
Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (1)

Compilers

Lecture VIII—Semantic Analysis:

Syntax Directed Translation

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

POS Building – Room: 2.03

artale@inf.unibz.it

http://www.inf.unibz.it/∼artale/

2012/2013 – First Semester

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (2)

Summary of Lecture VIII

• Syntax Directed Translations

• Syntax Directed Definitions

• Implementing Syntax Directed Definitions

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

• Translation Schemes

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (3)

Semantic Analysis

• Semantic Analysis computes additional information related to the meaning

of the program once the syntactic structure is known.

• In typed languages as C, semantic analysis involves adding information to

the symbol table and performing type checking.

• The information to be computed is beyond the capabilities of standard

parsing techniques, therefore it is not regarded as syntax.

• As for Lexical and Syntax analysis, also for Semantic Analysis we need both

a Representation Formalism and an Implementation Mechanism.

• As representation formalism this lecture illustrates what are called Syntax

Directed Translations.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (4)

Syntax Directed Translation: Intro

• The Principle of Syntax Directed Translation states that the meaning of an

input sentence is related to its syntactic structure, i.e., to its Parse-Tree.

• By Syntax Directed Translations we indicate those formalisms for specify-

ing translations for programming language constructs guided by context-free

grammars.

– We associate Attributes to the grammar symbols representing the

language constructs.

– Values for attributes are computed by Semantic Rules associated with

grammar productions.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (5)

Syntax Directed Translation: Intro (Cont.)

• Evaluation of Semantic Rules may:

– Generate Code;

– Insert information into the Symbol Table;

– Perform Semantic Check;

– Issue error messages;

– etc.

• There are two notations for attaching semantic rules:

1. Syntax Directed Definitions. High-level specification hiding many

implementation details (also called Attribute Grammars).

2. Translation Schemes. More implementation oriented: Indicate the order

in which semantic rules are to be evaluated.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (6)

Summary

• Syntax Directed Translations

• Syntax Directed Definitions

• Implementing Syntax Directed Definitions

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

• Translation Schemes

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (7)

Syntax Directed Definitions

• Syntax Directed Definitions are a generalization of context-free grammars

in which:

1. Grammar symbols have an associated set of Attributes;

2. Productions are associated with Semantic Rules for computing the

values of attributes.

• Such formalism generates Annotated Parse-Trees where each node of the

tree is a record with a field for each attribute (e.g., X.a indicates the attribute

a of the grammar symbol X).

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (8)

Syntax Directed Definitions (Cont.)

• The value of an attribute of a grammar symbol at a given parse-tree node is

defined by a semantic rule associated with the production used at that node.

• We distinguish between two kinds of attributes:

1. Synthesized Attributes. They are computed from the values of the

attributes of the children nodes.

2. Inherited Attributes. They are computed from the values of the

attributes of both the siblings and the parent nodes.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (9)

Form of Syntax Directed Definitions

• Each production, A → α, is associated with a set of semantic rules:

b := f(c1, c2, . . . , ck), where f is a function and either

1. b is a synthesized attribute of A, and c1, c2, . . . , ck are attributes of the

grammar symbols of the production, or

2. b is an inherited attribute of a grammar symbol in α, and c1, c2, . . . , ck

are attributes of grammar symbols in α or attributes of A.

• Note. Terminal symbols are assumed to have synthesized attributes supplied

by the lexical analyzer.

• Procedure calls (e.g. print in the next slide) define values of Dummy

synthesized attributes of the non terminal on the left-hand side of the

production.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (10)

Syntax Directed Definitions: An Example

• Example. Let us consider the Grammar for arithmetic expressions. The

Syntax Directed Definition associates to each non terminal a synthesized

attribute called val.

PRODUCTION SEMANTIC RULE

L→ En print(E.val)

E → E1 + T E.val := E1.val + T.val

E → T E.val := T.val

T → T1 ∗ F T.val := T1.val ∗ F.val

T → F T.val := F.val

F → (E) F.val := E.val

F → digit F.val :=digit.lexval

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (11)

S-Attributed Definitions

Definition. An S-Attributed Definition is a Syntax Directed Definition that uses

only synthesized attributes.

• Evaluation Order. Semantic rules in a S-Attributed Definition can be

evaluated by a bottom-up, or PostOrder, traversal of the parse-tree.

• Example. The above arithmetic grammar is an example of an S-Attributed

Definition. The annotated parse-tree for the input 3*5+4n is:

L

E.val = 19 n

E.val = 15 + T.val = 4

T.val = 15 F.val = 4

T.val = 3 * F.val = 5 digit.lexval= 4

F.val = 3 digit.lexval= 5

digit.lexval= 3

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (12)

Inherited Attributes

• Inherited Attributes are useful for expressing the dependence of a construct

on the context in which it appears.

• It is always possible to rewrite a syntax directed definition to use only

synthesized attributes, but it is often more natural to use both synthesized

and inherited attributes.

• Evaluation Order. Inherited attributes cannot be evaluated by a simple

PreOrder traversal of the parse-tree:

– Unlike synthesized attributes, the order in which the inherited attributes

of the children are computed is important!!! Indeed:

∗ Inherited attributes of the children can depend from both left and right

siblings!

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (13)

Inherited Attributes: An Example

• Example. Let us consider the syntax directed definition with both inherited

and synthesized attributes for the grammar for “type declarations”:

PRODUCTION SEMANTIC RULE

D → TL L.in := T.type

T →int T.type :=integer

T →real T.type :=real

L→ L1, id L1.in := L.in; addtype(id.entry, L.in)

L→ id addtype(id.entry, L.in)

• The non terminal T has a synthesized attribute, type, determined by the

keyword in the declaration.

• The production D → TL is associated with the semantic rule L.in :=

T.type which set the inherited attribute L.in.

• Note: The production L→ L1, id distinguishes the two occurrences of L.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (14)

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be evaluated

by a classical PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:

D

T.type = real L.in

real L.in , id3

L.in , id2

id1

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (14)

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be evaluated

by a classical PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:

D

T.type = real L.in= real

real L.in , id3

L.in , id2

id1

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (14)

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be evaluated

by a classical PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:

D

T.type = real L.in= real

real L.in= real , id3

L.in , id2

id1

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (14)

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be evaluated

by a classical PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:

D

T.type = real L.in= real

real L.in= real , id3

L.in= real , id2

id1

• L.in is then inherited top-down the tree by the other L-nodes.

• At each L-node the procedure addtype inserts into the symbol table the type

of the identifier.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (15)

Summary

• Syntax Directed Translations

• Syntax Directed Definitions

• Implementing Syntax Directed Definitions

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

• Translation Schemes

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (16)

Dependency Graphs

• Implementing a Syntax Directed Definition consists primarily in finding an

order for the evaluation of attributes

– Each attribute value must be available when a computation is performed.

• Dependency Graphs are the most general technique used to evaluate syntax

directed definitions with both synthesized and inherited attributes.

• A Dependency Graph shows the interdependencies among the attributes of

the various nodes of a parse-tree.

– There is a node for each attribute;

– If attribute b depends on an attribute c there is a link from the node for c

to the node for b (b← c).

• Dependency Rule: If an attribute b depends from an attribute c, then we

need to fire the semantic rule for c first and then the semantic rule for b.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (17)

Evaluation Order

• The evaluation order of semantic rules depends from a Topological Sort

derived from the dependency graph.

• Topological Sort: Any ordering m1,m2, . . . ,mk such that if mi → mj

is a link in the dependency graph then mi < mj .

• Any topological sort of a dependency graph gives a valid order to evaluate

the semantic rules.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (18)

Dependency Graphs: An Example

• Example. Build the dependency graph for the parse-tree of real id1, id2,

id3.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (19)

Implementing Attribute Evaluation: General Remarks

• Attributes can be evaluated by building a dependency graph at compile-time

and then finding a topological sort.

• Disavantages

1. This method fails if the dependency graph has a cycle: We need a test for

non-circularity;

2. This method is time consuming due to the construction of the dependency

graph.

• Alternative Approach. Design the syntax directed definition in such a

way that attributes can be evaluated with a fixed order avoiding to build the

dependency graph (method followed by many compilers).

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (20)

Strongly Non-Circular Syntax Directed Definitions

• Strongly Non-Circular Syntax Directed Definitions. Formalisms for

which an attribute evaluation order can be fixed at compiler construction

time.

– They form a class that is less general than the class of non-circular

definitions.

– In the following we illustrate two kinds of strictly non-circular definitions:

S-Attributed and L-Attributed Definitions.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (21)

Summary

• Syntax Directed Translations

• Syntax Directed Definitions

• Implementing Syntax Directed Definitions

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

• Translation Schemes

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (22)

Evaluation of S-Attributed Definitions

• Synthesized Attributes can be evaluated by a bottom-up parser as the

input is being analyzed avoiding the construction of a dependency graph.

• The parser keeps the values of the synthesized attributes in its stack.

• Whenever a reduction A→ α is made, the attribute for A is computed from

the attributes of α which appear on the stack.

• Thus, a translator for an S-Attributed Definition can be simply implemented

by extending the stack of an LR-Parser.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (23)

Extending a Parser Stack

• Extra fields are added to the stack to hold the values of synthesized attributes.

• In the simple case of just one attribute per grammar symbol the stack has two

fields: state and val

state val

Z Z.x

Y Y.x

X X.x

.

• The current top of the stack is indicated by the pointer top.

• Synthesized attributes are computed just before each reduction:

– Before the reduction A → XY Z is made, the attribute for A is

computed: A.a := f(val[top], val[top− 1], val[top− 2]).

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (24)

Extending a Parser Stack: An Example
• Example. Consider the S-attributed definitions for the arithmetic expres-

sions. To evaluate attributes the parser executes the following code

PRODUCTION CODE

L→ En print(val[top − 1])

E → E1 + T val[ntop] := val[top] + val[top− 2]

E → T

T → T1 ∗ F val[ntop] := val[top] ∗ val[top− 2]

T → F

F → (E) val[ntop] := val[top− 1]

F → digit

• The variable ntop is set to the new top of the stack. After a reduction is done

top is set to ntop: When a reduction A → α is done with |α| = r, then

ntop = top− r + 1.

• During a shift action both the token and its value are pushed into the stack.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (25)

Extending a Parser Stack: An Example (Cont.)

• The following Figure shows the moves made by the parser on input 3*5+4n.

– Stack states are replaced by their corresponding grammar symbol;

– Instead of the token digit the actual value is shown.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (26)

Summary

• Syntax Directed Translations

• Syntax Directed Definitions

• Implementing Syntax Directed Definitions

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

• Translation Schemes

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (27)

L-Attributed Definitions

• L-Attributed Definitions contain both synthesized and inherited attributes

but do not need to build a dependency graph to evaluate them.

• Definition. A syntax directed definition is L-Attributed if each inherited

attribute of Xj in a production A→ X1 . . . Xj . . . Xn, depends only on:

1. The attributes of the symbols to the left (this is what L in L-Attributed

stands for) of Xj , i.e., X1X2 . . . Xj−1, and

2. The inherited attributes of A.

• Theorem. Inherited attributes in L-Attributed Definitions can be computed

by a PreOrder traversal of the parse-tree.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (28)

Evaluating L-Attributed Definitions

• L-Attributed Definitions are a class of syntax directed definitions whose

attributes can always be evaluated by single traversal of the parse-tree.

• The following procedure evaluate L-Attributed Definitions by mixing

PostOrder (synthesized) and PreOrder (inherited) traversal.

Algorithm: L-Eval(n: Node)

Input: Node of an annotated parse-tree.

Output: Attribute evaluation.

Begin

For each child m of n, from left-to-right Do

Begin

Evaluate inherited attributes of m;

L-Eval(m)

End;

Evaluate synthesized attributes of n

End.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (29)

Summary

• Syntax Directed Translations

• Syntax Directed Definitions

• Implementing Syntax Directed Definitions

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

• Translation Schemes

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (30)

Translation Schemes

• Translation Schemes are more implementation oriented than syntax directed

definitions since they indicate the order in which semantic rules and

attributes are to be evaluated.

• Definition. A Translation Scheme is a context-free grammar in which

1. Attributes are associated with grammar symbols;

2. Semantic Actions are enclosed between braces {} and are inserted

within the right-hand side of productions.

• Yacc uses Translation Schemes.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (31)

Translation Schemes (Cont.)

• Translation Schemes deal with both synthesized and inherited attributes.

• Semantic Actions are treated as terminal symbols: Annotated parse-trees

contain semantic actions as children of the node standing for the correspond-

ing production.

• Translation Schemes are useful to evaluate L-Attributed definitions at parsing

time (even if they are a general mechanism).

– An L-Attributed Syntax-Directed Definition can be turned into a

Translation Scheme.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (32)

Translation Schemes: An Example

• Consider the Translation Scheme for the L-Attributed Definition for “type

declarations”:

D → T {L.in := T.type} L

T → int {T.type :=integer}

T → real {T.type :=real}

L→ {L1.in := L.in} L1, id {addtype(id.entry, L.in)}

L→ id {addtype(id.entry, L.in)}

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (33)

Translation Schemes: An Example (Cont.)

• Example (Cont). The parse-tree with semantic actions for the input

real id1, id2, id3 is:

D

T {L.in := T.type} L

real {T.type := real} {L1.in := L.in} L1
, id3 {addtype(id3.entry, L.in)}

{L2.in := L1.in} L2
, id2{addtype(id2.entry, L1.in)}

id1 {addtype(id1.entry, L2.in)}

• Traversing the Parse-Tree in depth-first order (PostOrder) we can

evaluate the attributes.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (34)

Design of Translation Schemes

• When designing a Translation Scheme we must be sure that an attribute value

is available when a semantic action is executed.

• When the semantic action involves only synthesized attributes: The

action can be put at the end of the production.

– Example. The following Production and Semantic Rule:

T → T1 ∗ F T.val := T1.val ∗ F.val

yield the translation scheme:

T → T1 ∗ F {T.val := T1.val ∗ F.val}

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (35)

Design of Translation Schemes (Cont.)

• Rules for Implementing L-Attributed SDD’s. If we have an L-Attibuted

Syntax-Directed Definition we must enforce the following restrictions:

1. An inherited attribute for a symbol in the right-hand side of a production

must be computed in an action before the symbol;

2. A synthesized attribute for the non terminal on the left-hand side can only

be computed when all the attributes it references have been computed:

The action is usually put at the end of the production.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (36)

Compile-Time Evaluation of Translation Schemes

• Attributes in a Translation Scheme following the above rules can be computed

at compile time similarly to the evaluation of S-Attributed Definitions.

• Main Idea. Starting from a Translation Scheme (with embedded actions) we

introduce a transformation that makes all the actions occur at the right ends

of their productions.

– For each embedded semantic action we introduce a new Marker (i.e., a

non terminal, say M) with an empty production (M → ǫ);

– The semantic action is attached at the end of the production M → ǫ.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (37)

Compile-Time Evaluation of Translation Schemes (Cont.)

• Example. Consider the following translation scheme:

S → aA{C.i = f(A.s)}C

S → bAB{C.i = f(A.s)}C

C → c{C.s = g(C.i)}

Then, we add new markers M1,M2 with:

S → aAM1C

S → bABM2C

M1 → ǫ {M1.s := f(val[top])}

M2 → ǫ {M2.s := f(val[top− 1])}

C → c {C.s := g(val[top− 1])}

The inherited attribute of C is the synthesized attribute of either M1 or M2:

The value of C.i is always in val[top -1] when C → c is applied.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (38)

Compile-Time Evaluation of Translation Schemes (Cont.)

General rules to compute translations schemes during bottom-up parsing assum-

ing an L-attributed grammar.

• For every production A → X1 . . . Xn introduce n new markers

M1, . . . ,Mn and replace the production by A→M1X1 . . .MnXn.

• Thus, we know the position of every synthesized and inherited attribute of

Xj and A:

1. Xj.s is stored in the val entry in the parser stack associated with Xj ;

2. Xj.i is stored in the val entry in the parser stack associated with Mj ;

3. A.i is stored in the val entry in the parser stack immediately before the

position storing M1.

• Remark 1. Since there is only one production for each marker a grammar

remains LL(1) with addition of markers.

• Remark 2. Adding markers to an LR(1) Grammar can introduce conflicts

for not L-Attributed SDD’s!!!

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (39)

Compile-Time Evaluation of Translation Schemes (Cont.)

Example. Computing the inherited attribute Xj.i after reducing with Mj → ǫ.

top→

(top-2j)→

(top-2j+2)→

Mj Xj.i

Xj−1 Xj−1.s

Mj−1 Xj−1.i

.

X1 X1.s

M1 X1.i

MA A.i

• A.i is in val[top− 2j + 2];

• X1.i is in val[top− 2j + 3];

• X1.s is in val[top− 2j + 4];

• X2.i is in val[top− 2j + 5];

• and so on.

Free University of Bolzano–Formal Languages and Compilers. Lecture VIII, 2012/2013 – A.Artale (40)

Summary of Lecture VIII

• Syntax Directed Translations

• Syntax Directed Definitions

• Implementing Syntax Directed Definitions

– Dependency Graphs

– S-Attributed Definitions

– L-Attributed Definitions

• Translation Schemes

