
REPORT ON TUTORIAL (30th October 2013)

Implementation of L – Attributed SDD :

Methods to do translation by traversing a parse tree:

1. Build the parse tree and annotate.
2. Build the parse tree , add actions , and execute the actions in preorder. This works for L-

attributed definition.

Methods for translation for translation during parsing:
1. Use a recursive – descent parser with one function for each nonterminal. The function for

nonterminal A receives inherited attributed of A as arguments and returns the synthesized
attributed of A.

2. Generate code using a recursive – descent parser.
3. Implement a SDT in conjunction with an LL-parser.

Translation during Recursive – Descent Parsing:

A recursive – descent parser has a function A for each nonterminal A.

a) The argument of function A are the inherited attributed of non-terminal A.
b) The return value of function A is the collection of synthesize attributes of non-terminal A.
c) Preserve, in local variable, the values of all attributes needed to compute inherited attribute for

non-terminals in the body or synthesize attribute for the head non terminal.
d) Call functions corresponding to non-terminals in the body of the selected production, providing

them with the proper arguments.

A -> X1 X2 -------------------------------- (1)

Attributes for A: a.syn , a.inh
Attributes for X1: x1.syn Attributes of X2: x2.inh

We know , inherited attributes for non-terminal in the body of production can be the function of
inherited of parent and attributes of non-terminal left to it.

x2.inh = f(x1.syn, a.inh)

and, synthesize attributes of the head of the production is the function of synthesized attributes of the
children.

a.syn = fun(x1.syn, x2.syn)

Equivalent SDT, for production (1):
A -> X1 { x2 = f(x.syn, a.inh) } X2 { a-syn = f(x1.syn, x2.syn) }

1. Inherited attributed rule of the non-terminal of the body of production will come just before
that NT in the that production.

2. If A (head of the production) has any synthesized attributed rules, then that will come after all
non-terminal of the body of production as the fragmented code.

For example:
T -> F T’ { T’.inh = F.val / T.val = T’.syn }
T’ -> * F T1’ { T1’.inh = T’.inh * F.val / T’.syn = T1’.syn }
T’ -> epsilon { T’.syn = T’.inh }
F -> id { F.val = id.val }
Equivalent SDT:
T -> F { T’.inh = F.val } T’ { T.val = T’.syn }
T’ -> * F { T1’.inh = T’.inh * F.val } T1’ { T’.syn = T’.inh }
T’ -> epsilon { T’.syn = T’.inh }
F -> id { F.val = id.val }

Writing function for a non terminal
A()
{
 Declare : a-syn, x1-syn, x2.inh, x2-syn;
 If(current symbol (a) == Terminal X1)
 Move i/p pointer to next symbol of the input string
 Else if (X2 is NT)
 x1-syn = X1();
 x2.inh = f (x1-syn);
 x2-syn = X2(x2.inh);
 a.syn = f (x1-syn,x2-syn);

return a-syn;
}

Now, functions for the non-terminals introduced in the above example:

F()
{
 Declaration: F-val;
 If(id == T and Id matched with the input symbol)
 Move input pointer to the next symbol.
 F.val = id.val (get from the lexical analyser)
 Return F.val;
}

T()
{
 If(F matched with the input symbol & F == T)
 Move input pointer to the next symbol.
 If (F == NT)
 {
 F-val = F();
 T’-inh = F-val;

}
If(T’ == a && T’ is T)
 Move ptr. To next;
If(T’ == NT)
{
 T’-syn = T’(T’-inh);

T-val = T’-syn;
Return T-val;

}

