
Lexical Analysis

I. Role of Lexical Analyzer
· The role of lexical analyzer
· Tokens, Patterns and Lexemes
II. Input Buffering
· Buffer pairs
· Sentinels
III. Specification of Tokens

The Role of Lexical Analyzer:

As the first phase of compiler, the main task of the lexical analyzer is to read the input characters of the source program group them into lexemes and produce as output a sequence of tokens for each lexeme in the source program. When the lexical analyzer discovers a lexeme constituting an identifier, it needs to enter that lexeme into the symbol table. The lexical analyzer not only identifies the lexemes but also pre-processes the source text like removing comments, white spaces, etc.

Lexical analyzers are divided into a cascade of two processes:

1. Scanning - It consists of simple processes that do not require the tokenization of the input such as deletion of comments, compaction of consecutive white space characters into one.
2. Lexical Analysis- This is the more complex portion where the scanner produces sequence of tokens as output.
Tokens, Patterns and Lexemes:

· A Token is pair consisting of a token name and an optional attribute value. The token name is an abstract symbol representing the kind of lexical unit, eg., a particular keyword or an identifier.
· A pattern is a description of the form that the lexemes of a token may take. In case of a keyword as a token the pattern is just a sequence of characters that form the keyword.
· A Lexeme is a sequence of characters in the source program that matches the pattern for a token and is identified by the lexical analyzer as an instance of that token.
Input Buffering:

Buffer Pairs:

Because of the amount of time taken to process characters and the large number of characters that must be processed during the compilation of a large source program, specialized buffering techniques have been developed to reduce the amount of overhead required to process a single input character.

Two pointers to the input are maintained:

1. Pointer Lexeme Begin, marks the beginning of the current lexeme, whose extent we are attempting to determine
2. Pointer Forward, scans ahead until a pattern match is found.
Once the next lexeme is determined, forward is set to character at its right end.Then, after the lexeme is recorded as an attribute value of a token returned to the parser, Lexeme Begin is set to the character immediately after the lexeme just found.

Sentinels:

If we use the scheme of Buffer pairs we must check, each time we advance forward, that we have not moved off one of the buffers; if we do, then we must also reload the other buffer. Thus, for each character read, we make two tests: one for the end of the buffer, and one to determine what character is read (the latter may be a multiway branch). We can combine the buffer-end test with the test for the current character if we extend each buffer to hold a sentinel character at the end. The sentinel is a special character that cannot be part of the source program, and a natural choice is the character EOF.
 Note that EOF retains its use as a marker for the end of the entire input. Any EOF that appears other than at the end of a buffer means that the input is at an end.

Specification of Tokens:

Regular expressions are important part in specifying lexeme patterns.While they cannot express all possible patterns, they are very effective in specifying those type of patterns that we actually need for tokens.

