
SCRIBING REPORT OF COMPILERS CLASS ON 27.08.2013 BY PURELLA VIVEK ADITYA (11CS10034)

ERROR HANDLING IN PREDICTIVE PARSER

Motivation:
 We know that the Predictive parser performs Left most derivative while parsing the given sentence

 Now the given sentence may be a valid sentence or an invalid sentence with respect to the specified

grammar

 An error is detected during the predictive parsing when the terminal on top of the stack does not match

the next input symbol, or when nonterminal X on top of the stack, a is the next input symbol, and

parsing table entry PT[X , a] is empty i.e., X is not in the parsing table.

 Our predictive parser works as follows

 Stack top X

input symbol a

:

while (...) {

 if (X is Terminal)

 {

 if(X==a)

 {

 pop X

 move input ptr forward to next symbol

 }

 else // X!=a

 { // Error found }

 }

 else // X is NT

 {

 if (X is found in parsing table)

 {

 pop X // X---> Y1 Y2…Yn

 push Yn... Y2 Y1

 }

 else // X not in parsing table

 { // Error found }

 }

}

 Our code will report only the 1st error, but we want to report all errors , so we need to do error handling

 Specification of a parser

o Report syntax errors

o Proceed forward after detecting 1st error  Error Recovery (ER)

o Simple and Fast

Error Recovery Methods and Techniques:
1. Panic Mode Recovery

2. Phrase level Recovery

3. Erroneous Productions

Panic Mode Recovery:

 Let us think that the parser has successfully scanned and created a parse tree till ‘a’ and next to that it

has found an error

W= x1x2……a……xn

 Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a

selected set of synchronizing tokens (a specific set of symbols) appears. From there continue parsing

the rest of string.

 After detection of error the parser should be restored to a start state, where it can restart again.

 Its effectiveness depends on the choice of synchronizing set. The sets should be chosen so that the

parser recovers quickly from errors that are likely to occur in practice.

 Good example for specific symbol in C is ; .
 As a starting point, place all symbols in FOLLOW (X) into the synchronizing set for nonterminal X, if we

skip tokens until an element of FOLLOW(X) is seen and pop X from the stack, it is likely that parsing can

continue.

 We need to add some more symbols in the synchronizing set. But how does this work

 By keeping a special character ‘S’ in the parsing table at the places where the elements of synchronizing

set are present we can achieve it

PT SyncSymbol1 ………….. SyncSymbol2

X

 S .………... S

 ………………………………………………..

Justification

 Suppose SαAβ And A aϒ

 S αaϒβ ------- a valid sentential form

 a ϵ Follow (X) , if we skip from erroneous symbol to ‘a’ the rest is probably valid sentential form

Drawbacks

 The above discussion of panic-mode recovery does not address the important issue of error messages.

 The compiler designer must supply informative error messages that not only describe the error, they

must draw attention to where the error was discovered.

Phrase level Recovery:

 On discovering an error, perform a local fix to allow the parser to continue.

 Simultaneously report error

PT T

NT

 Now invoke a specific function to modify the string

 Simple cases are exchanging ; with , and = with == , delete an extraneous semicolon, or insert a missing

semicolon. Difficulties occur when the real error occurred long before an error was detected.

 The choice of the local correction is left to the compiler designer.

Erroneous Productions

 Include productions for common errors. We can augment the grammar for the language at hand with

productions that generate the erroneous constructs.

 A parser constructed from a grammar augmented by these error productions detects the anticipated

errors when an error production is used during parsing.

 The parser can then generate appropriate error diagnostics about the erroneous construct that has been

recognized in the input.

THE END

