

Scribe Report
Date: 30/07/2013

ARPIT KUMAR (11CS10007)

1. Structure of the Compiler

The compiler majorly consists of two parts the analysis part and the synthesis part.

1.1. Analysis part

1. Splits the source program into constituent pieces.

2. Fits all those pieces based on grammatical rules.

3. Generates intermediate representation based on the grammatical rules.

I. Generates errors.

II. Creates data structures called symbol tables which contain information about

the source program.

1.2. Synthesis part

1. It constructs the desired target program from the intermediate code and the

information in the symbol table.

2. It may also pass the code to the optimizer which tries to reduce the size, execution

time of the generated machine code.

Detailed Diagram

Source Code Analysis Synthesis
Intermediate

representation
Front end Back end

Target

code

Source Code

Lexical Analyser

Syntax Analyser/

Parser

Semantics

Analyser

Intermediate

Code Generator

Stream of characters

tokens

1.1 Lexical Analysis

The first phase of a compiler is called a lexical analysis. The lexical analyser reads the stream

of characters making up the source program and groups the characters into meaningful

sequences called lexemes. For each lexeme, the lexical analyser produces as output a token

of the form <token name, attribute value>. In the token, the first component, the token

name is an abstract symbol used during syntax analysis, and the second component, the

attribute value points to the entry in the symbol table for this token.

For example consider,

position = initial + rate * 60

position would be mapped to <id,1>, id is abstract symbol for identifier and 1 points to the

entry of position in the symbol table.

= would be mapped into token <=>

initial would be mapped to <id,2> and 2 points to symbol table entry for initial.

+ would be mapped to <+>

rate would be mapped to <id,3> and 3 points to symbol table entry for rate.

* would be mapped to <*>

60 is a lexeme which would be mapped to <60>

Intermediate

Code

Machine

Independent Code

Optimizer

Code Generator Optimized

Intermediate

Code

Target Code
Machine Dependent

Code Optimizer

Optimized Target

Code

Now after all this the representation of the assignment statement becomes

<id,1> <=> < id,2> <+> < id,3> <*> <60>

The corresponding syntax tree will be:

