More Recursion Examples

The well known Fibonacci function

=0 if n =20,
f(n)=1 if n=1,
=f(n—1)+f(n—-2) if n>2

@ Similarly, many other well known functions can be
defined recursively, i.e., in terms of itself

int f£ib (int n)

{
if (n == 0) return (0);
if (n == 1) return (1);
return (fib(n-1)+fib(n-2));

Why does this work

int fib (int n)

{
if (n == 0) return (0);
if (n == 1) return (1);
return (fib(n-1)+fib(n-2));
}

@ Each call instance of fib works with its own copy of n

@ The computer “remembers” every previous state of the
problem. This information is “held” by the computer on
the “activation stack” (i.e., inside of each function’s
workspace).

The recursive function call sequence

1 fib(4)

8 A/= 9
3[Ab(D] f[fib(m)] [fb(D] [fibO) |

How about permutations?
Note that, permutation(abc) —

@ a + permutation(bc) — abc, acb
@ b + permutation(ac) — bac, bca
@ c + permutation(ab) — cab, cba

Recursive function for printing all permutations
of a given string

void permute(char al[l, int i, int n)
{//i=current start index
int j;
if (i == n) printf("%s\n", a);
elseq{
for (j = i; j <= n; j++){
swap(alil, aljl);
permute (a, i+1, n);
swap(alil], aljl); //backtrack
}

The recursive function call sequence

permute(a,0,2)

swap(0,2)

swaﬂ (0,1)

permutd(a,1,2)

AB C [B A c]

swap(1,1)
permute(a,2,2)

swap(0,0)
permute(a,1,2)

swap(1,1)

swap(1,2)

permutefa,2,2) permute(a,2.2)

permyte(a,2,2)

[asc] [acB| [Bac] [Bc a] [cB A

@ Before each function call, position of a letter is fixed
(marked in red) after swapping

o After any call returns, swapping is again performed to
restore state

@ Printing is done at leaf level

Another Problem

Write a recursive function which takes as argument an
integer n and prints all possible subsets of the set
{1,2,3,--- ,n}.

Assignment 10: recursion tree, n=4

(123} |{124} | (134)
{1234)

@ With each call, a possible subset is printed

@ The printing is done w.r.t. natural ordering of 1,2,3, etc
o 1, 12, 123, 1234, 124, 13, 14, 2, 23,

What exactly is happening

{123} |{124}| {134} {234}
{1234}

@ At recursion depth k, you print all subsets of size k

o Let us say, you printed {2} at depth 1. Next make
possible calls for printing subsets of size 2 which occur
after {2} i.e., {2,3} and {2,4}.

A sample solution

int main ()
{
int A[MAX_SIZE];
int n;
printf ("Enter n:");
scanf ("%d", &n);
subset (A,0,0,n); // the recursive call
return O;

@ prints the empty string and initiates subsequent calls

void subset (int A[],int k,int j,int n)
{//k is recursion dept
//j is last value written by previous call
int i, 1;
printf ("{");
for(i=0;i<k;i++)
printf ("%d ",A[il);
printf ("}\n");
for (i=j+1;i<=n;++1i)
{
Alk]l=1;
subset (A, k+1, i, n);

@ print current content
@ populate array before next call
@ make call with parameters: depth, last value written

Recursion tree labeled with function call
parameters k]

1,1 ‘%/ 1.3 1.4
m] [B [4]

2.2 1%4\ 23] SNoa 24

{12} e 4l [23] [4] [(B4]

33 e |3.4 |,

4

{123} |{124}| {134) (234}
4.4
{1234)

A variant

Write a recursive function which takes as argument integers
n and k < n and prints all possible subsets of the set
{1,2,3,--- ,n} of size k (i.e. "Cx).

Recursion tree: n=4, k=3

/

@ In this case, printing is done only at the leaf nodes.

@ Write the recursive function without a loop?? Yes, you
can do this by adding another variable in the recursive
call apart from those remembering the depth and last
value written.

