
Process management

What are we going to learn?

• Processes : Concept of processes, process scheduling, co-operating processes, inter-process
communication.

• CPU scheduling : scheduling criteria, preemptive & non-preemptive scheduling, scheduling
algorithms (FCFS, SJF, RR, priority), algorithm evaluation, multi-processor scheduling.

• Process Synchronization : background, critical section problem, critical region, synchronization
hardware, classical problems of synchronization, semaphores.

• Threads : overview, benefits of threads, user and kernel threads.

• Deadlocks : system model, deadlock characterization, methods for handling deadlocks, deadlock
prevention, deadlock avoidance, deadlock detection, recovery from deadlock.

Process concept

• Process is a dynamic entity
– Program in execution

• Program code
– Contains the text section

• Program becomes a process when
– executable file is loaded in the memory
– Allocation of various resources

• Processor, register, memory, file, devices

• One program code may create several processes
– One user opened several MS Word
– Equivalent code/text section
– Other resources may vary

User
program

Disk

Memory

Process State

• As a process executes, it changes state
– new: The process is being created
– ready: The process is waiting to be assigned to

a processor
– running: Instructions are being executed
– waiting: The process is waiting for some event

to occur
– terminated: The process has finished execution

Process State diagram

Multiprogramming As a process executes, it changes state
– new: The process is being created
– running: Instructions are being executed
– waiting: The process is waiting for some event to

occur
– ready: The process is waiting to be assigned to a

processor
– terminated: The process has finished execution

Job pool

Single
processor

Multitasking/Time sharing

Process State diagram

As a process executes, it changes state
– new: The process is being created
– running: Instructions are being executed
– waiting: The process is waiting for some event to

occur
– ready: The process is waiting to be assigned to a

processor
– terminated: The process has finished execution

Job pool

How to represent a process?

• Process is a dynamic entity
– Program in execution

• Program code
– Contains the text section

• Program counter (PC)
• Values of different registers

– Stack pointer (SP) (maintains process stack)
• Return address, Function parameters

– Program status word (PSW)
– General purpose registers

• Main Memory allocation
– Data section

• Variables

– Heap
• Dynamic allocation of memory during process execution

C Z O S I K

Process Control Block (PCB)

Information associated with each process
• Process state
• Program counter
• CPU registers

– Accumulator, Index reg., stack pointer, general
Purpose reg., Program Status Word (PSW)

• CPU scheduling information
– Priority info, pointer to scheduling queue

• Memory-management information
– Memory information of a process
– Base register, Limit register, page table, segment table

• Accounting information
– CPU usage time, Process ID, Time slice

• I/O status information
– List of open files=> file descriptors
– Allocated devices

• Process is represented in the operating system
by a Process Control Block

Process Representation in Linux

Represented by the C structure task_struct
pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */

struct task struct *parent; /* this process’s parent */

struct list head children; /* this process’s children */

struct files struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this pro */

Doubly
linked list

CPU Switch From Process to Process

Context switch

Context Switch

• When CPU switches to another process, the system must
save the state of the old process and load the saved state for
the new process via a context switch.

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does not do
useful work while switching
– The more complex the OS and the PCB -> longer the context

switch

• Time dependent on hardware support
– Some hardware provides multiple sets of registers per CPU ->

multiple contexts loaded at once

Scheduling queues

• Maintains scheduling queues of processes

– Job queue – set of all processes in the system

– Ready queue – set of all processes residing in main
memory, ready and waiting to execute

– Device queues – set of processes waiting for an
I/O device

• Processes migrate among the various queues

Job queue

Ready queue

Device queue

Scheduling queues

Ready Queue And Various
I/O Device Queues

Queues are linked list of PCB’s

Many processes
are waiting for
disk

Device queue

Process Scheduling

• We have various queues

• Single processor system

– Only one CPU=> only one running process

• Selection of one process from a group of
processes

– Process scheduling

Process Scheduling

• Scheduler
– Selects a process from a set of processes

• Two kinds of schedulers
1. Long term schedulers, job scheduler

– A large number of processes are submitted (more than
memory capacity)

– Stored in disk
– Long term scheduler selects process from job pool and

loads in memory

2. Short term scheduler, CPU scheduler
– Selects one process among the processes in the

memory (ready queue)
– Allocates to CPU

Long Term Scheduler

CPU scheduler

Representation of Process Scheduling

Dispatched (task of
Dispatcher)

Parent at
wait()

CPU scheduler selects
a process

Dispatcher
• Dispatcher module gives control of the CPU to

the process selected by the short-term
scheduler; this involves:
– switching context
– switching to user mode
– jumping to the proper location in the user

program to restart that program

• Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

Creation of PCB

Shell

ShellChild

Create
initial
PCB

Exce()

a.out

Loader (Loads program image in
memory)

Update PCB

Insert in ready
queue

Allocate CPU

Context switch

Schedulers

• Scheduler

– Selects a process from a set

• Long-term scheduler (or job scheduler) –
selects which processes should be brought
into the ready queue

• Short-term scheduler (or CPU scheduler) –
selects which process should be executed
next and allocates CPU

– Sometimes the only scheduler in a system

Schedulers: frequency of execution
• Short-term scheduler is invoked very frequently (milliseconds)

 (must be fast)
– After a I/O request/ Interrupt

• Long-term scheduler is invoked very infrequently (seconds,
minutes)  (may be slow)
– The long-term scheduler controls the degree of

multiprogramming

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts
• Ready queue empty

– CPU-bound process – spends more time doing computations; few
very long CPU bursts
• Devices unused

• Long term scheduler ensures good process mix of I/O and CPU
bound processes.

Addition of Medium Term Scheduling

Swapper

disk Swap Space

ISR for context switch

Current <- PCB of current process
Context_switch()
{

Disable interrupt;
switch to kernel mode
Save_PCB(current);
Insert(ready_queue, current);
next=CPU_Scheduler(ready_queue);
remove(ready_queue, next);
Dispatcher(next);
switch to user mode;
Enable Interrupt;

}
Dispatcher(next)
{

Load_PCB(next); [update PC]

}

Interprocess Communication

• Processes within a system may be independent or cooperating

• Cooperating process can affect or be affected by other processes,
including sharing data

• Cooperating processes require an interprocess communication
(IPC) mechanism that will allow them to exchange data— that is,
send data to and receive data from each other.

• Cooperating processes need interprocess communication (IPC)

• Two models of IPC
– Shared memory
– Message passing

In the shared-memory model, a region of
memory that is shared by the cooperating
processes is established.
Processes can then exchange information
by reading and writing data to the shared
region.

In the message-passing model, communication
takes place by means of messages exchanged
between the cooperating processes
(Kernel involvement, slow)

Interprocess Communication

CPU Scheduling

• Describe various CPU-scheduling
algorithms

• Evaluation criteria for selecting a CPU-
scheduling algorithm for a particular
system

Basic Concepts
• Maximum CPU utilization obtained with

multiprogramming

– Several processes in memory (ready queue)

– When one process requests I/O, some other
process gets the CPU

– Select (schedule) a process and allocate CPU

Observed properties of Processes

• CPU–I/O Burst Cycle

• Process execution consists
of a cycle of CPU execution
and I/O wait

• Study the duration of CPU
bursts

Histogram of CPU-burst Times

Large number of short CPU bursts and small number of long CPU
bursts

I/O bound
process

CPU bound
process

Utility of CPU
scheduler

Preemptive and non preemptive

• Selects from among the processes in ready
queue, and allocates the CPU to one of them
– Queue may be ordered in various ways (not

necessarily FIFO)

• CPU scheduling decisions may take place when
a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

• Scheduling under 1 and 4 is nonpreemptive
• All other scheduling is preemptive

Long Term Scheduler

CPU scheduler

Preemptive scheduling

Preemptive scheduling

Results in cooperative processes

Issues:

– Consider access to shared data

• Process synchronization

– Consider preemption while in kernel mode

• Updating the ready or device queue

• Preempted and running a “ps -el”

Race condition

Scheduling Criteria

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution per
time unit

• Turnaround time – amount of time to execute a particular
process

• Waiting time – amount of time a process has been waiting in
the ready queue

• Response time – amount of time it takes from when a request
was submitted until the first response is produced, not output

Scheduling Algorithm Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

• Mostly optimize the average
• Sometimes optimize the minimum or maximum value

• Minimize max response time

• For interactive system, variance is important
• E.g. response time

• System must behave in predictable way

Scheduling algorithms

• First-Come, First-Served (FCFS) Scheduling

• Shortest-Job-First (SJF) Scheduling

• Priority Scheduling

• Round Robin (RR)

First-Come, First-Served (FCFS) Scheduling

• Process that requests CPU first, is allocated the CPU first
• Ready queue=>FIFO queue
• Non preemptive
• Simple to implement

Performance evaluation
• Ideally many processes with several CPU and I/O bursts

• Here we consider only one CPU burst per process

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2
, P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case
• Average waiting time under FCFS heavily depends on process arrival

time and burst time
• Convoy effect - short process behind long process

– Consider one CPU-bound and many I/O-bound processes

P1P3P2

63 300

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of
its next CPU burst

– Allocate CPU to a process with the smallest
next CPU burst.

– Not on the total CPU time

• Tie=>FCFS

Example of SJF

ProcessArrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24

Avg waiting time for FCFS?

SJF

• SJF is optimal – gives minimum average
waiting time for a given set of processes
(Proof: home work!)

• The difficulty is knowing the length of the next
CPU request

• Useful for Long term scheduler
– Batch system

– Could ask the user to estimate

– Too low value may result in “time-limit-exceeded error”

Preemptive version
Shortest-remaining-time-first

• Preemptive version called shortest-remaining-time-first
• Concepts of varying arrival times and preemption to the analysis

ProcessA arri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

P1
P1P2

1 170 10

P3

265

P4

Avg waiting time for non preemptive?

Determining Length of Next CPU Burst

• Estimation of the CPU burst length – should be similar
to the previous burst
– Then pick process with shortest predicted next CPU burst

• Estimation can be done by using the length of
previous CPU bursts, using time series analysis

• Commonly, α set to ½

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.



=

=

+



 1n

th
n nt

()1 1 .n n nt   + = + −

Boundary
cases α=0, 1

Examples of Exponential Averaging

•  =0
– n+1 = n

– Recent burst time does not count
•  =1

– n+1 = tn

– Only the actual last CPU burst counts
• If we expand the formula, we get:

n+1 =  tn+(1 - ) tn-1 + …
+(1 - )j tn -j + …
+(1 - )n +1 0

• Since both  and (1 - ) are less than or equal to 1,
each successive term has less weight than its
predecessor

Prediction of the Length of the
Next CPU Burst

0 1 2 3 6

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority
(smallest integer  highest priority)

• Set priority value
– Internal (time limit, memory req., ratio of I/O Vs CPU burst)
– External (importance, fund etc)

• SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

• Two types
– Preemptive
– Nonpreemptive

• Problem  Starvation – low priority processes may never execute

• Solution  Aging – as time progresses increase the priority of the
process

nice

Example of Priority Scheduling

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

P2 P3P5

1 180 16

P4

196

P1

Round Robin (RR)
• Designed for time sharing system
• Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds.
• After this time has elapsed, the process is preempted and added

to the end of the ready queue.
• Implementation

– Ready queue as FIFO queue
– CPU scheduler picks the first process from the ready queue
– Sets the timer for 1 time quantum
– Invokes despatcher

• If CPU burst time < quantum
– Process releases CPU

• Else Interrupt
– Context switch
– Add the process at the tail of the ready queue
– Select the front process of the ready queue and allocate CPU

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

• The Gantt chart is:

• Avg waiting time = ((10-4)+4+7)/3=5.66

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

• Each process has a time quantum T allotted to it

• Dispatcher starts process P0, loads a external counter (timer)
with counts to count down from T to 0

• When the timer expires, the CPU is interrupted

• The context switch ISR gets invoked

• The context switch saves the context of P0

– PCB of P0 tells where to save

• The scheduler selects P1 from ready queue
– The PCB of P1 tells where the old state, if any, is saved

• The dispatcher loads the context of P1

• The dispatcher reloads the counter (timer) with T

• The ISR returns, restarting P1 (since P1’s PC is now loaded as
part of the new context loaded)

• P1 starts running

Round Robin (RR)

Round Robin (RR)
• If there are n processes in the ready queue and the time

quantum is q
– then each process gets 1/n of the CPU time in chunks of at most q

time units at once.

– No process waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process

• Performance depends on time quantum q

– q large  FIFO

– q small  Processor sharing (n processes has own CPU
running at 1/n speed)

Effect of Time Quantum and Context Switch Time

• q must be large with respect to context switch,
otherwise overhead is too high

• q usually 10ms to 100ms, context switch < 10 microsec

• Too much
overhead!

• Slowing the
execution time

Performance of RR scheduling

• No overhead
• However,

poor response
time

Effect on Turnaround Time

80% of CPU bursts
should be shorter than
q

Response time Typically, higher average turnaround than SJF,
but better response time

• TT depends on the time quantum and CPU burst time
• Better if most processes complete there next CPU burst in a

single q

• Large q=>
processes in ready
queue suffer

• Small q=>
Completion will
take more time

Turnaround Time

P1 P2 P3 P4 P1 P2 P4 P1
`

P2 P4 P1 P4 P1 P4 P1 P4 P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Avg Turnaround time=
(15+9+3+17)/4=11

P1 P2 P3 P4 P4

0 6 9 10 16 17

q=1

q=6
(6+9+10+17)/4=10.5

Process classification

• Foreground process

– Interactive

– Frequent I/O request

– Requires low response time

• Background Process

– Less interactive

– Like batch process

– Allows high response time

• Can use different scheduling algorithms for two types
of processes ?

Multilevel Queue

• Ready queue is partitioned into separate queues, eg:
– foreground (interactive)

– background (batch)

• Process permanently assigned in a given queue
– Based on process type, priority, memory req.

• Each queue has its own scheduling algorithm:
– foreground – RR

– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground

then from background).

– Possibility of starvation.

Multilevel Queue Scheduling

Another possibility
• Time slice – each queue gets a certain amount of CPU time which it can schedule

amongst its processes; i.e., 80% to foreground in RR
• 20% to background in FCFS

• No process in batch queue
could run unless upper
queues are empty

• If new process enters
• Preempt

Multilevel Feedback Queue

• So a process is permanently assigned a queue when
they enter in the system
– They do not move

• Flexibility!
– Multilevel-feedback-queue scheduling

• A process can move between the various queues;

• Separate processes based of the CPU bursts
– Process using too much CPU time can be moved to lower

priority

– Interactive process => Higher priority

• Move process from low to high priority
– Implement aging

Example of Multilevel Feedback
Queue

• Three queues:

– Q0 – RR with time quantum 8 milliseconds

– Q1 – RR time quantum 16 milliseconds

– Q2 – FCFS

• Scheduling

– A new job enters queue Q0

• When it gains CPU, job receives 8 milliseconds

• If it does not finish in 8 milliseconds, job is moved to queue
Q1

– At Q1 job is again receives 16 milliseconds

• If it still does not complete, it is preempted and moved to
queue Q2

Q0

Q1

Q2

Multilevel Feedback Queues

• Highest Priority to processes
CPU burst time <8 ms

• Then processes >8 and <24

• Multilevel-feedback-queue scheduler defined
by the following parameters:
– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a
process

– method used to determine when to demote a
process

– method used to determine which queue a process
will enter when that process needs service

Multiple-Processor Scheduling

• If multiple CPUs are available, multiple
processes may run in parallel

• However scheduling issues become
correspondingly more complex.

• Many possibilities have been tried

• As we saw with CPU scheduling with a
single-core CPU
– there is no one best solution

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple CPUs are
available

• Homogeneous processors within a multiprocessor

• Asymmetric multiprocessing –
– Master server
– only one processor accesses the system data structures,

alleviating the need for data sharing

• Symmetric multiprocessing (SMP) – each processor is self-
scheduling,

• all processes in common ready queue, or each has its own
private queue of ready processes

• Scheduler for each processor examine the ready queue
– select a process to run.

• We have a possible race condition
• Locking to protect the common ready

queue from this race condition.
• Accessing the shared queue would

likely be a performance bottleneck

• Permits each processor to schedule
process from its private ready
queue

• Does not suffer from the possible
performance problems

• Most common approach on
systems supporting SMP.

• Load balancing

Multiple-Processor Scheduling

Multi core processors

• SMP systems have allowed several processes to run in
parallel by providing multiple physical processors.

• Recently, multiple computing cores on the same
physical chip, resulting in a multicore processor.

• Each core maintains its architectural state and thus
appears to the operating system to be a separate
logical CPU

• SMP systems that use multicore processors are faster
and consume less power
– than systems in which each CPU has its own physical chip

Challenge: Memory stall
• When a processor accesses memory, it spends a

significant amount of time waiting for the data to

become available.

• This situation, known as a memory stall, occurs
primarily because

– modern processors operate at much faster speeds
than memory.

– For cache miss

Solution: Hardware
threads

• Recent hardware designs have implemented multithreaded
processing cores in which two (or more) hardware threads are
assigned to each core.

• That way, if one hardware thread stalls while waiting for
memory, the core can switch to another thread.

Hyper-threading

• Each hardware thread maintains its
architectural state, such as
instruction pointer and register set,

• Thus appears as a logical CPU that is
available to run a software process.

Contemporary Intel processors—such as
the Intel i7—support two threads per
core,

Oracle Sparc M7 processor supports
eight threads per core, with eight cores
per processor, thus providing the
operating system with 64 logical CPUs

Dual scheduling

• It is important to note that

• a processing core can only execute one
hardware thread at a time.

– resources of the physical core (such as caches and
pipelines) must be shared among its hardware
threads

• Multithreaded, multicore processor actually
requires two different levels of scheduling

• The scheduling decisions that
must be made by the operating
system as it chooses which
software process to run on each
hardware thread (logical CPU).

• For this level of scheduling, the
operating system may choose
any scheduling algorithm

Dual scheduling

• A second level of scheduling
specifies which hardware
thread to run on a core.

• One approach is to use a simple
round-robin algorithm to
schedule a hardware thread to
the processing core.

• This is the approach adopted by
the UltraSPARC T3.

• Another approach is used by the
Intel Itanium

• Assigned to each hardware
thread is a dynamic urgency
value ranging from 0 to 7

Problem 1

Combine round-robin and priority scheduling in such a way that the system
executes the highest-priority process and runs processes with the same
priority using round-robin scheduling (q=2).

Solution 1

Consider three processes (process id 0, 1, 2 respectively) with compute time bursts 2, 4 and 8
time units. All processes arrive at time zero. Consider the longest remaining time first (LRTF)
scheduling algorithm. In LRTF ties are broken by giving priority to the process with the lowest
process id. Compute average turn around time

Process AT BT TAT

P0 0 2

P1 0 4

P2 0 8

Problem 2

2. Consider three processes (process ID 0,1,2 respectively) with compute time bursts 2,4 and 8 time units. All processes
arrive at time zero. Consider the longest remaining time first (LRTF) scheduling algorithm. In LRTF, ties are broken by
giving priority to the process with the lowest process ID. The average turnaround time is:

P2 P2 P2 P2 P1 P2 P1 P2 P0 P1 P2 P0 P1 p2

PID A.T B.T C.T T.A.T W.T

P0 0 2 12 12 10

P1 0 4 13 13 9

P2 0 8 14 14 6

TOTAL 39 25

A.T. Arrival Time
B.T. Burst Time
C.T. Completion Time.
T.A.T. Turn Around Time
W.T. Waiting Time.
Average TAT = 39/3 = 13
units

Solution 2

Problem 3

Process 0: CPU-bound (each CPU burst is 100ms)
Processes 1--5: IO bound (10ms CPU burst),IO time:
80ms

All processes are available at t = 0.

FCFS: find out when CPU becomes idle for the first
time.

RR: Take time quantum q = 10ms. Again find out
when the CPU becomes idle for the first time.

Solution 3

Consider the following set of processes, with the arrival times and the
CPU-burst times given in milliseconds. What is the average turnaround
time for these processes with the preemptive shortest remaining
processing time first (SRPT) algorithm?

Problem 4

3. Consider the following set of processes, with the arrival times and the CPU-burst times given in milliseconds. What is the
average turnaround time for these processes with the preemptive shortest remaining processing time first (SRPT)
algorithm?

Process Arrival Time Burst Time

P1 0 5

P2 1 3

P3 2 3

P4 4 1

P1 P2 P4 P3 P1

0 1 4 5 8 12

Answer:

Process Waiting Time =
(Turnaround Time – Burst Time)

Turnaround Time =
(Completion Time – Arrival Time)

P1 7 12

P2 0 3

P3 3 2

P4 0 1

Average turnaround time = 12 + 3 + 6 + 1 4 = 22 4 = 5.5

]

Interprocess Communication

• Processes within a system may be
independent or cooperating

• Cooperating process can affect or be affected
by other processes, including sharing data

• Cooperating processes need interprocess
communication (IPC)

• Two models of IPC
– Shared memory

– Message passing

Producer-Consumer Problem
• Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer
process

X

A

B

C

out

in

Consumer

Producer

0

1

2

3

4

5

• unbounded-buffer places no practical limit on the size of the buffer
• bounded-buffer assumes that there is a fixed buffer size

Buffer empty=>
in=out

Buffer full=>
(in+1)%size=out

Bounded-Buffer –
Shared-Memory Solution

• Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Bounded-Buffer – Producer

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER SIZE) == out)

; /* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

}

Bounded Buffer – Consumer

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time

File 1

File 2

Printer
daemon

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time

Next_free_slot=7

Process A

File 1

File 2

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time

Next_free_slot=7

Process A

File 1

Next_free_slot=7

File 2

Process B

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time

Next_free_slot=7

Process A

File 1

Next_free_slot=8

File 2 8

Process B

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time

Next_free_slot=8

Process A

File 1

Next_free_slot=8

File 1 8

Race condition

Race condition

• Race condition

– Two or more processes are reading or writing
some shared data and the final result depends on
who runs precisely when

– In our former example, the possibilities are
various

– Hard to debug

• Critical region

– Part of the program where the shared memory is
accessed

• Mutual exclusion

– Prohibit more than one process from reading and
writing the shared data at the same time

Critical Section Problem

Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}
• Each process has critical section segment of code

– Process may be changing common variables, updating
table, writing file, etc

– When one process in critical section, no other may be
in its critical section

• Critical section problem is to design protocol to
solve this

• Each process must ask permission to enter critical
section in entry section, may follow critical
section with exit section, then remainder section

95General structure of a typical process Pi

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

Critical Section Problem

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical
sections

2. Progress –
• If no process is executing in its critical section
• and there exist some processes that wish to enter their critical

section
• then only the processes outside remainder section (i.e. the

processes competing for critical section, or exit section) can
participate in deciding which process will enter CS next

3. Bounded Waiting - A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request is
granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes

97General structure of a typical process Pi

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

Critical Section Problem

Mutual exclusion using critical regions

Critical Section Problem

Mutual Exclusion

• Disable interrupt

– After entering critical region, disable all interrupts

– Since clock is just an interrupt, no CPU
preemption can occur

– Disabling interrupt is useful for OS itself, but not
for users…

Mutual Exclusion with busy waiting

• Lock variable
– A software solution

– A single, shared variable (lock)

– before entering critical region, programs test the
variable,

– if 0, enter CS;

– if 1, the critical region is occupied

– What is the problem?

While(true)
{

while(lock!=0);
Lock=1
CS()
Lock=0
Non-CS()

}

Concepts

• Busy waiting

– Continuously testing a variable until some value
appears

• Spin lock

– A lock using busy waiting is call a spin lock

• CPU time wastage!

Mutual Exclusion with Busy Waiting : strict
alternation

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

1.Mutual exclusion is preserved? Y
2.Progress requirement is satisfied? N
3.Bounded-waiting requirement is met? N

Peterson’s Solution

• Two process solution

• The two processes share two variables:
– int turn;
– Boolean interested [2]

• The variable turn indicates whose turn it is to enter the
critical section

• The interested array is used to indicate if a process is
interested to enter the critical section.

• interested[i] = true implies that process Pi is interested!

Mutual Exclusion with Busy Waiting (2) : a
workable method

Peterson's solution for achieving mutual exclusion

do {
interested[i] = TRUE;

turn = j ;
while (interested[j] && turn == j);

critical section
interested[i] = FALSE;

remainder section
} while (TRUE);

Provable that
1. Mutual exclusion is preserved
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

Algorithm for Process Pi

Does this alter the
sequence?

Hardware Instruction Based Solutions
Multiprocessor system

• Some architectures provide special instructions
that can be used for synchronization

• TSL: Test and modify the content of a word
atomically

TSL Reg, lock
{

Reg= lock;
lock = true;

}

Entering and leaving a critical region using the
TSL instruction

Hardware Instruction Based Solutions

Does it satisfy all the conditions?

System call version

• Special system call that can be used for
synchronization

• TestAndSet: Test and modify the content of a
word atomically

boolean TestAndSet (boolean &target) {

boolean v = target;

target = true;

return v;

}

Mutual Exclusion with Test-and-Set

• Shared data:
boolean lock = false;

• Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

Does it satisfy all the conditions?

Swap Instruction

Concepts

• Busy waiting

– Continuously testing a variable until some value
appears

• Spin lock

– A lock using busy waiting is call a spin lock

• CPU time wastage!

• Drawback of Busy waiting

– A lower priority process has entered critical region

– A higher priority process comes and preempts the
lower priority process, it wastes CPU in busy
waiting, while the lower priority don’t come out

– Priority inversion problem

Producer-consumer problem

• Two processes share a common, fixed-sized
buffer

• Producer puts information into the buffer

• Consumer takes information from buffer

• A simple solution

Sleep and Wakeup

Producer-Consumer Problem

• What can be the problem?

• Signal missing

– Shared variable: counter

– When consumer read count
with a 0 but didn’t fall asleep
in time

– then the signal will be lost

Producer-consumer problem with fatal race condition

Tasks

• We must ensure proper process
synchronization
– Stop the producer when buffer full

– Stop the consumer when buffer empty

• We must ensure mutual exclusion
– Avoid race condition

• Avoid busy waiting

Semaphore
• Widely used synchronization tool
• Does not require busy-waiting

– CPU is not held unnecessarily while the process is waiting

• A Semaphore S is
– A data structure with an integer variable S.value and a queue S.list of

processes (shared variable)
– The data structure can only be accessed by two atomic operations,

wait(S) and signal(S) (also called down(S), P(S) and Up(s), V(S))

• Value of the semaphore S = value of the integer S.value

typedef struct {
int value;
struct process *list;
} semaphore

Semaphore

Wait(S) S<= semaphore variable
• When a process P executes the wait(S) and finds

• S==0
– Process must wait => block()

– Places the process into a waiting queue associated with S

– Switch from running to waiting state

• Otherwise decrement S

Signal(S)
When a process P executes the signal(S)

– Check, if some other process Q is waiting on the semaphore S

– Wakeup(Q)

– Wakeup(Q) changes the process from waiting to ready state

• Otherwise increment S

• Implementation of wait:
wait(semaphore *S) {

S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

• Implementation of signal:

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

Semaphore (wait and signal)

Note: which process is picked
for unblocking may depend on
policy.

Atomic/
Indivisible

List of PCB

Usage of Semaphore

• Counting semaphore – integer value can range over
an unrestricted domain

– Control access to a shared resource with finite elements

– Wish to use => wait(S)

– Releases resource=>signal(S)

– Used for synchronization

• Binary semaphore – integer value can range only
between 0 and 1

– Also known as mutex locks

– Used for mutual exclusion

Ordering Execution of Processes using
Semaphores (Synchronization)

• Execute statement B in Pj only after statement A
executed in Pi

• Use semaphore flag initialized to 0
• Code:

Pi Pj

 
Stmt. A wait(flag)

signal(flag) Stmt. B

• Multiple such points of synchronization can be
enforced using one or more semaphores

Semaphore: Mutual exclusion

• Shared data:
semaphore mutex; /* initially mutex = 1 */

• Process Pi:

do {
wait(mutex);

critical section

signal(mutex);

remainder section

} while (1);

Producer-consumer problem
: Semaphore

• Solve producer-consumer problem

– Full: counting the slots that are full; initial value
0

– Empty: counting the slots that are empty, initial
value N

– Mutex: prevent access the buffer at the same
time, initial value 1 (binary semaphore)

– Synchronization & mutual exclusion

Semaphores

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal (S); signal (Q);

signal (Q); signal (S);

Let S and Q be two semaphores initialized to 1

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely
for an event that can be caused by only one of the waiting
processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);
. .
. .
. .

signal (S); signal (Q);
signal (Q); signal (S);

• Starvation – indefinite blocking
– LIFO queue
– A process may never be removed from the semaphore queue

in which it is suspended

Tutorial problems

Problem 1

Does this solution work?

Problem 2

Does this solution work?

do {
interested[i] = TRUE;

turn = j ;
while (interested[j] && turn == j);

critical section
interested[i] = FALSE;

remainder section
} while (TRUE);

Provable that
1. Mutual exclusion is preserved
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

Algorithm for Process Pi

Does this alter the
sequence?

CASwap Instruction

Problem 3: Atomic increment using
CAS

Implement atomic increment using CAS

Atomic increment using CAS

Problem 4: Mutex Lock

available = 1

acquire()

{ while(CAS(available, 1, 0)==0);

}

Problem 5: Does TSL and CAS
Satisfies all properties of critical section

solution?
do {

while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}

System call version

• Special system call that can be used for
synchronization

• TestAndSet: Test and modify the content of a
word atomically

boolean TestAndSet (boolean &target) {

boolean v = target;

target = true;

return v;

}

Mutual Exclusion with Test-and-Set

• Shared data:
boolean lock = false;

• Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

Does it satisfy all the conditions?

Swap Instruction

Readers-Writers Problem
• A database is shared among a number of concurrent

processes
– Readers – only read the data set; they do not perform any updates
– Writers – can both read and write

• Problem – allow multiple readers to read at the same time
– Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are treated – all
involve priorities

• Shared Data
– Database
– Semaphore mutex initialized to 1
– Semaphore wrt initialized to 1
– Integer readcount initialized to 0

R R R

R R R

Writer

Reader
• Task of the first reader

• Lock the dataset
• Task of the last reader

• Release the lock
• Wakeup the any waiting writer

Writer
• Task of the writer

• Just lock the
dataset and write

Readers-Writers Problem

Readers-Writers Problem (Cont.)

• The structure of a writer process

do {

wait (wrt) ;

// writing is performed

signal (wrt) ;

} while (TRUE);

Readers-Writers Problem (Cont.)

• The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

• Models database access

• Current solution

– Reader gets priority over writer

• Home work

– Writer gets priority

Readers-Writers Problem (Cont.)

Dining Philosophers Problem

Dining Philosophers Problem

First solution

• Ensure that two neighboring philosopher should not seize the same fork

• Take_fork() waits until the fork is
available

• Available? Then seizes it

• The structure of Philosopher i:

do {
wait (fork[i]);
wait (fork[(i + 1) % 5]);

// eat

signal (fork[i]);
signal (fork[(i + 1) % 5]);

// think

} while (TRUE);

• What is the problem with this algorithm?

Semaphore fork [5]
initialized to 1

Dining Philosophers Problem

Each fork is implemented as a semaphore

Ensures no two neighboring
philosophers can eat
simultaneously

Dining Philosophers Problem

First solution

• Suppose all of them take the left fork simultaneously
• None of them will get the right fork
• Deadlock

• Take_fork() waits until the fork is
available

• Available? Then seizes it

Dining Philosophers Problem

Second solution

• After taking the left fork, philosopher checks to see if right fork is available
• If not, puts down the left fork

Limitation

• All of them start simultaneously, pick up the left forks
• Seeing that their right forks are not available

• Putting down their left fork
• Starvation

• Random delay (Exponential backoff) not going to help for critical systems

Dining Philosophers Problem

Third solution

Wait(mutex);

signal(mutex);

Poor resource utilization

Dining Philosophers Problem

Final solution

0 0 0 0 0 0 0 0

For each philosopher, maintain state and s

state

s

Thinking (0),
Hungry (1),
Eating (2) Normal int array

semaphore array, initialized to 0

• State takes care of acquiring the fork
• s stops a philosopher from eating when fork is not available

. . .

Dining Philosophers Problem
Final solution

. . .

. . .

Dining Philosophers Problem
Final solution

. . .

Dining Philosophers Problem
Final solution

The Sleeping Barber Problem

For Barber: Checking the
waiting room and calling
the customer makes the
critical section

For customer:
Checking the waiting
room and informing
the barber makes its
critical section

Barber sleeps on “Customer”
Customer sleeps on “Barber”

Deadlock

The Deadlock Problem

• A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set

• Example
– System has 2 disk drives
– P1 and P2 each hold one disk drive and each needs another one

• Example
– semaphores A and B, initialized to 1

P0 P1

wait (A); wait (B);
wait(B) wait(A)

Introduction To Deadlocks

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each process
in the set is waiting for an event that only
another process in the set can cause.

System Model

• Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process requests for an instance of a
resource type

• Each process utilizes a resource as follows:
– request
– use
– release

Deadlock: necessary conditions

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by Pn, and
Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Resource-Allocation Graph

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all

the processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi

Rj

Rj

Example of a Resource Allocation Graph

No cycle; No
deadlock

• Figure 6-5. (a) A resource graph. (b) A cycle
extracted from (a).

One Resource of Each Type

Contains Cycle; Deadlock

Resource Allocation Graph With A Deadlock

P3 requests R2

Graph With A Cycle But No Deadlock

P1->R1->P3->R2->P1

• If the resource allocation graph does not have a
cycle
• System is not in a deadlocked state

• If there is a cycle
• May or may not be in a deadlocked state

• Figure 6-4. An example of how deadlock
occurs
and how it can be avoided.

Deadlock Modeling

• Figure 6-4. An example of how deadlock
occurs
and how it can be avoided.

Deadlock Modeling

Deadlock

• Figure 6-4. An example of how deadlock
occurs
and how it can be avoided.

Deadlock Modeling

Suspend process B

Deadlock Handling

Strategies for dealing with deadlocks:

1.Detection and recovery. Let deadlocks occur,
detect them, take action.

2.Dynamic avoidance by careful resource
allocation.

3.Prevention, by structurally negating one of the
four required conditions.

4. Just ignore the problem.

Tutorials

The Sleeping Barber Problem

Challenges

• Actions taken by barber and customer takes unknown amount of time
(checking waiting room, entering shop, taking waiting room chair)

• Scenario 1
– Customer arrives, observe that barber busy

– Goes to waiting room

– While he is on the way, barber finishes the haircut

– Barber checks the waiting room

– Since no one there, Barber sleeps

– The customer reaches the waiting room and waits forever

• Scenario 2
– Two customer arrives at the same time

– Barber is busy

– Both customers try to occupy the same chair!

Customer
Barber

“I have arrived; waiting for
your service”

One semaphore:
customer

Barber wakes up, if sleeping

CustomerBarber

“I am ready to give service
to the next customer”

One semaphore:
barber Customer acquires the Barber for service

No customer: Barber falls asleep

Customer waits if Barber busy

Barber sleeps on “Customer”
Customer sleeps on “Barber”

The Sleeping Barber Problem

Semaphore Barber: Used to
call a waiting customer.
Barber=1: Barber is ready
to cut hair and a customer
is ready (to get service) too!
Barber=0: customer
occupies barber or waits

Semaphore customer:
Customer informs barber
that “I have arrived; waiting
for your service”

Mutex: Ensures that only
one of the participants
can change state at once

http://en.wikipedia.org/wiki/Mutex

The Sleeping Barber Problem

For Barber: Checking the
waiting room and calling
the customer makes the
critical section

For customer:
Checking the waiting
room and informing
the barber makes its
critical section

Barber sleeps on “Customer”
Customer sleeps on “Barber”

Problem 1

We want to use semaphores to implement a shared critical
section (CS) among three processes T1, T2, and T3. We want to
enforce the execution in the CS in this order: First T2 must execute
in the CS. When it finishes, T1 will then be allowed to enter the
CS; and when it finishes T3 will then be allowed to enter the CS;
when T3 finishes then T2 will be allowed to enter the CS, and so
on, (T2, T1, T3, T2, T1, T3,…).

Write the synchronization solution using a minimum number of
binary semaphores and you are allowed to assume the initial
value for semaphore variables.

Problem 1

S1=1, S2=0, S3=0

Problem 2

Three concurrent processes X, Y, and Z execute three different code segments that
access and update certain shared variables.
Process X executes the P operation (i.e., wait) on semaphores a, b and c;
process Y executes the P operation on semaphores b, c and d;
process Z executes the P operation on semaphores c, d, and a before entering the
respective code segments.
After completing the execution of its code segment, each process invokes the V
operation (i.e., signal) on its three semaphores.
All semaphores are binary semaphores initialized to one.
Which one of the following represents a deadlock-free order of invoking the P
operations by the processes?

(A) X: P(a)P(b)P(c) Y: P(b)P(c)P(d) Z: P(c)P(d)P(a)
(B) X: P(b)P(a)P(c) Y: P(b)P(c)P(d) Z: P(a)P(c)P(d)
(C) X: P(b)P(a)P(c) Y: P(c)P(b)P(d) Z: P(a)P(c)P(d)
(D) X: P(a)P(b)P(c) Y: P(c)P(b)P(d) Z: P(c)P(d)P(a)

Problem 3

• The following two functions P1 and P2 that share a variable B with an
initial value of 2 execute concurrently.

P1()
{

C = B – 1;
B = 2*C;

}

P2()
{

D = 2 * B;
B = D - 1;

}
The number of distinct values that B can possibly take after the execution

Problem 4

Consider the reader-writer problem with designated readers. There are n reader
processes, where n is known beforehand. There are one or more writer processes.
Items are stored in a buffer. Every item is written by a writer and is designated for a
particular reader.

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Single Instance of Each Resource Type

• In resource graph
– Pi → R and R → Pj

• Maintain wait-for graph
– Nodes are processes
– Pi → Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a
cycle in the graph.

• If there is a cycle, there exists a deadlock

Resource-Allocation Graph and
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type

• Available: A vector of length m indicates the number of
available resources of each type.

• Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each process.

• Request: An n x m matrix indicates the current request of
each process. If Request [i][j] = k, then process Pi is
requesting k more instances of resource type Rj.

Let n = number of processes, and m = number of resources types.

P0

P1

P2

R0 R1 R2 R3

R0 R1 R2 R3

P0

P1

P2

R0 R1 R2 R3

Allocation
matrix

Request
matrix

• Figure 6-6. The four data structures needed
by the deadlock detection algorithm.

Several Instances of a Resource Type
Let n = number of processes, and m = number of resources types.

Detection Algorithm

• Define a relation  over two vectors

• X and Y are two vectors of length n

• We say X  Y

Iff X[i] Y[i] for all i=1, 2, …, n

Detection Algorithm

1. Let Work and Finish be vectors of length m and
n, respectively

Initialize:
(a) Work = Available
(b)For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a)Finish[i] == false
(b)Requesti  Work

If no such i exists, go to step 4

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Example of Detection Algorithm

• Five processes P0 through P4;
• three resource types

A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

Example (Cont.)
• P2 requests an additional instance of type C

Request
A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

• State of system?
– Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests
– Deadlock exists, consisting of processes P1, P2, P3, and P4

Home work

Available

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?

– How many processes will be affected by deadlock?

• If deadlock frequent

– Invoke detection algo frequently

• Invoke after each (waiting) resource request

– Huge overhead

• CPU utilization drops

Recovery from Deadlock:
Process Termination

• Abort all deadlocked processes
– Expensive

• Abort one process at a time until the deadlock cycle is
eliminated
– Overhead=> invoke detection algo

• In which order should we choose to abort?
– Priority of the process
– How long process has computed
– Resources the process has used
– Resources process needs to complete
– How many processes will need to be terminated
– Is process interactive or batch?

Recovery from Deadlock:
Resource Preemption

• Selecting a victim – minimize cost

– (# of resources holding, duration)

• Rollback – return to some safe state, restart
process from that state

• Starvation – same process may always be
picked as victim, include number of rollback in
cost factor

Deadlock Avoidance

• Simplest and most useful model requires that each
process declare the maximum number of resources
of each type that it may need

• The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

• Resource-allocation state is defined by the number
of available and allocated resources, and the
maximum demands of the processes

Requires that the system has some additional a priori

information available

Safe State

Safe State
• When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn>
of ALL the processes in the systems
– such that for each Pi, the resources that Pi can still request can be

satisfied by currently available resources + resources held by all the
Pj, with j < i

• That is:
– If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished
– When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
– When Pi terminates, Pi +1 can obtain its needed resources, and so on

Basic Facts

• If a system is in safe state  no deadlocks

• If a system is in unsafe state  possibility
of deadlock

• Avoidance  ensure that a system will
never enter an unsafe state.

Safe, Unsafe, Deadlock State

Three processes P0, P1, P2

Resource R=12
State at time t0

Maximum need Current allocation
P0 10 5
P1 4 2
P2 9 2

Free resource = 3

Safe sequence <P1, P0, P2> Safe state

State at time t1

Allocate one resource to P2

Avoidance algorithms

• Single instance of a resource type

– Use a resource-allocation graph

• Multiple instances of a resource type

– Use the banker’s algorithm

Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicated that process Pj may
request resource Rj; represented by a dashed line

• Claim edge converts to request edge when a process
requests a resource

• Request edge converted to an assignment edge when
the resource is allocated to the process

• When a resource is released by a process, assignment
edge reconverts to a claim edge

• Resources must be claimed a priori in the system

Resource-Allocation Graph

Assignment edge
Request edge

Claim edge

Resource-Allocation Graph
Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting
the request edge to an assignment edge does
not result in the formation of a cycle in the
resource allocation graph

• If no cycle

– Safe state

Unsafe State In Resource-Allocation Graph

Suppose that process P2 requests a resource
R2

Banker’s Algorithm

• Multiple instances

• Each process must a priori claim maximum use

• When a process requests a set of resources
– System decides whether the allocation is safe

• When a process requests a resource – not safe?
– it may have to wait

• When a process gets all its resources it must return
them in a finite amount of time

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Several Instances of a Resource Type

• Available: A vector of length m indicates the number of
available resources of each type.

• Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each process.

Let n = number of processes, and m = number of resources types.

P0

P1

P2

R0 R1 R2 R3

R0 R1 R2 R3

P0

P1

P2

R0 R1 R2 R3

Allocation
matrix

Max
matrix

Deadlock avoidance :
Flow chart for Pi

State

Pi requests
resources

Requesti[]
Provisionally
allocate
resources

Temporary
state (Request
algorithm)

Take decision
(safety algorithm)

Safe
state?

No

yes
Permanent
allocation of
resource

Restore the old state

New state

Safety Algorithm
1. Let Work and Finish be vectors of length m

and n, respectively. Initialize:
Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system
is in a safe state

Resource-Request Algorithm for Process Pi
Request = request vector for process Pi.

If Requesti [j] = k then process Pi wants k instances of
resource type Rj
1. If Requesti  Needi go to step 2. Otherwise, raise error

condition, since process has exceeded its maximum
claim

2. If Requesti  Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3.Pretend to allocate requested resources to Pi by
modifying the state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

If safe  the resources are allocated to Pi
If unsafe  Pi must wait, and the old resource-allocation state
is restored

Example of Banker’s Algorithm

• 5 processes P0 through P4;
3 resource types:

A (10 instances), B (5instances), and C (7
instances)

Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)
• The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Example (Cont.)
• The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example: P1 Request (1,0,2)

• Check that Request  Available (that is, (1,0,2)  (3,3,2)
 true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1,
P3, P4, P0, P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Deadlock Handling

Strategies for dealing with deadlocks:

1.Detection and recovery. Let deadlocks occur,
detect them, take action.

2.Dynamic avoidance by careful resource
allocation.

3.Prevention, by structurally negating one of the
four required conditions.

4. Just ignore the problem.

Deadlock Prevention

• Mutual Exclusion – not required for sharable
resources; must hold for nonsharable resources
– Read only file

• Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any
other resources
– Require process to request and be allocated all its

resources before it begins execution,
– Allow process to request resources only when the

process has none
• Release all the current resource and then try to acquire

– Low resource utilization; starvation possible

Restrain the ways request can be made

Deadlock Prevention (Cont.)

• No Preemption –
– If a process that is holding some resources,

– Requests another resource that cannot be
immediately allocated to it
• Resources were allocated to some waiting process

– Preempt the desired resource from waiting process

– Allocate to current process

– Cpu Registers

• Circular Wait – Impose a total ordering of all
resource types
– Require that each process requests resources in an

increasing order of enumeration

• Let R={R1, R2,……,Rm} set of resource type

• We assign unique integer with each type

• One to one function F:R→N

F(tape drive)=1

F(disk)=5

F(printer)=12

• Protocol: Each process can request resource only in an
increasing order.

• Initially request Ri, after that, it can request Rj

– If and only if F(Rj)>F(Ri)

• Currently holding Rj; Want to request Ri.
• Must have released Rj

P0 P1 P(n-1) Pn

R0 R1 R(n-1) R(n)

F(R0) < F(R1) < F(R2) <…………………< F(Rn) < F(R0)

F(R0) < F(R1)

Rn

Problem 1

A system is having 3 user processes each
requiring max 2 units of resource R.

What is the minimum number of units of R such
that no deadlock will occur?

Problem 2

Q1: A single processor system has three resource types X, Y, and Z, which are shared by three processes. There are 5 units of
each resource type.

X Y Z

P0 1 2 1

P1 2 0 1

P2 2 2 1

Allocation

X Y Z

P0 1 0 3

P1 0 1 2

P2 1 2 0

(i) Is the system in a safe state? What is the safe sequence?

(ii) What will happen if process P1 requests two additional instances of resource type C?

.

Request

Problem 3

Answer:

(i) According to the question-
Total = [X Y Z] = [5 5 5] , Total _Allocation = [X Y Z] = [5 4 3]
Now, Available = Total – Total_Allocation = [5 5 5] – [5 4 3] = [0 1 2]

• Step: With the instances available currently, only the requirement of process P1 can be satisfied. So, process P1 is allocated
the requested resources. It completes its execution and then frees up the instances of resources held by it.
(Then, Available = [0 1 2] + [2 0 1] = [2 1 3]

By repeating the above step, we will get the following

--→ P0, Available = [3 3 4]
-→ P2, Available = [5 5 5]
-→ There exists a safe sequence P1, P0, P2 in which all the processes can be executed.

(ii)New_Request = P1 [0 0 2], so Now, available becomes [0 1 0],

