1)
a)

b)

d)

e)

2)

MODEL MIDSEMESTER SOLUTION
Jot Sarup Singh (11CS10059)

A Java source program may first be compiled into an intermediate form called bytecodes. The
bytecodes are then interpreted by a virtual machine. The virtual machine ensures platform
independence.

Both a.>b and b.>a will hold in a grammar where there are operators with same precedence and
the grammar is left associative. For example, leta=‘+"and b =‘-".

E-closure(X):

Push all states of X onto stack;
Initialize E-closure(X) to X;
while (stack is not empty){
pop t, the top element off the stack;
for (each state u with an edge from t to u labeled E)
if (u is not in E-closure(X)) {
add u to E-closure(X);
push u onto stack;

}
}
Consider the state:
S->L.=R
R->L.

and suppose ‘=" is in FOLLOW(R).

Then, the first item in the set makes ACTION|[2,=] be shift.
and the second item makes ACTION[2,=] be reduce.

Letter -> (a-zA-Z)

Digit -> (0-9)

Email -> (letter)(letter|digit)*(@)(letter+)(.)(letter+)

Stmt -> if Exp then Stmt else Stmt | if Exp then Stmt | a

Exp->b

(i) Perform Left factoring on the above grammer.

(ii) Design a predictive parsing table.

(iii) com

ment on that generated parsing table.

Answer :

(i) After Left factoring

Stmt -> if Exp then Stmt S' | a

S'-> else Stmt | epsilon

Exp->b

(ii) First Set

then

a

else
epsilon

b

Follow Set
Stmt
S|

Exp

Stmt Stmt ->if
Exp then
Stmt S'

Exp

then

a

else
epsilon

b

S, else, epsilon
S, else, epsilon

then

Then Else

S' ->else
Stmt

S'-> epsilon

Stmt->a

Exp->b

S'-> epsilon

(iii) The above predictive parsing tabel has a conflict in the cell (S', Else) and hence is not LL(1) Grammer.

(b) There will be a conflict because the following rule has not been added:

If Beta -> Epsilon then alpha does not derive any string beginning with terminal in FOLLOW (A)

3) a) These grammers have the property (among other essentail requirements) that no production right
side is epsilon or has the adjacent non terminals.

The techinque is a manipulation of tokens without the knowledge of the underlaying grammer. In fact
once we may effectively ignore the grammer, using the non terminals on th stack anly as placeholders
for attributes associated with the non terminals.

b)
E->EopE|id
op->+|-|*]/

Equivalent operator grammer

E->E+E|E—E|E*E|E/E|id

Operator Precedence Table

Id + - *
id > > >
+ < > > <
- < > > <
* < > > >
/ < > > >
S < < < <

b) ParseP *Q /R+T

Stack Input

$ P*Q/R+TS
$P *Q/R+TS
Sid *Q/R+TS
Sid* Q/R+TS
Sid*Q /R+TS
Sid*id /R+TS
$id /R+TS
Sid/ R+TS
Sid/R +TS
Sid/id +T$S

$id +T$

Sid+
Sid+T
Sid+id
Sid

4) 1.5 ->S
2.S->aABe

3.A->Abc

4. A->b
5.B->d

SI

s2

s4

s6

r3

s8

r2

FIRST

s7

r3

r2

v n unmn un -

FOLLOW
$
s
b,d
e
e S S
1
accept

s9

r4

rl

