
Three Address Code Generation

How to store? How to represent?

Directed Acyclic Graphs for Expressions (DAG) :

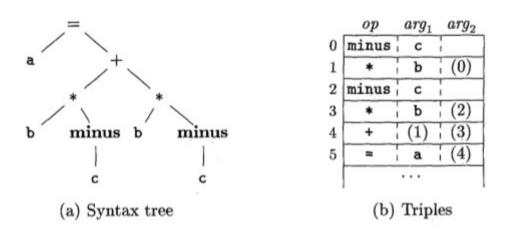
Like the syntax tree for an expression, a DAG has leaves corresponding to operands and interior codes corresponding to operators. The difference is that a node N in a DAG has more than one parent if N represents a common subexpression; in a syntax tree, the tree for the common subexpression would be replicated as many times as the subexpression appears in the original expression.

Dag for the expression a + a * (b - c) + (b - c) * d

Representations of 3 address code

Three representations are called "quadruples," triples," and "indirect triples."

1. Quadrapules


A quadruple has four fields, which we call op, arg,, arg2,

and result. The op field contains an internal code for the operator. For instance, the three-address instruction x = y + x is represented by placing + in op, y in op1, z in op2 and x in result

		op	arg_1	arg_2	result
$t_1 = minus c$	0	minus	с	1	t ₁
$\mathbf{t}_2 = \mathbf{b} * \mathbf{t}_1$	1	*	Ъ	t1	t_2
$t_3 = minus c$	2	minus	c	1	t ₃
$t_4 = b * t_3$	3	*	b	t ₃	t 4
$\mathbf{t}_5 = \mathbf{t}_2 + \mathbf{t}_4$	4	+	t_2	t_4	t 5
$\mathbf{a} = \mathbf{t}_5$	5	=	t_5	1	a
(a) Three-address code		(b) Qua	adrup	les

2. Triples

A triple has only three fields, which we call op, op1, and op2.

3. Indirect Triples

Indirect triples consist of a listing of pointers to triples, rather than a listing of triples themselve

 Assignment

 x = y op z where op is a binary arithmetic or logical operation, and x, y, and z are addresses.
 x = op y where op is a unary operation.

Copy

 x = y where x is assigned the value of y.
 Unconditional jump
 goto L
 unbase the three ordered provide a single provide a s

where the three-address instruction with labelL is the next to be executed.

5. Conditional jumps

These instructions execute the instruction with label L next if x is true

if x reop y goto L

if x goto L

which apply a relational operator to x and y

6. Procedure calls

call p return y

7. Indexed copy instructions

x = y[i] x[i] = y

- 8. Address and pointer assignments
 - x=&y x = *y *x = y