
File Management

Objectives
• File Systems : File system structure, allocation methods

(contiguous, linked, indexed), free-space management (bit
vector, linked list, grouping), directory implementation
(linear list, hash table)

• Disk Management : disk structure, disk scheduling (FCFS,
SSTF, SCAN,C-SCAN) , disk reliability, disk formatting, boot
block, bad blocks.

Disk blocks

Data stored within the
block

• File system

– Provide efficient and convenient access to disk

– Easy access to the data (store, locate and retrieve)

• Two aspects

– User’s view

• Define files/attributes, operations, directory

– Implementing file system

• Data structures and algorithms to map logical view to
physical one

File-System Structure

Disk Layout

• Files stored on disks.

• Disks broken up into one or more partitions,
with separate file system on each partition

A Typical File-system Organization

Directory Structure

• A collection of nodes containing
information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Layered File System

• Each level uses the feature
of low level

• Create new features for
higher level Hardware specific

instruction

R/W logicall block

Issue commands

Connects files with
logical blocks

Manages directory

Device driver, transfer
information between
memory/disk

File System Layers
I/O control layer consists of device drivers manage I/O
devices at the I/O control layer

– Given commands like “read block 34 into memory location
1060” outputs low-level hardware specific commands to
hardware controller

Basic file system Issues commands with logical block
address
Disk scheduling
Buffering

File organization module understands files, logical blocks
Connects files with logical block #
Manages free space, disk allocation

File System Layers (Cont.)
Logical file system manages metadata information

Translates file name into file number, file access, permission,
location by maintaining file control blocks (inodes in Unix)

Directory management

Layering useful for reducing complexity and redundancy,
but adds overhead and can decrease performance

Shares the I/O control and basic FS

Many file systems, sometimes many within an operating
system

Each with its own format (CD-ROM is ISO 9660; Unix has UFS,
FFS; Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD,
Linux has more than 40 types, with extended file system ext2
and ext3 leading; plus distributed file systems, etc)

A Typical File Control Block

Directory Structure

• A collection of nodes containing
information about all files

FCB1 FCB 2
FCB 3

FCB 4

FCB n

Directory

Files

F1 F2 F3 F4

Fn

File system data structures

• On disk

• In memory

Disk Layout

• Files stored on disks. Disks broken up into one
or more partitions, with separate file system on
each partition

• Sector 0 of disk is the Master Boot Record

• Used to boot the computer

• End of MBR has partition table. Has starting and
ending addresses of each partition.

• One of the partitions is marked active in the
partition table

Disk Layout

• Master Boot Record

• Occupies the first
sector of the disk

• Specifies the disk
blocks numbers
where second stage
boot loader resides

Grand Unified Boot
Loader

Booting sequence
• Checks system integrity
• Loads and executes the boot loader

• Boot control block contains info needed by system to
boot OS from that partition
– Needed if partition contains OS, usually first block of partition

• Partition control block (superblock, master file table)
contains partition details
– Total # of blocks, # of free blocks, block size, free block

pointers or array

• Directory structure organizes the files
– Names and FCBs

• Per-file File Control Block (FCB) contains many details
about the file
– Unix (UFS) Inode number, permissions, size, dates
– Windows (NTFS) stores into in master file table using

relational DB structures

Disk Layout

Disk Layout

A Typical File Control Block

In-Memory File System Structures

• In memory directory structure holds the
directory information of recently accessed
directories

• System-wide-open file contains a copy of FCB
for each opened file

• Per-process open file table: contains pointer
to appropriate entry in the system wide open
file table

File handling

• Create a new file
– Application program calls the logical file system

• Logical file system
– Allocates a new FCB
– Reads the appropriate directory into memory
– Updates directory with new filename and FCB
– Write it back to disk

• Using the file (I/O)
– Open() [filename]
– Directory is searched
– FCB is copied into system wide open file table
– Entry made to Per-process open file table

• Pointer to the system table entry
• File descriptor#

In-Memory File System Structures

• A process closes a file

– Per process table entry removed

– System table count decremented

• All processes closed the file

– Updated file info is copied back to disk

– System wide open file table entry removed

Directory Implementation

• Linear list of file names with pointer to the data blocks
– Simple to program

– Time-consuming to execute
• Linear search time

– New file creation / deletion

– Linked list

• Cache the frequently accessed entry

• Binary search to speedup directory search
– Could keep ordered alphabetically

– or use B+ tree

• Hash Table – hash data structure
– Hash value computed from filename

– Decreases directory search time

– Insertion and deletion simple

– Collisions – situations where two file names hash
to the same location
• Chaining

• Hash table of fixed size

• Performance depends on hash function

Allocating Blocks to files

• Most important implementation issue

• Methods

• Contiguous allocation

• Linked list allocation

• Linked list using table

• Indexed

An allocation method refers to how disk blocks are allocated
for files

Allocation Methods - Contiguous
• Contiguous allocation – each file occupies set of

contiguous blocks
• Blocks are allocated b, b+1, b+2,…….

– Best performance in most cases
– Simple – only starting location (block #) and length

(number of blocks) are required (directory)

• Easy to implement

• Read performance is great. Only need one seek to locate the
first block in the file. The rest is easy.

• Accessing file is easy
– Minimum disk head movement
– Sequential and direct access

Moving-head Disk Mechanism

Contiguous Allocation of Disk Space

• Problems

– Finding space for file
• Satisfy the request of size n from the list of holes

• External fragmentation
– Need for compaction routine

– off-line (downtime) or on-line

– Do not know the file size a priori
• Terminate and restart

• Overestimate

• Copy it in a larger hole

• Allocate new contiguous space (Extent)

Extent-Based Systems
• Here, a contiguous chunk of space is allocated

initially.
• Then, if that amount proves not to be large enough

– another chunk of contiguous space, known as an extent,
is added.

• The location of a file’s blocks is then recorded as a
– First block and a block count,
– plus a link to the first block of the next extent.

• Many newer file systems (i.e., Veritas File System) use
a modified contiguous allocation scheme

• A file consists of one or more extents

(a) Contiguous allocation of disk space for 7 files.

(b) The state of the disk after files D and F have been removed.

Contiguous Allocation

Linked Allocation

• Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk

pointerblock =

• Each block contains pointer to next block
• File ends at nil pointer

Storing a file as a linked list of disk blocks.

Linked List Allocation

Linked Allocation

Linked Allocation

• Free blocks are arranged from the free space management
• No external fragmentation
• Files can continue to grow

Disadvantage
1. Effective only for sequential access

Random/direct access (i-th block) is difficult

2. Space wastage
If block size 512 B
Disk address 4B
Effective size 508B

3. Reliability
Lost/damaged pointer
Bug in the OS software and disk hardware failure
Double linked

Solution: Clusters
• Improves disk access time

(head movement)
• Decreases the link space

needed for block
• Internal fragmentation

Allocation Methods - Linked

• Linked allocation – each file a linked list of
blocks

– No compaction, external fragmentation

– Free space management system called when new
block needed

– Reliability can be a problem

– Locating a block can take many I/Os and disk seeks

Moving-head Disk Mechanism

Section of the disk at the
beginning of the partition
contains FAT table

Unused blocks => 0

Many head movements
Better random access

Linked Allocation

FAT (File Allocation Table) variation
Beginning of partition has table, indexed by block
number
Much like a linked list, but faster on disk and
cacheable
New block allocation simple

File-Allocation Table

MS DOS

Caching of FAT16

DOS

Allocation Methods - Indexed

• Indexed allocation

– Each file has its own index block(s) of pointers to
its data blocks

• Directory contains address of the index block

• Logical view

index table

Example of Indexed Allocation

Indexed Allocation

• Efficient random access without external
fragmentation,

• Size of index block
– One data block

• Overhead of index block
– Wastage of space
– Small sized files

Linked scheme

• Linked scheme – Link blocks of
index table (no limit on size)

• Multilevel index

A UNIX i-node.

The UNIX File System

Combined Scheme: UNIX UFS
(4K bytes per block, 32-bit addresses)

File-Allocation Table

MS DOS

FAT16
16 bits

Maximum size of the disk
supported by FAT26?

Implementing Directories

▪ OS uses path name supplied by the user to locate the

directory entry

▪ Stores attributes

▪ Directory entry specifies block addresses by providing

▪ Number of first block (contiguous)

▪ Number of first block (linked)

▪ Number of i-node

Implementing MS DOS Directories

Each entry 32 bytes long

The UNIX File System

Disk Layout

The steps in looking up /usr/ast/mbox.

The UNIX File System

Free-Space Management

• File system maintains free-space list to track available blocks

• Bit vector or bit map (n blocks)

• Each block is represent by 1 bit

…

0 1 2 n-1

bit[i] =

 1 block[i] free

0 block[i] occupied

Block number calculation=
(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

Simple and Efficient to find first free blocks or n consecutive free blocks

0 0 0 0 0 0 1 0

word
Bit map

Mac

Free-Space Management

• Bit map requires extra space
– Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
Number of blocks n = 240/212 = 228 bits (or

256 MB)

if clusters of 4 blocks -> 64MB of memory

• Keep the vector in main memory

Linked Free Space List on Disk

• Cannot get contiguous space
easily
• Traverse the list

• Generally require first free block

• Link together all the free disk
blocks

• Keep a pointer to the first free
block

Free-Space Management

• Grouping
– Reserve few disk blocks for management

– Modify linked list to store address of next n-1 free
blocks in first free block, plus a pointer to next
block that contains free-block-pointers

• Counting

Storing the free list using (a) Grouping (b) Bitmap.

Keeping Track of Free Blocks (1)

1KB block

16 bits block number

Each block holds 511 free blocks

20M disk needs 40 blocks for free list

How many for bit map?

MS DOS

Free Space for FAT

Demand Paging Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p) x 200 + p x 8,000,000
= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

Better utilization of swap space

Swap space

Layered File System

• Each level uses the feature
of low level

• Create new features for
higher level Hardware specific

instruction

R/W Physical block
(cylinder, track, sector)

Issue commands

Translates logical to
physical blocks

Manages FCB

Device driver, transfer
information between
memory/disk

Mounting

• Partition must be mounted with file system before it can be available to processes on the
system

• The operating system is given the name of the disk and the mount point—the location
within the file structure where the partition is to be attached

Current file system

Partition
in disk

Effects of mounting the
partition over /users

Various possibilities

• Systems impose restrictions for mounting.
• For example, a system may disallow a mount over a directory that contains files
• It may make the mounted file system available at that directory and hide the

directory’s existing files until the file system is unmounted
• System may allow the same file system to be mounted repeatedly,
at different mount points
• it may only allow one mount per file system.

Example Mac
• Whenever the system encounters a disk for the first time (either at boot time or while

the system is running),
• the macOS operating system searches for a file system on the device.
• If it finds one, it automatically mounts the file system under the /Volumes
directory,

Problem

Consider the organization of a Unix file represented by i-node. Assume that
there are 10 direct block pointers, and one singly, doubly and triply indirect
pointers in each i-node. Assume that the disk block size is 4KB. Disk block
pointer is 4 bytes.

(i). What is the maximum file size supported by the system?

(ii) Assuming i-node of a file is available in the main memory, how many disk
accesses are required to access the byte in position 54, 423,956?

