COMPILER

SYNTAX ANALYSIS
BOTTOM UP PARSER



Top-down versus Bottom-up Parsing

e Top down:
* Recursive descent parsing
e LL(k) parsing
e Top to down and leftmost derivation

* Expanding from starting symbol (top) to gradually derive the
input string

e Can use a parsing table to decide which production to
use next
e The power is limited
e Many grammars are not LL(k)

* Left recursion elimination and left factoring can help make
many grammars LL(k), but after rewriting, the grammar can be
very hard to comprehend

e Space efficient
e Easy to build the parse tree



Top-down versus Bottom-up Parsing

* Bottom up:
e Also known as shift-reduce parsing
e LR family
* Precedence parsing

Shift: allow shifting input characters to the stack, waiting till
a matching production can be determined

Reduce: once a matching production is determined, reduce

Follow the rightmost derivation, in a reversed way

* Parse from bottom (the leaves of the parse tree) and work up to
the starting symbol

Due to the added “shift”
—> More powerful

* Can handle left recursive grammars and grammars with left
factors

= Less space efficient



Basic Idea

Construct Leaves first then move up to the root.

Example :

Let G be a grammar such that
E2>E+T|T

T>T*F | F

F-2id



Let the input string be w = id * id

The steps to construct the tree will be as follows:

15t step: F*id
id

2"d step: T*id
F



3"d step : T*F

id



Properties of Bottom Up Parsing

e A bottom-up parser begins with parse tree’s leaves,
and moves toward its root

e A bottom-up parser traces a rightmost derivation in
reverse

e A bottom-up parser uses a grammar rule to replace
the rule’s RHS with its LHS

* (Fig. 4.5 & Fig. 4.6)



Reduction

Definition : Reverse process of derivation.
Ex. 6 = afw

and if A > B
Then 6 = dAw



Handle

Definition : A substring within a string which matches with the body of
a production. It should comply with the rightmost derivation.

Ex. S—26
6 2 afw
A2
Then 6 2 adAw
Thus B is a valid handle.



Handle Pruning

w=06,206,2 ...25S

Challenges:
1) Which productions to use.
2) When to reduce.



Shift Reduce Parser

Input String Handle Production
id * id id F—2>id
F*id F T>F
T*id T F>T
T*F F F>id

T T*F T>T*F

E T E2>T



Major Actions

1) Shift

2) Reduce

Stack Partial input string
S X1 X2 X3 S

a) Find a handle from the string that u have in the stack
b) Reduce.



