APRIORI Algorithm

Professor Anita Wasilewska
Lecture Notes
The Apriori Algorithm: Basics

The **Apriori Algorithm** is an influential algorithm for mining frequent itemsets for boolean association rules.

Key Concepts:

- **Frequent Itemsets**: The sets of item which has minimum support (denoted by \(L_i \) for \(i^{th} \)-Itemset).
- **Apriori Property**: Any subset of frequent itemset must be frequent.
- **Join Operation**: To find \(L_k \), a set of candidate \(k \)-itemsets is generated by joining \(L_{k-1} \) with itself.
The Apriori Algorithm in a Nutshell

- Find the *frequent itemsets*: the sets of items that have minimum support
 - A subset of a frequent itemset must also be a frequent itemset
 - i.e., if \{AB\} is a frequent itemset, both \{A\} and \{B\} should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to \(k\) (\(k\)-itemset)
- Use the frequent itemsets to generate association rules.
The Apriori Algorithm: Pseudo code

• **Join Step**: C_k is generated by joining L_{k-1} with itself.
• **Prune Step**: Any $(k-1)$-itemset that is not frequent cannot be a subset of a frequent k-itemset.

Pseudo-code:

- C_k: Candidate itemset of size k
- L_k: frequent itemset of size k

$L_1 = \{\text{frequent items}\}$;

for $(k = 1; L_k \neq \emptyset; k++)$ do begin

$C_{k+1} = \text{candidates generated from } L_k$;

for each transaction t in database do

increment the count of all candidates in C_{k+1} that are contained in t;

$L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}$

end

return $\bigcup_k L_k$.
The Apriori Algorithm: Example

- Consider a database, D, consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. \(\text{min sup} = \frac{2}{9} = 22\% \))
- Let minimum confidence required is 70%.
- We have to first find out the frequent itemset using Apriori algorithm.
- Then, Association rules will be generated using min. support & min. confidence.
Step 1: Generating 1-itemset Frequent Pattern

The set of frequent 1-itemsets, L_1, consists of the candidate 1-itemsets satisfying minimum support.

In the first iteration of the algorithm, each item is a member of the set of candidate.
Step 2: Generating 2-itemset Frequent Pattern

Generate C_2 candidates from L_1

C_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>${I_1, I_2}$</th>
<th>${I_1, I_3}$</th>
<th>${I_1, I_4}$</th>
<th>${I_1, I_5}$</th>
<th>${I_2, I_3}$</th>
<th>${I_2, I_4}$</th>
<th>${I_2, I_5}$</th>
<th>${I_3, I_4}$</th>
<th>${I_3, I_5}$</th>
<th>${I_4, I_5}$</th>
</tr>
</thead>
</table>

Scan D for count of each candidate

C_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>${I_1, I_2}$</td>
<td>4</td>
</tr>
<tr>
<td>${I_1, I_3}$</td>
<td>4</td>
</tr>
<tr>
<td>${I_1, I_4}$</td>
<td>1</td>
</tr>
<tr>
<td>${I_1, I_5}$</td>
<td>2</td>
</tr>
<tr>
<td>${I_2, I_3}$</td>
<td>4</td>
</tr>
<tr>
<td>${I_2, I_4}$</td>
<td>2</td>
</tr>
<tr>
<td>${I_2, I_5}$</td>
<td>2</td>
</tr>
<tr>
<td>${I_3, I_4}$</td>
<td>0</td>
</tr>
<tr>
<td>${I_3, I_5}$</td>
<td>1</td>
</tr>
<tr>
<td>${I_4, I_5}$</td>
<td>0</td>
</tr>
</tbody>
</table>

Compare candidate support count with minimum support count

L_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup. Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>${I_1, I_2}$</td>
<td>4</td>
</tr>
<tr>
<td>${I_1, I_3}$</td>
<td>4</td>
</tr>
<tr>
<td>${I_1, I_5}$</td>
<td>2</td>
</tr>
<tr>
<td>${I_2, I_3}$</td>
<td>4</td>
</tr>
<tr>
<td>${I_2, I_4}$</td>
<td>2</td>
</tr>
<tr>
<td>${I_2, I_5}$</td>
<td>2</td>
</tr>
</tbody>
</table>
Step 2: Generating 2-itemset Frequent Pattern

- To discover the set of frequent 2-itemsets, L_2, the algorithm uses $L_1 \Join L_1$ to generate a candidate set of 2-itemsets, C_2.
- Next, the transactions in D are scanned and the support count for each candidate itemset in C_2 is accumulated (as shown in the middle table).
- The set of frequent 2-itemsets, L_2, is then determined, consisting of those candidate 2-itemsets in C_2 having minimum support.
- Note: We haven’t used Apriori Property yet.
Step 3: Generating 3-itemset Frequent Pattern

- The generation of the set of candidate 3-itemsets, C_3, involves use of the Apriori Property.
- In order to find C_3, we compute L_2 Join L_2.
- $C_3 = L_2$ Join $L_2 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}, \{I_1, I_3, I_5\}, \{I_2, I_3, I_4\}, \{I_2, I_3, I_5\}, \{I_2, I_4, I_5\}\}$.
- Now, Join step is complete and Prune step will be used to reduce the size of C_3. Prune step helps to avoid heavy computation due to large C_k.
Step 3: Generating 3-itemset Frequent Pattern

- Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we can determine that four latter candidates cannot possibly be frequent. How?
- For example, let's take \{I_1, I_2, I_3\}. The 2-item subsets of it are \{I_1, I_2\}, \{I_1, I_3\} & \{I_2, I_3\}. Since all 2-item subsets of \{I_1, I_2, I_3\} are members of \(L_2\), We will keep \{I_1, I_2, I_3\} in \(C_3\).
- Let's take another example of \{I_2, I_3, I_5\} which shows how the pruning is performed. The 2-item subsets are \{I_2, I_3\}, \{I_2, I_5\} & \{I_3, I_5\}.
- BUT, \{I_3, I_5\} is not a member of \(L_2\) and hence it is not frequent violating Apriori Property. Thus We will have to remove \{I_2, I_3, I_5\} from \(C_3\).
- Therefore, \(C_3 = \{\{I_1, I_2, I_3\}, \{I_1, I_2, I_5\}\}\) after checking for all members of result of Join operation for Pruning.
- Now, the transactions in \(D\) are scanned in order to determine \(L_3\), consisting of those candidates 3-itemsets in \(C_3\) having minimum support.
Step 4: Generating 4-itemset Frequent Pattern

- The algorithm uses \(L_3 \) Join \(L_3 \) to generate a candidate set of 4-itemsets, \(C_4 \). Although the join results in \(\{\{I_1, I_2, I_3, I_5\}\} \), this itemset is pruned since its subset \(\{\{I_2, I_3, I_5\}\} \) is not frequent.

- Thus, \(C_4 = \emptyset \), and algorithm terminates, having found all of the frequent items. This completes our Apriori Algorithm.

- What’s Next?
 These frequent itemsets will be used to generate strong association rules (where strong association rules satisfy both minimum support & minimum confidence).
Step 5: Generating Association Rules from Frequent Itemsets

• Procedure:
 • For each frequent itemset “I”, generate all nonempty subsets of I.
 • For every nonempty subset s of I, output the rule “s \rightarrow (l-s)” if \(\frac{\text{support}_\text{count}(l)}{\text{support}_\text{count}(s)} \geq \text{min}_\text{conf} \) where \(\text{min}_\text{conf} \) is minimum confidence threshold.

• Back To Example:
 We had \(L = \{\{I1\}, \{I2\}, \{I3\}, \{I4\}, \{I5\}, \{I1,I2\}, \{I1,I3\}, \{I1,I5\}, \{I2,I3\}, \{I2,I4\}, \{I2,I5\}, \{I1,I2,I3\}, \{I1,I2,I5\}\}.
 – Let’s take \(I = \{I1,I2,I5\}. \)
 – Its all nonempty subsets are \(\{I1,I2\}, \{I1,I5\}, \{I2,I5\}, \{I1\}, \{I2\}, \{I5\}. \)
Step 5: Generating Association Rules from Frequent Itemsets

- Let **minimum confidence threshold** is , say 70%.
- The resulting association rules are shown below, each listed with its confidence.
 - R1: I1 ^ I2 → I5
 - Confidence = sc{I1,I2,I5}/sc{I1,I2} = 2/4 = 50%
 - R1 is Rejected.
 - R2: I1 ^ I5 → I2
 - Confidence = sc{I1,I2,I5}/sc{I1,I5} = 2/2 = 100%
 - R2 is Selected.
 - R3: I2 ^ I5 → I1
 - Confidence = sc{I1,I2,I5}/sc{I2,I5} = 2/2 = 100%
 - R3 is Selected.
Step 5: Generating Association Rules from Frequent Itemsets

- **R4: I1 → I2 ^ I5**
 - Confidence = $\text{sc}\{I1,I2,I5\}/\text{sc}\{I1\} = 2/6 = 33\%$
 - R4 is Rejected.
- **R5: I2 → I1 ^ I5**
 - Confidence = $\text{sc}\{I1,I2,I5\}/\{I2\} = 2/7 = 29\%$
 - R5 is Rejected.
- **R6: I5 → I1 ^ I2**
 - Confidence = $\text{sc}\{I1,I2,I5\}/ \{I5\} = 2/2 = 100\%$
 - R6 is Selected.

 In this way, We have found three strong association rules.
Methods to Improve Apriori’s Efficiency

- **Hash-based itemset counting**: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.
- **Transaction reduction**: A transaction that does not contain any frequent k-itemset is useless in subsequent scans.
- **Partitioning**: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
- **Sampling**: mining on a subset of given data, lower support threshold + a method to determine the completeness.
- **Dynamic itemset counting**: add new candidate itemsets only when all of their subsets are estimated to be frequent.
Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!
FP-Growth Method: An Example

- Consider the same previous example of a database, D, consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. \(\text{min_sup} = \frac{2}{9} = 22\% \))
- The first scan of database is same as Apriori, which derives the set of 1-itemsets & their support counts.
- The set of frequent items is sorted in the order of descending support count.
- The resulting set is denoted as \(\text{L} = \{\text{I2:7, I1:6, I3:6, I4:2, I5:2}\} \)

<table>
<thead>
<tr>
<th>TID</th>
<th>List of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>I1, I2, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I4</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I2, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I3</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3, I5</td>
</tr>
<tr>
<td>T100</td>
<td>I1, I2, I3</td>
</tr>
</tbody>
</table>
FP-Growth Method: Construction of FP-Tree

• First, create the root of the tree, labeled with “null”.
• Scan the database D a second time. (First time we scanned it to create 1-itemset and then L).
• The items in each transaction are processed in L order (i.e. sorted order).
• A branch is created for each transaction with items having their support count separated by colon.
• Whenever the same node is encountered in another transaction, we just increment the support count of the common node or Prefix.
• To facilitate tree traversal, an item header table is built so that each item points to its occurrences in the tree via a chain of node-links.
• Now, The problem of mining frequent patterns in database is transformed to that of mining the FP-Tree.
FP-Growth Method: Construction of FP-Tree

<table>
<thead>
<tr>
<th>Item Id</th>
<th>Sup Count</th>
<th>Node-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>I3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>I4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>I5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

An FP-Tree that registers compressed, frequent pattern information
Mining the FP-Tree by Creating Conditional (sub) pattern bases

Steps:

1. Start from each frequent length-1 pattern (as an initial suffix pattern).
2. Construct its conditional pattern base which consists of the set of prefix paths in the FP-Tree co-occurring with suffix pattern.
3. Then, Construct its conditional FP-Tree & perform mining on such a tree.
4. The pattern growth is achieved by concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-Tree.
5. The union of all frequent patterns (generated by step 4) gives the required frequent itemset.
FP-Tree Example Continued

Now, Following the above mentioned steps:

- Lets start from I5. The I5 is involved in 2 branches namely \{I2 I1 I5: 1\} and \{I2 I1 I3 I5: 1\}.
- Therefore considering I5 as suffix, its 2 corresponding prefix paths would be \{I2 I1: 1\} and \{I2 I1 I3: 1\}, which forms its conditional pattern base.

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditional pattern base</th>
<th>Conditional FP-Tree</th>
<th>Frequent pattern generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>I5</td>
<td>{{I2 I1: 1}, {I2 I1 I3: 1}}</td>
<td><I2:2 , I1:2></td>
<td>I2 I5:2, I1 I5:2, I2 I1 I5: 2</td>
</tr>
<tr>
<td>I4</td>
<td>{{I2 I1: 1}, {I2: 1}}</td>
<td><I2: 2></td>
<td>I2 I4: 2</td>
</tr>
<tr>
<td>I3</td>
<td>{{I2 I1: 1}, {I2: 2}, {I1: 2}}</td>
<td><I2: 4, I1: 2>,I1:2</td>
<td>I2 I3:4, I1, I3: 2 , I2 I1 I3: 2</td>
</tr>
<tr>
<td>I2</td>
<td>{{I2: 4}}</td>
<td><I2: 4></td>
<td>I2 I1: 4</td>
</tr>
</tbody>
</table>
FP-Tree Example Continued

• Out of these, Only I1 & I2 is selected in the conditional FP-Tree because I3 is not satisfying the minimum support count.

 For I1, support count in conditional pattern base = 1 + 1 = 2
 For I2, support count in conditional pattern base = 1 + 1 = 2
 For I3, support count in conditional pattern base = 1

 Thus support count for I3 is less than required min_sup which is 2 here.

• Now, We have conditional FP-Tree with us.

• All frequent pattern corresponding to suffix I5 are generated by considering all possible combinations of I5 and conditional FP-Tree.

• The same procedure is applied to suffixes I4, I3 and I1.

• Note: I2 is not taken into consideration for suffix because it doesn’t have any prefix at all.
Why Frequent Pattern Growth Fast?

- Performance study shows
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

- Reasoning
 - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building