Human Activity Recognition

Personal Sensing Applications

» Body Sensor Networks

Athletic Performance
Health Care
Activity Recognition

Heart Rate Monitor

Pulse Oximeter

Mobile Phone Aggregator

A Practical Solution to Activity Recognition

» Portable
» Entirely user controlled
» Computationally lightweight

» Accurate

On-Body Sensors Phone

+Sensing Accuracy +User Interface
+Energy Efficiency +Computational Power

+Additional Sensors

Application requirement

» Activity recognition
» Data comes from different sensors
» Classify typical daily activities, postures, and environment

» Classification Categories:

Environment Indoors, Outdoors

Posture Cycling, Lying Down, Sitting, Standing, Walking

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading,
Walking, Watching TV, Working

Challenges to Practical Activity Recognition

» User-friendly

Hardware configuration

Portable sensors , easy to wear

Software configuration

Intuitive interface, adding, removing, config. sensors

» Accurate classification

Classify difficult activities in the presence of dynamics

Noisy env., orientation of sensors
» Efficient classification

Computation and energy efficiency

» Less reliance on ground truth

Labeling sensor data is invasive

PBN: Practical Body Networking

Tools

» TinyOS-based motes + Android phone

Goals

» Lightweight activity recognition appropriate for motes and phones
» Retraining detection to reduce invasiveness

» ldentify redundant sensors to reduce training costs

» Classify difficult activities with nearly 90% accuracy

PBN system

» Crossbow IRIS on body sensor motes

» TelosB base station
Connected with HTC smartphone

TinyOS sensing support
» Implement sensing application in TiniOS for motes

» Runtime configuration of active sensors, sampling rate,
local aggregation

» Communication scheme =>base station=>phone
Android kernel support for USB

» Prepare for external USB

» Driver installation

Hardware support

» Ext. battery power for the motes

TinyOS support on Android

» Enable TinyOS and Android communication

Android App

User friendly front end

Easy configuration

Runtime deployment

Labelling

User control for both phone and motes

vV VvV VvV VvV Vv VY

Receives feedback if retraining is needed

Android App

» Sensor configuration
Easy config for phone and motes
Add/remove sensors

Adjust sampling rate, local aggregation interval
Save on XML

» Runtime control
User is able to start/stop data sampling and activity recog.

Retraining => enter current activity

Software: Android Application

3 B D@ 3:41prm 109 BY 0@ 2:32pm

Current Activity:

Walking (Outdoors)

Top Activities for Today:
Working
67% 03h05m

Driving
17% 00h48m

10% 00h28m

Eating

Sensor Configuration Runtime Control and Feedback

209 BUDHI® 12:54rm

(® Choose Activity Label

Eating
Meeting

Watching TV

Walking

Reading

Working

Ground Truth Logging

Data Collection Setup

» 2 subjects, 2 weeks
» Android Phone

3-axis accelerometer, WiFi/GPS Localization

» 5 IRIS Sensor Motes
2-axis accelerometer, light, temperature, acoustic, RSSI

Node ID

0 BS/Phone
I L.Wrist
2 R.Wrist
3 L.Ankle
4 R.Ankle
5 Head

Node 4 Node3

Node | ID | Location Sensors

Phone 0 R. Waist | 3-Axis Acc., GPS/WiFi (velocity)
IRIS 1 L. Wrist 2-Axis Acc., Mic., Light, Temp.

IRIS 2 R. Wrist 2-Axis Acc., Mic., Light, Temp.

IRIS 3 | L. Ankle 2-Axis Acc., Mic., Light, Temp.

IRIS 4 | R.Ankle | 2-Axis Acc., Mic., Light, Temp..
IRIS S Head 2-Axis Acc., Mic., Light, Temp.

Signal strength

PBN Architecture

4 Sensor Node

Sample

Local Agg. Sensor Controller

Agg. Data: 802.15.4 P — , Start/Stop

'--P[Base Station Node]< IUSB

\ Phone

Sample TinyOS
Controller Comm. Stack

Labeled Data Activity Decision, Request Ground Truth

Ground Truth
Management

Retraining Activity Sensor
Detection Classification Selection

PBN Architecture

» Phone and mote sensors sample data

Aggregate => single packet

» Fed to classification system

AdaBoost => classifier , each activity training
Two minutes period

Updated using retraining

Sensor selection

AdaBoost Activity Recognition

» Ensemble Learning:AdaBoost.M2 (Freund, JCSS ‘97)\\\\\\\\\
Lightweight and accurate
Maximizes training accuracy for all activities

Many classifiers (HMM) are more demanding

» lteratively train an ensemble of weak classifiers
Training observations are weighted by misclassifications

At each iteration:
Train Naive Bayes classifiers for each sensor
Choose the classifier with the least weighted error

Update weighted observations

» The ensemble makes decisions based on the weighted decisions of each
weak classifier

15

AdaBoost

Ensemble classifier
Weak classifier
Combined to make a single classifier

Using Algorithm (1] we describe AdaBoost training. We
define a set of activities A = {aj,...,a,}, sensors S =
{s1,...,5m}, and observation vectors O; for each sensor
s; € S, where each sensor has n training observations. The
training output is an ensemble of weak classifiers H =

{hy.....hy}, where h; € H represents the weak classifier

Initialize the weight vector D

Algorithm 1 AdaBoost Training

Input: Max iterations 7', training obs. vector O; for each

sensor §; € S, obs. ground truth labels

Output: Set of weak classifiers H
I: Initialize observation weights D to 1 /n for all obs.

8:
0:

2
3
4.
5:
6.
-

s forr=1toT do

for sensor s; € S do
Train wea](classifier /i ;j using obs. O;, weights D,
Get weighted error €, ; for /; j using labels [.]
end for
Add the /; ; with least error & to H by choosing /; |
with least error €,
Set D;+1 using D;, misclassifications made by /;
end for

Final outcome of AdaBoost

h, Q.

h a.

Given a observation o, weak classifier h, returns a vector [0, 1]

Activity a,

) 4 1 —g %
E— N a hlo) = argmaxﬂ,aqz log 3 h:(0,a;)

a. =1
&)h;{a.a;-}

o= § (el

=1

25

20

15

10

Sensors Chosen by AdaBoost

0 50 100

A EPREEEEEEEE0E

I

1
e e e i i = i e e
- T T NS | B BN -)

150 200 250 300

AdaBoost lterations

Cluster Size

Training Accuracy

£

Runtime Accuracy &

Accuracy

Average Accuracy

0.9

0.8

0.7

0.6

0.5

e

SN

10 20 30 40 50

60 70 80

Training Observations per Activity

Training Accuracy ZZZZA

P e e T T L . . T T T T T - 1

Runtime Accuracy E

Retraining Detection

» Body Sensor Network Dynamics affects accuracy during runtime:
Changing physical location
User biomechanics
Variable sensor orientation

Background noise

» Achieve high accuracy with limited initial training data

Can also used if existing data is not accurate

» How to detect that retraining is needed without asking for ground truth!?
Constantly nagging the user for ground truth is annoying
Perform with limited initial training data

Maintain high accuracy

20

Retraining Detection

» Measure the discriminative power of each sensor: K-L divergence
Quantify the difference between sensor reading distributions

Working
Reading
Walking
TV
Meeting
Eating
Driving
Cycling
Cleaning

Activities
KL Divergence

VU0 0N >IICHDN>IICAHAN>>ZICH0>>ZIC 10N>
35 HROOSETNOOSGTNOOSHMNOOSHTNOOS T

o] QOO D¢ NOOH ' T=NOO ' T=VOON TS
0888 X< A0 X< 97 x< =47 x< 47 x< 47T
X<N
Sensors
» Retraining detection with K-L divergence:

Compare training data to runtime data for each sensor

21

Kullback-Leibler divergence

K-L divergence measures the expected amount of information required to
transform samples from a distribution P into a second distribution

Q.

Dy (P||Q) = ZP j’

22

Retraining Detection

» Training

Compute “one vs. rest” K-L divergence for each sensor and activity

Walking Driving Working

Training Data Ground Truth:

For each sensor:
Sensors

I,LLIGHT Walking Data Partition: —

1,ACC

ﬁ

Walking {Driving, Working}
Training Data Distribution Training Data Distribution

2,MIC DKL(Twalkingl Tother =

Retraining Detection

» Runtime

At each interval, sensors compare runtime data to training data for
current classified activity

Sensors Current AdaBoost Classified Activity: Walking
For each sensor:

LLIGHT

I,ACC -
—— Dyu(Roatiing Toatting) = JL -ﬁ

2,MIC Walking Walking
Runtime Data Distribution Training Data Distribution

Retraining Detection

» Runtime

At each interval, sensors compare runtime data to training data for

current classified activity

Each individual sensor determines retraining is needed when:

D KL [Rwalkingl Twalking]

Intra-activity divergence

Walking Walking
Runtime Data Distribution Training Data Distribution

KL(walking other]

25

Inter-activity divergence

Walking {Driving,Working}
Training Data Distribution Training Data Distribution

Retraining Detection

» Runtime

At each interval, sensors compare runtime data to training data for
current classified activity

Each individual sensor determines retraining is needed

The ensemble retrains when a weighted majority of sensors
demand retraining

26

Ground Truth Management

» Retraining: How much new labeled data to collect!?
Capture changes in body dynamics
Too much labeling is intrusive

» Decide to retrain
Prompt user to log ground truth for a window of N
Use logs the current activity

» Balance number of observations per activity
AdaBoost relies on creating weight distribution D for training observations
Based on classification difficulty
Loose balance hurts classification accuracy
Restrictive balance prevents adding new data

Balance multiplier]
Each activity has no more than 9 times the average Oj| — TA] E'-T-E!_.;EA |GI¢

Balance enforcement: random replacement

ﬁ[E‘a’m EA | Oy |

27

12{} T T T T T T T T T T 1
0 1{)[} L —15----..-._} ------ —15- ,,,,,, N
g EB@ + - + - S— .$.$ ______ =+ 0.8
Luuj 8{} L - m [B EJEE' II' |I] """" II' lil i CI 5
7 .
= 60
=
g 4 04
.é 40 +
M%%%%%%M

0 0

10 20 30 40 50 60 70 80 90

100
Retraining Window Size N

Subject 1 Instances

Subject 2 Instances E=Z==1

Subject 1 Accuracy -+

Subject 2 Accuracy

Importance of

Further increase does not ensure balance

28

Accuracy

300 .
250

M2

(=]

[==]
T

Retraining Instances
=)
o
T

$o

—:t—_I_'f _t__:E.—I—_:t__:t__I_

% — A X e . 4

%%%%@@%@%

0.2

Subject 1 Instances 1
Subject 2 Instances X=E=

04 06 08 10 12 14 16 18 20
Retraining Balance Restriction &

Subject 2 Accuracy

Subject 1 Accuracy -

0.8

0.6

0.4

0.2

Accuracy

Sensor Selection

» AdaBoost training can be computationally demanding
Train a weak classifier for each sensor at each iteration
> 100 iterations to achieve maximum accuracy

» Can we give only the most helpful sensors to AdaBoost!
|[dentify both helpful and redundant sensors
Train fewer weak classifiers per AdaBoost iteration
Bonus: use even fewer sensors

» Key idea: different weak classifier must have diverse
prediction results

Less correlation
Exclude the redundant sensors

29

Use correlation information
between different sensors

Accs, are correlated
Light, temp are correlated

Remove them from AdaBoost train

Sensor Selection

Raw Data Correlation

Ensors

g

w
by}
w
@

S

DPx<O

N
OO0 o
[Rt 1 |—I§
X<NPx<O—T

Loco
-P-P-.U S o=
> P> |
QO

(@]

30

Lo~ SN NWWWW W AR BB B RIOIOITO
D BB ST Be s MABo ST AED = S TS5
55830000 22000022066022 00002200008
0000 X< =P x< 47 x< 47 x< 47 x< -
X<N
Sensors

0.5

O .
Correlation

-0.5

Sensor Selection

» Goal: determine the sensors that AdaBoost chooses using correlation
» Find the correlation of each pair of sensors selected by AdaBoost

» Use average correlation as a threshold for choosing sensors

2,MIC

m Unused
=

All Sensors AdaBoost

3,MIC

3,TEMP

Selected

LLIGHT

31

» Sensor selection consists of two components
Threshold adjustment

Threshold is computed to discriminate the sensors

Performed during training

Selection

Select the set of sensors for retraining

32

Threshold

» Initialize the threshold during initial training
» Find the correlation between sensors
» Qutlier identifies the threshold

Algorithm 2 Raw Correlation Threshold for Sensor Selec-
tion

Input: Set of sensors S selected by AdaBoost, training ob-
servations for all sensors O. multiplier n

QOutput: Sensor selection threshold o
I: R =0//set of correlation coefficients
2: for all combinations of sensors s; and 5; in S do
3 Compute correlation coefficient r = ?‘[}r-_gj|
4 R=RU{r}
5: end for

6: // compute threshold as avg + (n * std. dev.) of R

7

: O = UR + NOR

33

Sensor Selection

» Goal: determine the sensors that AdaBoost chooses using correlation
» Find the correlation of each pair of sensors selected by AdaBoost

» Use average correlation as a threshold for choosing sensors

2,MIC

m Unused
=

All Sensors AdaBoost

3,MIC

3,TEMP

Selected

LLIGHT

correlation(2,TEMP; 1,LIGHT)

34

Sensor Selection

» Goal: determine the sensors that AdaBoost chooses using correlation
» Find the correlation of each pair of sensors selected by AdaBoost

» Use average correlation as a threshold for choosing sensors

2,MIC

m Unused
=

All Sensors AdaBoost

Selected

LLIGHT

correlation(2,TEMP; 1,LIGHT)
correlation(3,MIC; 3,TEMP)

35

Sensor Selection

» Goal: determine the sensors that AdaBoost chooses using correlation
» Find the correlation of each pair of sensors selected by AdaBoost

» Use average correlation as a threshold for choosing sensors

2,MIC

m Unused
=

All Sensors AdaBoost
e

3,MIC

3,TEMP

Selected

LLIGHT

correlation(2,TEMP; 1,LIGHT)
correlation(3,MIC; 3,TEMP)

Set threshold a based on average correlation: @ = U .. + O

corr

36

Selection

» During retraining

Choose the set of sensors $* using the threshold o

Algorithm 3 Sensor Selection Using Raw Correlation

Input: Set of all sensors S, training observations for all sen-
sors O, threshold «
Output: Selected sensors $* to give as input to AdaBoost
1: S*=0

2: E = 0/ set of sensors we exclude

3: for all combinations of sensors s; and s; in S do
4 Compute correlation coefficient r = |ro, 0, |
5: if r < o then
6
7
8

No two sensors have r>q

if 5; ¢ E then $* = S* U {s;}
if s; ¢ E then §* = 5" U {s;}
else if r > o and acc(s;) > acc(s;) then

0: // use accuracy to decide which to add to §*
10: if s; ¢ E then S* = S"U {s;}
11: E=EU{sj}:S*=8"\{s;}
12: else
13: if s; ¢ E then S™ =5 U {s;}
14: E=EU{si}: S =5\ {si}
15: endif

37 16: end for

Sensor Selection

» Choose sensors for input to AdaBoost based on the correlation threshold

2,MIC
3,TEMP 1,ACC

All Sensors

3,MIC I,LLIGHT
2,TEMP

Selected

correlation(1,ACC; 1,LIGHT) < a

38

Sensor Selection

» Choose sensors for input to AdaBoost based on the correlation threshold

2,MIC
3,TEMP 1,ACC

All Sensors

ILLIGHT

Selected

correlation(2, TEMP; 1,ACC) > a
acc(2,TEMP) > acc(1,ACC)

39

Sensor Selection

» Choose sensors for input to AdaBoost based on the correlation threshold

Unused

2,MIC
3,TEMP 1,ACC 1,ACC

All Sensors

ILLIGHT

Selected

2,TEMP

correlation(1,ACC; 3,TEMP) < a

40

Sensor Selection

» Choose sensors for input to AdaBoost based on the correlation threshold

Unused

2,MIC
3,TEMP 1,ACC 1,ACC

All Sensors

Selected

41

Evaluation Setup

» Classify typical daily activities, postures, and environment
» 2 subjects over 2 weeks

» Classification Categories:

Environment Indoors, Outdoors

Posture Cycling, Lying Down, Sitting, Standing, Walking

Activity Cleaning, Cycling, Driving, Eating, Meeting, Reading,
Walking, Watching TV, Working

42

Classification Performance

Environmental Classification Accuracy

0.8 r

0.4 -

Runtime Accuracy

0.2 -

2 % @)
o) Z
S, %o,.

Initial training 100 observations/activity $
Subject 1 ———=1 Subject 2 ——

43

Classification Performance

44

Runtime Accuracy

0.8

0.6

0.4

0.2

Posture Classification Accuracy

Subject 1 ———1 Subject 2 ——

Classification Performance

45

Runtime Accuracy

0.8

0.6

0.4

0.2

Activity Classification Accuracy

Subject 1 ———1 Subject 2 ——

Activity

User | has accuracy 98%, 85%, 90%
User 2 has accuracy 81%, 82%, 76%

Working

Reading
Walking

TV
Meeting

=
+
-

o4

E
-i- t H I
. . .

"
+
+ 4 e

Eating + + HE +

PEN Decision + IT
Ground Truth

[T
+

Driving
Cycling p+

Cleaning = - g # : — — :
] 1000 2000 3000 4000 5000 6000

Time Interval (x10s)

46

Sensor Weight per activity

Working
Heading
Walking
TV
Meeting
Eating
Driving
Cycling
Cleanin
Tot

47

| 6 sensors unused

OO0 === — = 2 PIPIRI P PRI 00 00 0300 L3 G B B B CNCACRCN LN EN
ﬂﬂﬂﬂmbbg_ﬁjﬁbgrﬁmbbgrﬁjﬁhgrﬁmﬁbgrﬁ

Noo noo= m
CEEEE ﬂm;%nm“?zmnmﬂ%aﬁ ﬂmzmmnﬂm
<

QOO0 < 37T

<IN

TV ks JU ki H0 k¢ 30

=
£

=
R

Mormalized Weight

=

Retraining Performance

120

100

Retraining Instances
(@)
o

30 newdata O

48

1 1 | I 1

.
HHHH
e

o

(o)}

|
©
N

T

None Detect Period Period Period Period Period
100 200 300 400 500

Subject 1 Instances ——1
Subject 2 Instances —3

Subject 1 Accuracy —+—
Subject 2 Accuracy —H—

Accuracy

Sensor Selection Performance

60 . . .

50 |

40 t

30

20

% Sensors Excluded

10

AdaBoost Only SSOnly AdaBoost+SS

Subject 1 =—— Subject 1 =—=

49

