
Three Address Code Generation

How to store?
How to represent?

Directed Acyclic Graphs for Expressions (DAG) :
Like the syntax tree for an expression, a DAG has leaves corresponding

to operands and interior codes corresponding to operators. The difference is
that a node N in a DAG has more than one parent if N represents a common
subexpression; in a syntax tree, the tree for the common subexpression
would be replicated as many times as the subexpression appears in the
original expression.

Dag for the expression a + a * (b – c) + (b - c) * d

Representations of 3 address code

Three representations are called "quadruples," triples," and "indirect triples."

1. Quadrapules

A quadruple has four fields, which we call op, arg,, arg2,
and result. The op field contains an internal code for the operator. For
instance, the three-address instruction x = y + x is represented by placing + in
op, y in op1, z in op2 and x in result

2. Triples

A triple has only three fields, which we call op, op1, and op2.

3. Indirect Triples

Indirect triples consist of a listing of pointers to triples, rather than a listing
of triples themselve

 Common Three-Address Instruction Forms

1. Assignment
x = y op z

where op is a binary arithmetic or logical operation, and x, y, and z are
addresses.

 x = op y
where op is a unary operation.

2. Copy
x = y

 where x is assigned the value of y.
3. Unconditional jump

 goto L
where the three-address instruction with

labelL is the next to be executed.
5. Conditional jumps

if x goto L

These instructions execute the
instruction with label L next if x is true

if x reop y goto L

which apply a relational operator to x and y

6. Procedure calls
call p

return y

7. Indexed copy instructions
x = y[i]
x[i] = y

8. Address and pointer assignments

x=&y
x = *y
*x = y

