
LR PARSER

Construction of Items from a Production

Let there be a production of the form A->XYZ

We can construct 4 items from the production which are of the form

1. A->. XYZ

2. A->X.YZ

3. A->XY.Z

4. A->XYZ.

Each of these items tell us how much of the input string has been recognized. For example,

 A->X.YZ implies that prefix of the string being parsed has been reduced to the non terminal X

and a portion of the rest of the string may be matched with the non terminals YZ.

 A->XYZ. tells us that prefix of the string to be parsed has been matched with XYZ and probably

it is the time to reduce.

A->. XYZ tells us that we have not yet started matching prefix of the remaining string to be

parsed with the production of A.

Construction of LR(0) Automaton

In case of the bottom up parsers there is an extra information module which tells the parser

whether to shift or reduce. In case of LR parser it is the parsing table. In order to construct the

parsing table we have to first construct the LR automaton. Each state in this automaton is

nothing but a set of items. In order to construct states , 2 functions are defined namely

CLOSURE() , GOTO() .CLOSURE helps to find states of the automaton and GOTO will help in

constructing transitions of the automaton.

In construction of the states of the LR(0) automaton from the grammar G , some steps are

followed .

STEP 1: Add the production S’->S to the grammar G to form augmented grammar G’ where S is

the start symbol of G and S’ will be the start symbol in the augmented grammar G’.

STEP 2: For any LR(0) automaton the initial state contains the item S’->.S. Now in order to

construct the state we need to find the closure of this item. Closure() takes set of items as input

and generates closure of the set of items as output. Now CLOSURE(S’->.S) will give us the start

state i.e S0 for any LR automaton.

CLOSURE(I0)

1. Put all items present in I0 in CLOSURE I0

2. If there is a production of the form A->B.CD in I0 and there is a production of the form B->E in

G’ then add the item B->.E to the CLOSURE I0

Let there be a grammar G’ of the form

E’->E

E->E+T|T

T->T*F|F

F->id

To find State S0 add the item E’->.E to the state .Now for all productions in G’ with E as the head

like E->E+T|T we have to add the items E->.E+T and E->.T to the state S0 .Again we get an item

with T appearing to the right of the dot. So we have to add items corresponding to the

production where T appears as the head. So we get the items T->.T*F and T->.F . Similarly we

get the item F->.id . Therefore S0 is equivalent to the set of items

E’->.E E->.E+T E->.T T->.T*F T->.F F->.id

Now CLOSURE gives us the start state . In order to find the next state we have to use the GOTO

functions. GOTO functions takes a state and a terminal/ non-terminal symbol as input and gives

another set of items i.e state as the output.

GOTO(Ii , X) -> Ij where Ii -> input set of items X -> terminal/non-terminal symbol Ij -> output set

of items.

Now if there is an item of the form A->B.XD in Ii then add the item A->BX.D to Ij and then

compute the CLOSURE of the item. GOTO function moves the dot one symbol forward.

Let the string be of the form x1….xmxm+1…xsxs+1…

x1….xm has already been matched with B. xm+1…xs can be now matched with X . So our next

item after marching X must be of the form A->BX.D where we have already matched a portion

of the input string with BX and can probably match a prefix of the remaining string with D.

Let I0 be the set of items corresponding to the state S0 for the above given example. Now we

want to find GOTO(I0,E), GOTO(I0,T), GOTO(I0,F), GOTO(I0,id)

GOTO(I0,E) :I1

Item E’->.E E->.E+T are available . So we add E’->E. E->E.+T to I1 and take the closure of items.

So we get I1: E’->E. E->E.+T

GOTO(I0,T) :I2

Item E->.T T->.T*F are available . So we add E->T. T->T.*F to I2 and take the closure of items.

So we get I2: E->T. T->T.*F

GOTO(I0,F) :I3

Item T->.F is available . So we add T->F. and take the closure of item.

So we get I3: T->F.

GOTO(I0,id) :I4

Item F->.id is available . So we add F->id. and take the closure of item.

So we get I4: F->id.

Each of the set of items I4, I1 , I2, I3 correspond to a new state 4,1,2,3 respectively of the LR(0)

automaton . For each of these states we again use the GOTO function for those terminals and

non-terminals which appear to the right of the dot in at least one of the items present in that

state. For each GOTO(Ii , X) -> Ij call we make if we get a new set of items Ij we add a new state

to the automaton . Corresponding to Ij we add the state j to the automaton and add the

transition from state i to state j in the automaton labeled with the grammar symbol X.

