
SHIFT REDUCE PARSER
 September 02, 2013, Report

Saurav Manchanda

(11CS10040)

Input

 Stack

Consider following productions:

E E+T|T
T T*F|F
F  id

Stack String Acion

$ Id*id$ Shift
$id *id$ Reduce (F  id)
$F *id$ Reduce (T F)
$T *id$ Shift

$T* id$ Shift
$T*id $ Reduce (F  id)

id * Id $

$

Shift Reduce

Parser

Info

$T*F $ Reduce (T T*F)
$T $ Reduce (E T)
$E $ Accept

Eventually,
Stack: $S String: $  Accept State

Challenges:

1. Stack top will always match with the rightmost symbol. Real
challenge is to find the leftmost symbol in stack.

2. Shift-Reduce Conflict: Decision whether to shift or reduce.
3. Reduce-Reduce Conflict: Which production to use for reduction

out of following:
Bγ
Cγ

Different Parsers:
1. Operator Precedence Parser
2. LR Parser

i) SLR
ii) CLR
iii) LALR

Top Down parsers works for only a subset of CFG, i.e... LL(1) grammars.
Similarly,

 Operator Precedence Parser: Operator Grammar

 LR Parser: LR Grammar

Operator Precedence Parser
 Arithmetic Expressions.
 Very difficult to make it work for other grammars.

Operator Grammar
 No ε-transitions
 No two or more consecutive non-terminals.

Operator Precedence Info:
For a,b ϵ T
1) a has higher precedence over b  a·>b
2) a has equal precedence with b  a·=b
3) a has lower precedence than b  a<·b

 id + * $

id X ·> ·> ·>

+ <· ·> <· ·>

* <· ·> ·> ·>
$ <· <· <· X

In case of equal precedence, check the associativity of that particular
operator.

id always has highest precedence and $ has lowest precedence.

