

Top-Down Parsing

Parsing is the process of determining how a string of terminals can be generated

by a grammar. In discussing this problem, it is helpful to think of a parse tree

being constructed, even though a compiler may not construct one, in practice.

However, a parser must be capable of constructing the tree in principle, or else

the translation cannot be guaranteed correct.

Possible Approaches
The syntax analysis phase of a compiler verifies that the sequence of tokens extracted by the scanner represents a valid

sentence in the grammar of the programming language. There are two major parsing approaches: top¬down and

bottom¬up. In top-down parsing, you start with the start symbol and apply the productions until you arrive at the desired

string. In bottom-up parsing, you start with the string and reduce it to the start symbol by applying the productions

backwards. As an example, let’s trace through the two approaches on this simple grammar that recognizes strings

consisting of any number of a’s followed by at least one (and possibly more) b’s:

S –> AB

A –> aA |

B –> b | bB

Here is a top¬down parse of aaab. We begin with the start symbol and at each step, expand one of the remaining

nonterminals by replacing it with the right side of one of its productions. We repeat until only terminals remain. The

top-down parse produces a leftmost derivation of the sentence.

S
AB S –> AB
aAB A –> aA
aaAB A –> aA
aaaAB A –> aA

aaaB A –>

aaab B –> b

A bottom¬up parse works in reverse. We begin with the sentence of terminals and each step applies a production in

reverse, replacing a substring that matches the right side with the nonterminal on the left. We continue until we have

substituted our way back to the start symbol. If you read from the bottom to top, the bottom-up parse prints out a

rightmost derivation of the sentence.

aaab

aaab (insert)

aaaAb A –>
aaAb A –> aA

aAb A –> aA
Ab A –> aA

AB B –> b

S S –> AB
In creating a parser for a compiler, we normally have to place some restrictions on how we process the input. In the

above example, it was easy for us to see which productions were appropriate because we could see the entire string aaab.

In a compiler’s parser, however, we don’t have long¬distance vision. We are usually limited to just one¬symbol of

lookahead. The lookahead symbol is the next symbol coming up in the input. This restriction certainly makes the parsing

more challenging. Using the same grammar from above, if the parser sees only a single b in the input and it cannot

lookahead any further than the symbol we are on, it can’t know whether to use the production B–> b or B –> bB.

Backtracking
One solution to parsing would be to implement backtracking. Based on the information the parser currently has about the

input, a decision is made to go with one particular production. If this choice leads to a dead end, the parser would have to

backtrack to that decision point, moving backwards through the input, and start again making a different choice and so on

until it either found the production that was the appropriate one or ran out of choices. For example, consider this simple

grammar:

S –> bab|bA

A –> d|cA

Let’s follow parsing the input bcd. In the trace below, the column on the left will be the expansion thus far, the middle is

the remaining input, and the right is the action attempted at each step:

S bcd Try S –> bab
Bab bcd match b
ab cd dead-end, backtrack
S bcd Try S –> bA
bA bcd match b
A cd Try A –> d
d cd dead-end, backtrack
A cd Try A –> cA
cA cd match c
A d Try A –> d
d d match d

Success!

As you can see, each time we hit a dead-end, we backup to the last decision point, unmake that decision and try another

alternative. If all alternatives have been exhausted, we back up to the preceding decision point and so on. This

continues until we either find a working parse or have exhaustively tried all combinations without success.

Backtracking parsers canbeused for a variety of grammars without requiring them to fit any specific form. For a small

grammar such as above, a backtracking approach may be tractable, but most programming language grammars have

dozens of nonterminals each with several options and the resulting combinatorial explosion makes a this approach very

slow and impractical. We will instead look at ways to parse via efficient methods that have restrictions about the form of

the grammar, but usually those requirements are not so onerous that we cannot rearrange a programming language

grammar to meet them.

Top¬Down Predictive Parsing
First, we will focus in on top¬down parsing. We will look at two different ways to implement a non¬backtracking

top¬down parser called a predictive parser. A predictive parser is characterized by its ability to choose the production to

apply solely on the basis of the next input symbol and the current nonterminal being processed. To enable this, the

grammar must take a particular form. We call such a grammar LL(1). The first "L" means we scan the input from left

to right; the second "L" means we create a leftmost derivation; and the 1 means one input symbol of lookahead.

Informally, an LL(1) has no left-recursive productions and has been left¬factored. Note that these are necessary

conditions for LL(1) but not sufficient, i.e., there exist grammars with no left¬recursion or common prefixes that are not

LL(1). Note also that there exist many grammars that cannot be modified to become LL(1). In such cases, another

parsing technique must be employed, or special rules must be embedded into the predictive parser.

Recursive Descent
The first technique for implementing a predictive parser is called recursive¬descent. A recursive-descent parser consists

of several small functions, one for each nonterminal in the grammar. As we parse a sentence, we call the functions that

correspond to the left side nonterminal of the productions we are applying. If these productions are recursive, we end up

calling the functions recursively.

Algorithm for Recursive descent parsing

void A() {

1) Choose an A-production, A -> XI X2 . . . Xk;

2) for (i = l t o k) {

3 if (Xi is a nonterminal)

4) call procedure Xi () ;

5 else if (Xi equals the current input symbol a)

6) advance the input to the next symbol;

7) else /* an error has occurred */;

}

}

Let’s start by examining some productions from a grammar for a simple Pascal¬like programming language. In this

programming language, all functions are preceded by

the reserved word FUNC: program –> function_list function_list –> function_list function | function function –> FUNC

identifier (parameter_list) statements

.

What might the C function that is responsible for parsing a function definition look like? It expects to first find the token

FUNC, then it expects an identifier (the name of the function), followed by an opening parenthesis, and so on. As it pulls

each token from the parser, it must ensure that it matches the expected, and if not, will halt with an error. For each

nonterminal, this function calls the associated function to handle its part of the parsing. Check this out:

void ParseFunction() {

if (lookahead != T_FUNC) { // anything not FUNC here is wrong printf("syntax error \n"); exit(0);

} else

lookahead = yylex(); // global 'lookahead' holds next token ParseIdentifier(); if (lookahead != T_LPAREN) {

printf("syntax error \n"); exit(0); } else

lookahead = yylex(); ParseParameterList(); if (lookahead!= T_RPAREN) {

printf("syntax error \n"); exit(0); } else lookahead = yylex(); ParseStatements(); }

To make things a little cleaner, let’s introduce a utility function that can be used to verify that the next token is what is

expected and will error and exit otherwise. We will need this again and again in writing the parsing routines.

void MatchToken(int expected) {

if (lookahead != expected) { printf("syntax error, expected %d, got %d\n", expected,lookahead); exit(0);

} else // if match, consume token and move on lookahead = yylex(); } Now we can tidy up the ParseFunction routine and

make it clearer what it does:

void ParseFunction()

{ MatchToken(T_FUNC); ParseIdentifier(); MatchToken(T_LPAREN); ParseParameterList();

MatchToken(T_RPAREN); ParseStatements();

}

Here is the production for an if¬statement in this language:

To prepare this grammar for recursive¬descent, we must left¬factor to share the common parts:

if_statement –> IF expression THEN statement close_ifclose_if –> ENDIF | ELSE statement ENDIF

Now, let’s look at the recursive¬descent functions to parse an if statement:

void ParseIfStatement()

{ MatchToken(T_IF); ParseExpression(); MatchToken(T_THEN); ParseStatement(); ParseCloseIf();

}

void ParseCloseIf() { if (lookahead == T_ENDIF) // if we immediately find ENDIF lookahead = yylex(); // predict

close_if -> ENDIF

else { MatchToken(T_ELSE); // otherwise we look for ELSE ParseStatement(); // predict close_if -> ELSE stmt

ENDIF MatchToken(T_ENDIF);

} }

When parsing the closing portion of the if, we have to decide which of the two right-hand side options to expand. In this

case, it isn’t too difficult. We try to match the first token again ENDIF and on non¬match, we try to match the ELSE

clause and if that doesn’t match, it will report an error.

Navigating through two choices seemed simple enough, however, what happens where we have many alternatives on the

right side?

statement –> assg_statement | return_statement | print_statement | null_statement| if_statement | while_statement |

block_of_statements

When implementing the ParseStatement function, how are we going to be able to determine which of the seven options to

match for any given input? Remember, we are trying to do this without backtracking, and just one token of lookahead, so

we have to be able to make immediate decision with minimal information— this can be a challenge.

 Left Recursion

What about left-recursive productions? Now we see why these are such a problem in a predictive parser. Consider this

left¬recursive production that matches a list of one or more functions.

function_list –> function_list function | function function –> FUNC identifier (parameter_list) statement

void ParseFunctionList()

{ ParseFunctionList(); ParseFunction();

}

Such a production will send a recursive¬descent parser into an infinite loop! We need to remove the left¬recursion in

order to be able to write the parsing function for a function_list.

function_list –> function_list function | function

 becomes

function_list –> function function_list | function

 then we must left¬factor the common parts

function_list –> function more_functions more_functions –> function more_functions | ε

And now the parsing function looks like this:

void ParseFunctionList()

{

ParseFunction();

ParseMoreFunctions(); // may be empty (i.e. expand to epsilon)

}

Elimination of Left Recursion
A grammar is left recursive if it has a nonterminal A such that there is a derivation A –>Aa for some string a. Top-down

parsing methods cannot

handle left-recursive grammars, so a transformation is needed to eliminate left

recursion.

Algorithm : Eliminating left recursion.
INPUT: Grammar G with no cycles or e-productions.

OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting

non-left-recursive grammar may have E-productions.

1) arrange the nonterminals in some order A1, A2, . . . , A,.

2) for (each i from 1 to n) {

3) for (each j from 1 to i - 1) {

4) replace each production of the form Ai -> AjB by the

productions Ai C1B I C2B |.. . I CkB, where

Aj -> Cl | C2 | . . . | Ck are all current Aj-productions

}

6) eliminate the immediate left recursion among the Ai-productions

7) }

