
 DATE :: 14/08/2013
 11CS10023 KONIDALA SRIKRISHNA

Syntax Analysis::

Context-free grammar::

 A context-free grammar is denoted by (V,T,S,P)

V--> variables
T-->Terminals
S-->Start symbol
P-->Productions

Variables also called as non-terminals or syntactic variables

Terminals in the syntax analysis are tokens. They are the elementary symbols of the language
defined by the grammar

Production has on its left side a non-terminal which is called head of the production and on its right
side it has a sequence of terminals and/or non-terminals which is called the body of the productions.

The string of terminals and non-terminals is called “sentential form”.

The string of only terminals is called a “sentence”.

Ex::
E-->E+E
E-->(E)
E-->-E
E-->a | b

Context-free grammar is a tool used by the parser to analyze the syntax of the source code

At any stage during parsing,when we have derived some sentential form that is not yet a sentence
we will have two choices to proceed for the next derivation

1. to which non-terminal in the sentential form a production rule to be applied
2. which production rule for that non-terminal to apply

If we always choose the leftmost non-terminal in a sentential form to apply a production rule to -
this is called a leftmost derivation

If we always choose the rightmost non-terminal in a sentential form to apply a production rule to -
this is called a rightmost derivation

A parse tree for a grammar G is a tree where
 the root is the start symbol for G
 the interior nodes are the non-terminals of G
the leaf nodes are the terminal symbols of G.
the children of a node T (from left to right) correspond to the symbols on the right hand side
 of some production for T in G.

If there exists several different derivations of the same string the grammar is said to be ambiguous.
In other words there exists two different parse trees for the same string.

Ex:: E-->E+E | E-E | a | b| c

then the sentence a+b-c

there will be two parse trees for this string corresponding to (a+b)-c and a+(b-c)

1 . E-->E-E 2. E-->E+E
 -->E-c -->a+E
 -->E+E-c -->a+E-E
 --->a+b-c -->a+b-c

The parser invokes lexical analyzer for tokens and the tokens are returned by the lexical analyzer to
the parser

A parser reports error when the program is not consistent with grammar. It also tells about the
loopholes and ambiguity in grammar .

