
Model Answer for Class Test 1
Dipayan Mukherjee : 11CS30045

1. Consider the following grammar with 2 missing productions :
 𝑆 → 𝑎𝑆 | 𝑃𝑟𝑜𝑑 1
 𝐴 → 𝑃𝑟𝑜𝑑2 | 𝜖
 𝑋 → 𝑐𝑆 | 𝜖
 𝑌 → 𝑑𝑆 | 𝜖
 𝑍 → 𝑒𝑆
Terminal ={𝑎, 𝑏, 𝑐,𝑑, 𝑒} , Non Terminal = {S,A,X,Y,Z}. S is the start symbol.
Fortunately we have the First and Follow sets for this grammar:

 First Follow
S {𝑎, 𝑏, 𝑐,𝑑, 𝑒} {$} ∪ 𝐹𝑜𝑙𝑙𝑜𝑤 (𝑋) ∪ 𝐹𝑜𝑙𝑙𝑜𝑤(𝑌) ∪ 𝐹𝑜𝑙𝑙𝑜𝑤(𝑍)
A {𝑐, 𝑑, 𝑒, 𝜖} {𝑏}
X {𝑐, 𝜖} {𝐹𝑖𝑟𝑠𝑡(𝑌) − 𝜖} ∪ 𝐹𝑖𝑟𝑠𝑡 (𝑍)
Y {𝑑, 𝜖} 𝐹𝑖𝑟𝑠𝑡 (𝑍)
Z {𝑒} 𝐹𝑜𝑙𝑙𝑜𝑤 (𝐴)

 Reconstruct the grammar by filling in the missing two productions (Prod1) and (Prod 2).

 Answer: -

• Since Follow (Z) = Follow (A), hence in the Prod2 of A, Z is the last non
terminal in the production, because only then Follow (Z) can be Follow (A).

• Follow (Y) = First (Z) implies that whenever non terminal Y appears Z follows
it. That is in any production they will be of type 𝑃 → ⋯𝑌𝑍 | …

• Similar to previous argument from Follow (X) we can deduce that whenever
X appears YZ follows it as only then Follow (X) = {𝐹𝑖𝑟𝑠𝑡 (𝑌) − 𝜖 } ∪ First (Z).

• Since there are no production starting with {𝑏} hence any production where
A occurs it will be 𝑃 → ⋯𝐴𝑏 | …

• Now since First (A) has all First of X, Y, Z only so we can write the production
of 𝐴 → 𝑋𝑌𝑍 | 𝜖 since we showed that X must be followed by YZ and Y
by Z.

• Since by the given production of S only {𝑎} can be its First but it also includes
the First of A and Follow (A). Hence the production of S is

 𝑆 → 𝑎𝑆 | 𝐴𝑏

 Hence Prod 1: - 𝐴𝑏 and Prod 2: 𝑋𝑌𝑍

2. Consider the following regular definition :
 𝑠𝑖𝑔𝑛 → [+ −]
 𝑑𝑖𝑔𝑖𝑡 → [0 − 9]
 𝑑𝑜𝑡 → \.
 exp → [𝑒𝐸] // exponential
a) Give the regular definition for signed/ unsigned floating point numbers. In

exponential power, the number should be an integer.
b) Draw DFA for accepting floating point numbers using the above regular

definition.

Answer:

 a) Let us define a few more regular expressions using those above to
shorten our definition:

 𝑠𝑔𝑛 → 𝑠𝑖𝑔𝑛 | 𝜖
 𝑑𝑖𝑔𝑖𝑡𝑠 → 𝑑𝑖𝑔𝑖𝑡+

Now using these along with the given expression we give the regular
definition as follows:

𝑓𝑙𝑜𝑎𝑡 → 𝑠𝑔𝑛 𝑑𝑖𝑔𝑖𝑡𝑠 𝑑𝑜𝑡 𝑑𝑖𝑔𝑖𝑡𝑠 ({exp 𝑠𝑔𝑛 𝑑𝑖𝑔𝑖𝑡𝑠} | 𝜖)

 b)

This is the DFA for accepting the floating point number

dot

sign digit

digit

digit

digit

digit

digit

exp digit

sign
digit

start

3. a) Let’s assume that in a programming language specification P++, the last symbol
of any program written in P++ is ‘ENDP’ (like in C, where last symbol is a closing
parenthesis} of main ()). In a panic mode error recovery implementation for a
predictive parser for P++, Prof. X includes only ‘ENDP’ symbol in the
synchronization set. What kind of problem/ inconvenience do you expect from his
compiler? (Answer in 2-3 sentences)

Answer:

• This will stop the program from being parsed whenever any error is
encountered and will skip till the end when ENDP is encountered so no
recovery is actually done, as it simply stops parsing.

• It will report only one error during a parsing so if there are multiple errors
we will have to run the parsing multiple times, causing inconvenience.

 b) True or False. Justify with logic (in 2-3 sentences) (no marks without logic)

 i) “If all the addresses in the final object program contains absolute
addresses, then an absolute loader is sufficient to load the program in main memory”

 Answer:
Since in absolute loader the programmer has to specify the address to the
assembler where the program is to be loaded, then the loader loads the program
at that point if the memory location is free. Since as per the statement we already
have the absolute addresses of the code, hence an absolute loader is sufficient to
load the entire program into the main memory.

 True

ii) “Dynamic loader can work without dynamic linker (as long as a static linker
is available)”

Answer:
Yes there can be Dynamic loader without Dynamic Linking. As with static linking
the executable has an address/ offset table generated during the compile time but
the actual code/ data aren’t loaded to the memory at the start of the process.
Hence there can be dynamic loader without dynamic linking.

 True

