
 Introduction to compilers 22/07 & 23/07/13

Compiler basically performs two tasks.

 Transforms the high level source code into assembly level target code

 Detects the errors in the source code

 Test.c target code

We already know that every computer has its own processor. Below is given, the

internal architecture of the processor.

 Processor

 Data Bus

 Instruction

 Memory (IM)

 Data

 Memory (DM)

 Compiler

Memory data

Register-MDR

Memory addr

Register-MAR

Instruction

Register -IR

 Program

Counter-PC

Instruction

Decoder-ID

 Control

 Unit - CU

Accumulator

 Register0

 Register1

 Register2

 …….

Processor consists of a set of registers. There are 2 types of registers

 General purpose registers

 Special purpose registers

Here are, two of the few special purpose registers. These are used to access the main

memory.

 Memory Data register

 Memory address registers

Main memory also two parts. They are

 Instruction Memory - stores the body of the code i.e set of instructions

 Data Memory - stores the variable(s) values/data

Accumulator is also a special purpose register. It is used for temporary storage.

Whenever we read something from the memory, that content/value will be stored in

the accumulator. Even the result of any operation Ex:- addition, is also stored in the

accumulator before writing back into the memory.

The program counter stores the address of the next instruction to be executed. The

instruction decoder and Control unit together are used to determine the control

signals and the next instruction.

First, the instruction at the address provided by the PC will be stored in the IR and

then the ID decodes the instruction and the CU generates the control signals ex:-

read/write for the data bus. The operand (if any) in the data memory will be read (or)

written through the address stored in the address bus provided by the MAR. The data

in the MDR will be copied into the accumulator and if another operand comes then the

content of the accumulator will be moved into the register 0. The ALU has,

accumulator and a register as its two inputs and after performing the arithmetic/logic

operation the result will again be stored in the accumulator and then to the MDR and

finally back into DM.

 Now, consider the operation [X] <- [P] + [Q] where [P] denotes the value at the

address P. Here are the sequence of instructions performed by processor upon getting

this instruction.

1) Fetch [P]

2) Transfer the content of accumulator to R0

3) Fetch [Q]

4) Perform the add operation

5) Pass the result to the accumulator

6) Pass the write address to MAR and the write data to MDR from accumulator

7) CU performs the write signal

Now, here are the corresponding assembly level instructions for the above steps

 LDA 1000 -> fetches the content of memory location 1000 into accumulator

 MOV R0 -> moves the content of accumulator into Register R0

 LDA 2000 -> fetches the content of memory location 2000 into accumulator

 ADD R0 -> Adds the contents of accumulator and R0 and stores in accum

 STR 2050 -> Stores the content of accumulator in the memory location 2050

Each of the above assembly level instruction has a corresponding machine level

interpretation. We write in assembly level just for readability purposes.

For example:

 LDA - 1001001 -> 73

 MOV - 1010010-> 82

 STA - 0001111 -> 15

Hence the machine level code looks like

 73 1000

 82

 71 2000

 ………….

 Assembly level Machine level

The machine level code is machine/processor dependent.

While designing the processor we need to simultaneously define the instructions that

are to be supported by the processor. Each processor has its own finite set of

Instruction set.

Each compiler has 2 parts

 General purpose

 Machine dependent

Compiler v/s Interpreter:-

 The interpreter translates and executes the source code line by line where as the

compiler first translates the entire code and then executes it. The compiler works

faster than the interpreter since the interpreter translates and executes line by line

which takes more time but the interpreter can give better error diagnostics since it

works line by line.

 output

 Assembler

JAVA source

Code compiler

compiler

Intermediate/

Byte code

(m/c independent)

INTERPRETER

Platform dependent

(JAVA Virtual m/c)

