Signal

Signals

* |Interprocess communication primitive

signal —> |« Execute some
Kernel User process .
routine

* Take some
Main() action

{

How to terminate

for(;;); this infinite loop?

Press Ctrl-C

Exactly what happened?

 The process is running

* You pressed Ctrl-C.

* Kernel sends a signal SIGINT to the process (process group)
* Process stopped working

* Kernel executes a routine to terminate the process

SIGINT — = \User process
Kernel User process

terminated

Signal is like a software interrupt

e Each signal has an interrupt number
* With each signal, a routine is associated to perform some task

Signals

SIGINT

— The SIGINT signal is sent to a process by its controlling terminal when a user wishes to interrupt the process. This is typically initiated by pressing
Control-C

SIGKILL

— The SIGKILL signal is sent to a process to cause it to terminate immediately (kill).
This signal cannot be caught or ignored, and the receiving process cannot
perform any clean-up upon receiving this signal.

SIGQUIT

— The SIGQUIT signal is sent to a process by its controlling terminal when the user
requests that the process quit and perform a core dump.

SIGFPE

— The SIGFPE signal is sent to a process when it executes an erroneous arithmetic
operation, such as division by zero (the FPE stands for floating point error)

SIGSEGV

— The SIGSEGV signal is sent to a process when it makes an invalid virtual memory
reference, or segmentation fault, i.e. when it performs a segmentation violation

SIGCHLD

— The SIGCHLD signal is sent to a process when a child process terminates, is
interrupted, or resumes after being interrupted.

http://en.wikipedia.org/wiki/Core_dump
http://en.wikipedia.org/wiki/Segmentation_fault
http://en.wikipedia.org/wiki/Child_process
http://en.wikipedia.org/wiki/Exit_(operating_system)

Other signals

* SIGSEGV

— Segmentation fault-core dumped

* SIGFPE
— Division by zero

* SIGTSTP and SIGCONT

Signal Handling

e Each signal has a default code attached

— Activated whenever the signal is sent

* |sit possibly to replace this default code?
— Signal handling
Signal(Signal name, function name)

Signal.h

#include<stdio.h>
#include<signal.h>

void abc();
int main()

{
signal(SIGINT,abc);
for(;;);

}

void abc()

{
printf(“You have pressed Ctrl-C\n");

}

e Ctrl-C terminates user process

 Doesn’t terminate shell
— Shell is also a process!

* Ignore a signal!
* Signal(SIGINT,SIG_IGN)

int main()

{
signal(SIGINT,SIG_IGN);
for(;;);

SIGQUIT

 Terminates a process and dump the core
#include<stdio.h>
#include<signal.h>

void abc(int);

int main()

{
signal(SIGINT,abc);
signal(SIGQUIT,abc);
for(;;);

}

void abc(int signo)

{
printf(“You have killed the process with signal ID=%d",signo\n");

}

SIGCLD

* A process sends SIGCLD to its parent after
termination

* When a user process X terminates
— Send this signal to it’s parent (shell)
— Shell removes the process X from the Process Table

e Not? Then Zombie!
— Role of wait()

SIGCLD

int main()
{
pid=fork();
if(pid==0)
sleep(1);
else
{
signal(SIGCLD, abc);
sleep(10);
printf(“Parent exiting”);

}
}
Void abc()
{
printf(“child died”);
}

Other signals

* SIGSEGV

— Segmentation fault-core dumped

* SIGFPE
— Division by zero

* SIGTSTP (CRL-Z) and SIGCONT

Sending signal
So far, kernel process sends signal to user process

Signal
Kernel - User process

How user process can send signal to another user process?

Signal
User process — User process

Kill(process ID, signal ID)

int main()

{

}
void abc()

{
}

pid=fork();

if(pid==0)

{
signal(SIGINT,abc);
sleep(2)

}

else

{ Parent
sleep(1);
kill(pid,SIGINT)
sleep(10);
printf(“Parent exiting”);

}

printf(“Signal received by child ”);

SIGINT

- Child

int main()

{

}
void abc()

{
}

Open signals

pid=fork();

if(pid==0)

{
signal(SIGUSR2, abc);
sleep(1);
printf(“Hello parent!”);
kill(getppid(),SIGUSR1);
sleep(4);

} Parent

else

{
signal(SIGUSR1,def);
sleep(5);

}

sleep(2);

printf(“Bye Parent”);

SIGUSR1 and SIGUSR2
Are not mapped to any event

SIGUSR2

- Child
SIGUSR1

Void def{()

{
printf(“Hello child”);
kill(pid,SIGUSR2);

Process group

Every process is member of a unique process group, identified by its process group ID.
(When the child process is created, it becomes a member of the process group of its
parent.)

By convention, the process group ID of a process group equals the process ID of the
first member of the process group, called the process group leader.

A process finds the ID of its process group using the system call getpgrp(), or,
equivalently, getpgid(0).

One finds the process group ID of process p using getpgid(p).

One may use the command ps -j to see PPID (parent process ID), PID (process ID),
PGID (process group ID) of processes.

Creation of group

A process pid is put into the process group pgid by

setpgid(pid, pgid);

If pgid == pid or pgid == 0 then this creates a new process group with process group leader
pid.

Otherwise, this puts pid into the already existing process group pgid.
A zero pid refers to the current process. The call setpgrp() is equivalent to setpgid(0,0).
Restrictions on setpgid()

The calling process must be pid itself, or its parent,

Typical sequence

p = fork();
if (p == (pid_t) -1) {
/* ERROR */

} else if (p == 8) { /* CHILD */
setpgid(@, pgid);

I else { /* PARENT */
setpgid(p, pgid);

