration

 Runtime deployment

 Labelling

 User control for both phone and motes

 Receives feedback if retraining is needed

Android App

9

 Sensor configuration

Easy config for phone and motes

Add/remove sensors

Adjust sampling rate, local aggregation interval

Save on XML

 Runtime control

User is able to start/stop data sampling and activity recog.

Retraining => enter current activity

Software: Android Application

10

Sensor Configuration Runtime Control and Feedback Ground Truth Logging

Data Collection Setup
 2 subjects, 2 weeks

 Android Phone
 3-axis accelerometer, WiFi/GPS Localization

 5 IRIS Sensor Motes
 2-axis accelerometer, light, temperature, acoustic, RSSI

Node ID Location

0 BS/Phone

1 L. Wrist

2 R. Wrist

3 L. Ankle

4 R. Ankle

5 Head

11

12

Signal strength

Sensor

Selection

PBN Architecture

13

Sensor Node

Phone

Base Station Node

Local Agg.
Sensor Sensor Sensor

Sample

Controller

Sample

Controller

Sensor Sensor Sensor

Local Agg.

GUI
TinyOS

Comm. Stack

Sensor

Selection

Ground Truth

Management

Activity

Classification

Retraining

Detection

Activity Decision, Request Ground Truth Agg. Data

Agg.

Data

Labeled Data

Agg. Data Start/Stop

Input Sensors Activity Prob, Agg. Data

Training Data

USB

802.15.4

14

 Phone and mote sensors sample data

Aggregate => single packet

 Fed to classification system

AdaBoost => classifier , each activity training

Two minutes period

Updated using retraining

Sensor selection

PBN Architecture

AdaBoost Activity Recognition

15

 Ensemble Learning: AdaBoost.M2 (Freund, JCSS ‘97)\\\\\\\\\\

 Lightweight and accurate

 Maximizes training accuracy for all activities

 Many classifiers (HMM) are more demanding

 Iteratively train an ensemble of weak classifiers

 Training observations are weighted by misclassifications

 At each iteration:

 Train Naïve Bayes classifiers for each sensor

 Choose the classifier with the least weighted error

 Update weighted observations

 The ensemble makes decisions based on the weighted decisions of each

weak classifier

AdaBoost

16

Ensemble classifier

Weak classifier

Combined to make a single classifier

Initialize the weight vector D

17

Final outcome of AdaBoost

18

ai

Given a observation o, weak classifier ht returns a vector [0,1]

ai

ht

hk

Activity ai

ht

hm

hk

ai



19

Retraining Detection

20

 Body Sensor Network Dynamics affects accuracy during runtime:

 Changing physical location

 User biomechanics

 Variable sensor orientation

 Background noise

 Achieve high accuracy with limited initial training data

 Can also used if existing data is not accurate

 How to detect that retraining is needed without asking for ground truth?

 Constantly nagging the user for ground truth is annoying

 Perform with limited initial training data

 Maintain high accuracy

Retraining Detection

21

 Measure the discriminative power of each sensor: K-L divergence
 Quantify the difference between sensor reading distributions

 Retraining detection with K-L divergence:
 Compare training data to runtime data for each sensor

Sensors

Kullback–Leibler divergence

22

K-L divergence measures the expected amount of information required to

transform samples from a distribution P into a second distribution

Q.

Retraining Detection

23

 Training

 Compute “one vs. rest” K-L divergence for each sensor and activity

1,LIGHT

1,ACC

2,MIC

…

Walking Driving Working

Training Data Ground Truth:

Sensors

DKL(Twalking,Tother) = √

Walking

Training Data Distribution

√

{Driving, Working}

Training Data Distribution

Walking Data Partition:

vs.

For each sensor:

Retraining Detection

24

 Runtime

 At each interval, sensors compare runtime data to training data for

current classified activity

1,LIGHT

1,ACC

2,MIC

…

Sensors Current AdaBoost Classified Activity: Walking

DKL(Rwalking,Twalking) = √

Walking

Runtime Data Distribution

vs. √

Walking

Training Data Distribution

For each sensor:

Retraining Detection

25

 Runtime

 At each interval, sensors compare runtime data to training data for

current classified activity

 Each individual sensor determines retraining is needed when:

DKL(Rwalking,Twalking) > DKL(Twalking,Tother)

√

Walking

Runtime Data Distribution

vs.
√

Walking

Training Data Distribution

√

Walking

Training Data Distribution

√

{Driving, Working}

Training Data Distribution

vs.

Intra-activity divergence Inter-activity divergence

Retraining Detection

26

 Runtime

 At each interval, sensors compare runtime data to training data for
current classified activity

 Each individual sensor determines retraining is needed

 The ensemble retrains when a weighted majority of sensors
demand retraining

Ground Truth Management

27

 Retraining: How much new labeled data to collect?
 Capture changes in body dynamics

 Too much labeling is intrusive

 Decide to retrain
 Prompt user to log ground truth for a window of N

 Use logs the current activity

 Balance number of observations per activity
 AdaBoost relies on creating weight distribution D for training observations

 Based on classification difficulty

 Loose balance hurts classification accuracy

 Restrictive balance prevents adding new data

 Balance multiplier
 Each activity has no more than δ times the average

 Balance enforcement: random replacement

28

Importance of 

Further increase does not ensure balance

Sensor Selection

29

 AdaBoost training can be computationally demanding

 Train a weak classifier for each sensor at each iteration

 > 100 iterations to achieve maximum accuracy

 Can we give only the most helpful sensors to AdaBoost?
 Identify both helpful and redundant sensors

 Train fewer weak classifiers per AdaBoost iteration

 Bonus: use even fewer sensors

 Key idea: different weak classifier must have diverse
prediction results

 Less correlation

 Exclude the redundant sensors

Sensor Selection

30

Raw Data Correlation

Sensors

Use correlation information

between different sensors

Accs, are correlated

Light, temp are correlated

Remove them from AdaBoost training

Sensor Selection

31

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

2,TEMP

Selected

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

AdaBoost All Sensors

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

32

 Sensor selection consists of two components

 Threshold adjustment

 Threshold is computed to discriminate the sensors

 Performed during training

 Selection

 Select the set of sensors for retraining

Threshold

33

 Initialize the threshold during initial training

 Find the correlation between sensors

 Outlier identifies the threshold

2,TEMP

Sensor Selection

34

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

AdaBoost

Selected

All Sensors

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

correlation(2,TEMP; 1,LIGHT)

2,TEMP

Sensor Selection

35

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

AdaBoost

Selected

All Sensors

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

correlation(2,TEMP; 1,LIGHT)

correlation(3,MIC; 3,TEMP)

2,TEMP

Sensor Selection

36

 Goal: determine the sensors that AdaBoost chooses using correlation

 Find the correlation of each pair of sensors selected by AdaBoost

 Use average correlation as a threshold for choosing sensors

AdaBoost

Selected

Set threshold α based on average correlation:

All Sensors

Unused

1,ACC

2,MIC

1,LIGHT

3,MIC

3,TEMP

2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

correlation(2,TEMP; 1,LIGHT)

correlation(3,MIC; 3,TEMP)

…

α = μcorr + σcorr

Selection

37

 During retraining

 Choose the set of sensors S* using the threshold α

No two sensors have r>α

1,ACC

1,LIGHT

Sensor Selection

38

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

correlation(1,ACC; 1,LIGHT) ≤ α

2,TEMP

Sensor Selection

39

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

1,ACC

1,LIGHT

correlation(2,TEMP; 1,ACC) > α

acc(2,TEMP) > acc(1,ACC)

2,TEMP

Sensor Selection

40

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

1,ACC

1,LIGHT

3,TEMP

correlation(1,ACC; 3,TEMP) ≤ α

3,MIC

2,MIC

2,TEMP

Sensor Selection

41

 Choose sensors for input to AdaBoost based on the correlation threshold

AdaBoost

All Sensors

Unused
2,MIC

1,ACC

3,MIC

3,TEMP

2,TEMP

1,LIGHT

Selected

1,ACC

1,LIGHT

3,TEMP

Evaluation Setup

42

 Classify typical daily activities, postures, and environment

 2 subjects over 2 weeks

 Classification Categories:

Environment Indoors, Outdoors

Posture Cycling, Lying Down, Sitting, Standing, Walking

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading,

Walking, Watching TV, Working

Classification Performance

43

Initial training 100 observations/activity

Classification Performance

44

Classification Performance

45

46

User 1 has accuracy 98%, 85%, 90%

User 2 has accuracy 81%, 82%, 76%

Sensor Weight per activity

47

16 sensors unused

Retraining Performance

48

30 new data

Sensor Selection Performance

49

