Syntax Analysis, Parsing

Lex — example-1
Input file — input_first

if +78else O

Tokens: if, else, op (+,-), number, other

Parsing

» Every programming language has precise grammar rules that describe the
syntactic structure of well-formed programs
» In C, the rules states a program consists of functions, a function
consist of declarations and statements, a statement consists of
expressions, and so on.

» The task of a parseris to

(a) Obtain strings of tokens from the lexical analyzer and verify that the string
follows the rules of the source language

(b) Parser reports errors and sometimes recovers from it

* Type checking,

[tokef | i i X semantic analysis and
, . i | parse . inte iat . .
o, | Lexieal | Parser 2o Restof | TR translation actions can
prup;-am‘ Analyzer et | ! tree | Front End |represerftation . N X
o ‘ P be interlinked with
/ parsing
' S;l'g";‘?ﬂ‘ { * Implemented as a
[L single module.

Parsing

» Two major classes of parsing
» top-down and bottom-up

» Input to the parser is scanned from left to right, one symbol at a
time.

(id, 1) (=) (id, 2) {+) (id,3) () (60)

» The syntax of programming language constructs can be specified
by context-free grammars

» Grammars systematically describe the syntax of programming
language constructs like expressions and statements.

stmt — if (expr) stmt else stmt

» Quick recall

Context free grammar

» ACFGisdenotedasG=(N, T, P,S)

N : Finite set of non-terminals -- syntactic variables (stmt, expr)

T : Finite set of terminals ---- Tokens, basic symbols from which strings and
programs are formed

S :The start symbol -- set of strings it generates is the language generated
by the grammar

P : Finite set of productions -- specify the manner in which the terminals and
nonterminals can be combined to form strings

In this grammar, the terminal symbols are

id+-x/ () Productions

expression —» erpression + term

erpression — expression — term

egpression — lterm

Start symbol: term — term * foclor
. head—p term — term / facior— > body
exrpression term — factor

factor — (expression)
factor — id

Task of a parser

Output of the parser is some representation of the parse tree for the stream of
tokens as input, that comes from the lexical analyzer.

* Top-down parser works for LL grammar
* Bottom-up parser works for LR grammars
* Only subclasses of grammars
* But expressive enough to describe most of the syntactic constructs
of modern programming languages.

Concentrate on parsing expressions
* Constructs that begin with keywords like while or int are relatively easy to
parse
* because the keyword guides the parsing decisions
* We therefore concentrate on expressions, which present more of challenge,
because of the associativity and precedence of operators

Derivations

The construction of a parse tree can be conceptualized as derivations

Derivation: Beginning with the start symbol, each rewriting step replaces a
nonterminal by the body of one of its productions.

A — v is a production

aAp = a';ﬂ ‘

If S = a, where S is the start symbol of a grammar G, we say that o is a
sentential form of G.

A sentence of G is a sentential form with no nonterminals.
The language L(G) generated by a grammar G is its set of sentences.

Derivations

The construction of a parse tree can be conceptualized as derivations

Beginning with the start symbol, each rewriting step replaces a nonterminal by

the body of one of its productions. aA,@.=> a’;',@‘ A — v is a production

Consider a grammar G
E - E+E|ExE| —E | (B)]|id
Derivation

E=s -E=—(E)=> —(E+E)= —(id+ E) = —(id +id)

1. Derivation of —(id+id) from start symbol E

2. —(id+id) is a sentence of G

3. Ateach step in a derivation, there are two choices to be made.
* Which nonterminal to replace? : leftmost derivations
e Accordingly we must choose a production

Derivations-- Rightmost derivations

Consider a grammar G

E - E+E|E+E| —E | (E)]|id

E=-E=—(E)= —(E+E)=> —(E+id) = —(id +id)

1. Derivation of —(id+id) from E
2. —(id+id) is a sentence of G
3. Ateach step in a derivation, there are two choices to be made.

¢ Which nonterminal to replace?
e Accordingly we must pick a production = Rightmost derivations,

Parse trees

» A parse tree is a graphical representation of a derivation that
exhibits

» the order in which productions are applied to replace
non-terminals

» The internal node is a non-terminal A in the head of the
production

» The children of the node are labelled, from left to right,
by the symbols in the body of the production by which
A was replaced during the derivation

» Same parse tree for leftmost and rightmost derivations

E - E+E|ExE| —E| (E)|id

AN, TN,

E =

N, TN TN,

N SN N
VRN / I \ / I \
E + E E + E

Sentential form TE——— i(|1 i<|:l itli

(leaves of a
parse tree)

E= -E= —(E) = —(E+E) = —(id + BE) = —(id + id)

parse tree for - (id + id)

Ambiguity

» A grammar that produces more than one parse tree for some sentence is
said to be ambiguous

» An ambiguous grammar is one that produces more than one leftmost
derivation or more than one rightmost derivation for the same sentence.

E - E+E|ExE|(E)|id

E = E+E EFE = ExFE
= id+F = FEFE+ExE
= d+ExFE = id+ExE
= id+id*E = id+idxF
= id+id=xid = id+idxid

Two distinct leftmost derivations for the sentence id +id * id

Ambiguity

E = E+E E = FExE
= id+F = E+ExE
= id+ExFE = Id+ExE
E = id+idxE = id+id*xF
/ ‘ \ = id+idxid = 1d+1d*|d/ | \
E + K
id E % E id
id id id id

Two parse trees for id+id+*id

Ambiguity 7 3 777/
F - (E)|id Unambiguous grammar
B oS oire

: Pl :

RN ST VA RN

E 4+ E E % E

/N SN

id F * E E + E i

Two parse trees for id+id+*id

Top-Down Parsing

Top-down parsing can be viewed as the problem of
Constructing a parse tree for the input string,
» starting from the root and creating the nodes of the parse tree in
preorder
Top-down parsing can be viewed as finding a leftmost derivation for an input
string

_

E - TF id-+id+id
E' - +TUFE]| ¢

T 5 FT

T" = xFT | ¢

F - (E)|id

E = E = E E E = E
m /N m /N SN m SN m N
T E T E T E T FE T B
A /) 4 YARRVARN
S S A
id id ¢ id €
E - TEFE
E - +TEF|ce¢
T - FT
m N m N i N PSS
T El EI T E/ - (E) , id
ARRVANNN /NN ARV
F T + T E F T+ T E F T + T FE
'(Ii | F/ \T’ '.li F/ \T’ ‘(li l F/ \T'
K € I € 1 €
| I /1IN
id id «+ F T
E = E E
im T/ \E’ Im T/ \E’ Im. T/ \E’
F/i!”' g \T\ E F/ZI" ’ \;\ E F/" +/ \;\ E
N RN -LT /N
e /N S 2 AN A4 N
id * 1|“ T id = ilﬁ' ‘II“’ id * }‘7 T
id id e id ¢

id-+id*id

Top-Down Parsing

E = E
K4 \E
parse tree for-(id+idl
= E E
_/ \E —/ \E
VAN A RN
(E_) (E_)
VA RN VA RN
E + E JT) + E

/\
/I\

/\
/l\
/1\
[|

id id

Derivation E= —-E= —(E) = —(E+E) = —(id + E) = —(id +id)

parse tree for - (+ id) ???

Top-Down Parsing

A grammar is left recursive if it has a nonterminal A such that there is a

derivation A & Aq for some string «. Top-down parsing methods cannot
handle left-recursive grammars, so a transformation is needed to eliminate left

E - E+T|T

T — T xF | F Left recursive

F - (E) | id

EFE —- TEF

E = 4+TEF| €

T — FT' Non-Left recursive
T - =FT' | ¢

F = (E)|id

Eliminating left recursion.

production of the form A — Aa|f

A BA'
: A' 5 ad | €

Generalization

A Ay | Aag | | Aam | B | Ba | -0 | Bn
A= BA | A | - | Bud
A A | aA" | - | and’ | €

Immediate left recursion

Eliminating left recursion.

S—=Aa | b
Ao Ac | Sd | e

S = Aa = Sda

Top-Down Parsing

Eliminating left recursion.

INPUT: Grammar G with no cycles or e-productions.

OUTPUT: An equivalent grammar with no left recursion.

1) arrange the nonterminals in some order A, A,, ..., A,.

2) for (eachifrom1ton){

3) for (each j from 1toi—1){

4) replace each production of the form A; = A;7 by the
productions A; — 817y | 82y | -+ | dxry, where
Aj =81 | d2 | -+ | O are all current A;-productions

5) }

6) eliminate the immediate left recursion among the A;-productions

7}

Eliminating left recursion.

S—=Aa | b
Ao Ac | Sd | e

Unfolding all the left recursions

A Ac| Aad | bd | e A—Aa|pB

S—Aa | b A — BA
AobdA | A ; ;
AFACA"GdA’JE A _}HA | E

Top-Down Parsing

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct
A-production to be applied

(b) Predictive parsing: No backtracking!

looking ahead at the input a fixed number of symbols (next symbols) — LL(k),
LL(1) grammars

E => E = E = E E = E
im T/\E’ Im T/ \E Im T/ \E, Im T/ AN , Im T/
! E E

/N /\ /\ /1

S S & B
id id ¢ id €

Choose the correct

E production
;: \) ;;" /E\ 17: /E\

T T E’ T E’
ARRVANNN VARRVAANN ARV
= o F T+ T E F T+ T FE

E - TE o /N 1 SN
E = +TE]|« id e ‘r id e J]m /"f\
T —» FT id id « F T
T —= *xFT | ¢
E
F > (BE)li| = A & /N,
F/i!”' ’ \T\ E /:,"’ 4 \;\E F/T' +/ \;\ E
N A -LT /N4
TN N A AN 2 AN
id+ F T id :dt}‘v"T’

id-+id*id

Recursive-Descent Parsing
Nondeterministic
void A() {
Choose an A-production, A — X; Xo -+« Xy;
for (i=1tok){
if (X; is a nonterminal)
call procedure X;();
else if (X; equals the current input symbol a)
advance the input to the next symbol;
else /* an error has occurred */;
} L
} Try other productions!

(a) Arecursive-descent parsing consists of a set of procedures, one for each
nonterminal.

(b) Execution begins with the procedure for the start symbol S,

(c) Halts and announces success if S() returns and its procedure body scans the
entire input string.

(d) Backtracking: may require repeated scans over the input

§ —= cAd - .
A = ab|aq (iDPUL string w = cad,

The leftmost leaf, labeled ¢, matches the first

S
/ | \ symbol of input w (i.e. c), so we advance the
input pointer to a
c A d

. input string w = cad,
/ l \ Now, we expand A using the first alternative A — a b
c A d

¢ We have a match for the second input symbol, a,
/ \ * So we advance the input pointer to d, the third
a b input symbol

* Compare d against the next leaf, labeled b
Failure !! Backtrack!

input string w = cm

d we must reset the input pointer to position a

The leaf a matches the second input symbol of w (i.e. a)
and the leaf d matches the third input symbol d

Since $() returns and we have scanned w and produced a
parse tree for w,
We halt and announce successful completion of parsing

Top-Down Parsing

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct
A-production to be applied

(b) Predictive parsing: No backtracking!

looking ahead at the input a fixed number of symbols (next symbols) —
LL(k), LL(1) grammars

Basic concept of Predictive parsing

2
Input string w=abcd

Grammar productions

One sentential form 1. X-> bA...
S=>aXy....
First symbol
2. X->cP

] rammar pr ion
Another sentential form (i ‘;\(_>€a productions

S=>aXb 2 Xo>

We know that b Follows X in any
sentential form

4.4.2 FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided by two
functions, FIRST and FOLLOW, associated with a grammar G. During top-
down parsing, FIRST and FOLLOW allow us to choose which production to
apply, based on the next input symbol. During panic-mode error recovery, sets
of tokens produced by FOLLOW can be used as svnchronizing tokens.

Define FIRST(a), where « is any string of grammar symbols to be the set
of terminals that begin strings derived from a. If @ 3 ¢ then € is also in
FIRST (). For example. in Fig. 4.15. A = ¢y, 50 c is in FIRST(A).

For a preview of how FIRST can be used during predictive parsing, consider
two A-productions A = a | 3, where FIRST(a) and FIRST(3) are disjoint sets.
We can then choose between these A-productions by looking at the next input

symbol @, since a can be in at most one of FIRST(«) and FIRST(S), not both.
For instance, if a is in FIRST(3) choose the production A — 3. This idea will

N~

v
First(A)

How to compute First(X)

To compute FIRST(X) for all grammar symbols X, apply the following rules
until no more terminals or € can be added to any FIRST set.

1. If X is a terminal, then FIRST(X)} = {X}.

2. If X is a nonterminal and X — Y7Y5 - - Y} is a production for some k > 1,
then place a in FIRST(X) if for some i, a is in FIRST(Y;), and € is in all of
FIRST(Y1), ... ,FIRST(YV;_1); that is, V1 ---Yi_; 2 e If ¢ is in FIRST(Y;)
for all j =1,2,...,k, then add € to FIRST(X). For example, everything
in FIRST(Y1) is surely in FIRST(X). If ¥} does not derive ¢, then we add
nothing more to FIRST(X), but if ¥; & ¢, then we add FIRST(Y), and
80 on.

3. If X — e is a production, then add € to FIRST(X).

EFE —- TEF
E = 4+TEF| €
T —» FT
T - =FT' | ¢
F = (FE)|id

1. FIRST(F) = FIRST(T) = FIRST(F) = {(,id}. To see why, note that the
two productions for F' have bodies that start with these two terminal
symbols, id and the left parenthesis. T has only one production, and its
body starts with F. Since F does not derive e, FIRST(T') must be the
same as FIRST(F). The same argument covers FIRST(E).

2. FIRST(E') = {+,¢}. The reason is that one of the two productions for E'
has a body that begins with terminal +, and the other’s body is €. When-
ever a nonterminal derives €, we place € in FIRST for that nonterminal.

3. FIRST(T') = {*,€}. The reasoning is analogous to that for FIRST(E").

Basic concept of Predictive parsing

2
Input string w=abcd

Grammar productions

One sentential form 1. X-> bA...
S=>aXy....
First symbol
2. X->cP

] rammar pr ion
Another sentential form (i ‘;\(_>€a productions

S=>aXb 2 Xo>

We know that b Follows X in any
sentential form

FIRST and FOLLOW

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can
appear immediately to the right of A in some sentential form; that is, the set
of terminals @ such that there exists a derivation of the form § = aAag, for
some ¢« and /4, as 1n kig. 4.15. Note that there may have been symbols between
| ond - Juring the derivation hut if] ferived i
disappeared. In addition, if A can be the rightmost symbol in some sentential
form, then $ is in FOLLOW (A); recall that § is a special “endmarker” symbol
that is assumed not to be a svmbol of anv erammar.

How to compute Follow(A)

S-> xAyz y in Follow(A)

To compute FOLLOW(A) for all nonterminals A4, apply the following rules
until nothing can be added to any FOLLOW set.

1. Place § in FOLLOW(S), where § is the start symbol, and $ is the input
right endmarker.

2. If there is a production A — aBJ, then everything in FIRST(8) except €
is in FOLLOW(B).

3. If there is a production A — aB, or a production A — aBf, where
FIRST(#) contains ¢, then everything in FOLLOW(A) is in FOLLOW(B).

S-> xAy Follow(A)=y
->xaBy Follow(B)=Follow(A)

E 5 TE &
E = 4+TEF| €
T —» FT'

T - =FT' | ¢
F - (FE)]|id

FOLLOW(E) = FOLLOW(E') = {),$}. Since E is the start symbol,
FOLLOW(E) must contain §. The production body (E) explains why the
right parenthesis is in FOLLOW(E). For E’', note that this nonterminal
appears only at the ends of bodies of E-productions. Thus, FOLLOW(E")
must be the same as FOLLOW(E).

E -+ TF

E - +TE|¢ ¢m FIRST(E') = {+,¢}
T - FT 1 4 PR
T - =FT' | ¢

F - (E)|id

FOLLOW(T) = FOLLOW(T") = {+,),$}. Notice that T' appears in bodies
only followed by E’. Thus, everything except € that is in FIRST(E') must
be in FOLLOW(T'); that explains the symbol +. However, since FIRST(E")
contains € (ie., E' = ¢), and E' is the entire string following T in the
bodies of the E-productions, everything in FOLLOW(E) must also be in
FOLLOW(T'). That explains the symbols $ and the right parenthesis. As
for T, since it appears only at the ends of the T-productions, it must be
that FOLLOW(T") = FOLLOW(T').

E - TF

E = 4+TEF| €
T = FT =
T - =FT' | ¢
F = (FE)|id

FOLLOW(F) = {+,%,),$}. The reasoning is analogous to that for T' in
point (5).

Follow(F)=Follow(T)

Predictive parsing

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct
A-production to be applied

(b) Predictive parsing: No backtracking!

looking ahead at the input a fixed number of symbols (next symbols) —
LL(k), LL(1) grammars

Predictive parsing

Parsing table M

NON - INPUT SYMBOL
TERMINAL id + * () $
E E—TE E—TE '
E E' — +TE' E' —¢e|E —e
T T — FT' T — FT'
T T —e |T' —+FT T =e|T —e
F F—id F = (E)

LL(1) grammar => avoid confusion!!

A grammar G is LL(1) if and only if whenever A — « | 8 are two distinct
productions of @, the following conditions hold:
First(a) and First(B) Disjoint sets
1. For no terminal ¢ do both o and 3 derive strings beginning with th

2. At most one of o and 3 can derive the empty string.

3. If 32 ¢, then a does not deri*ze any string beginning with a terminal
in FOLLOW(A). Likewise, if &« = ¢, then § does not derive any string
beginning with a terminal in FOLLOW(A).

€ is in FIRST(a).
then FIRST(B) and FOLLOW(A) are disjoint sets.

Basic concept of Predictive parsing

2
Input string w=abcd

One sentential form
S=> aXy....

Another sentential form
S=>aXb

We know that b Follows X in any
sentential form Follow(X)=b

Grammar productions
1. X->bA...

1

First symbol

Grammar productions
1.X->€

Left Factoring

stmt — if expr then stmi else stmi
| if expr then stmi

A— aﬁ’l | leﬁg

A— aA
A= p | B Left factoring a grammar.

Left Factoring
A— aﬁ’l | leﬁg

A - aA
A =p | B

S—iEtS |iEtSeS | a
E —=b

S—»iEtSS | a
S'—seS | e
E—b

Parsing table M

INPUT: Grammar G.
QUTPUT: Parsing table M.
METHOD: For|each production A — a pf the grammar, do the following:

1. For each terminal @ in FIRST(A), add A — a to M4, al.

1 Obvious

_ 4
Input string w=bacd

One sentential form Grammar productions
S=> bAY.... 1. A->aX...
1)
First symbol

INPUT: Grammar G.
OUTPUT: Parsing table M.

METHOD: For each production A — a of the grammar, do the following:

1. For each terminal @ in FIRST(A), add A — a to M[4, al.

MIJA,$)] as well.

2.|If € is in FIRST(c)| then for each terminal b in FOLLOW(A), add A — «
T MIA, 0] If €15 in FIRST(a) and § is in FOLLOW(A), add A — « to

Input string w=atcd

One sentential form
S=>aAb

We know that b Follows A in any
sentential form Follow(A)=b

Grammar productions
1. A-> a=>€

INPUT: Grammar G.

QUTPUT: Parsing table M.
METHOD: For each production A — a of the grammar, do the following:

1. For each terminal @ in FIRST(A), add A — a to M4, al.

9. If ¢ is in FIRST(a), then for each terminal b in FOLLOW(A), add A = «
to M[A,b]. If e is in FIRST(a) and § is in FOLLOW(A), add A — «a to

MJA,$)] as well.

If, after performing the above, there is no production at all in M[A, a], then
set M[A,a] to error (which we normally represent by an empty entry in the
table). 0O '

H T
» production & - T'E E o TE
FIRST(TE") = FIRST(T) = {(,id} E' = +TE|e€
r - F1'
B) Production B' — +TE' T - *xFT | e
FIRST(+TE') = {+} Fo—- (F)]id
B E e
FOLLOW(E') = {),$}
NON - INPUT SYMBOL
TERMINAL id T . () 3
E E—TE E—TE '
E E' - +TE' E —we|lE —e
T T — FT' T FT'
T T —we |T - *FT T —e|T —e
F F—id F - (E)

B T FT’ - o
. . —
First(FT")={(,id
irst(FT')={(,id} E +TE"|€
!
TJ‘ *FT! T - F T
» _ _), " = =FT | ¢
First(*FT')={*} F - (E)|id
» T - ¢
Follow(T’)={+,),S}
NON - INPUT SYMBOL
TERMINAL id + * () $
E E—TE E— TE '
E' E - +TE' E' -¢|E —e¢
T T = FT' T = FT'
T T — € T = P T’ T sel|lT =€
F F—id F - (B)

BFr - (E)|id

First((E))={(}

First(id)={id}

Example of Non-LL(1) grammar

* For every LL(1) grammar, each parsing-table entry uniquely identifies a
production or signals an error.
* left-recursive or ambiguous grammars are not LL(1)

S - iEtSS |a

S — eS|e Input string
E = b ibtibtaea
if b
then
if b
then
a
else

a

Example of Non-LL(1) grammar

INPUT SYMBOL

NoON -
TERMINAL a b e i $
S S—=a S - {EtSS'
s S e S 5 €
S — eS
E E b

Predictive Parsing

* Non-recursive version

* maintaining a stack explicitly, rather than implicitly via
recursive calls

INPUT: A string w and a parsing table M for grammar G.

ouTpPUT: If w is in I(G), a leftmost derivation of w; otherwise, an error
indication.

Initial configuration

mpus | | [[Taf+fo[s]

STACK InpPUT

E$ id +id x id$ Predictive

Parsing — Output
Program

Parsing
Table

Recursive-Descent Parsing
Nondeterministic
void A() {
Choose an A-production, A — X; Xo -+« Xy;
for (i=1tok){
if (X; is a nonterminal)
call procedure X;();
else if (X; equals the current input symbol a)
advance the input to the next symbol;
else /* an error has occurred */;
} €= Try other productions!

(a) Arecursive-descent parsing consists of a set of procedures, one for each
nonterminal.

(b) Execution begins with the procedure for the start symbol S,

(c) Halts and announces success if S() returns and its procedure body scans the
entire input string.

(d) Backtracking: may require repeated scans over the input

Predictive Parsing

* Non-recursive version

* maintaining a stack explicitly, rather than implicitly via
recursive calls

INPUT: A string w and a parsing table M for grammar G.

ouTpPUT: If w is in I(G), a leftmost derivation of w; otherwise, an error
indication.

Initial configuration

mpus | | [[Taf+fo[s]

STACK InpPUT

E$ id +id x id$ Predictive

Parsing — Output
Program

Parsing
Table

Predictive Parsing

INPUT: A string w and a parsing table M for grammar G.

ouTpPUT: If w is in I(G), a leftmost derivation of w; otherwise, an error

indication.
Initial configuration mput ||| [Tal+lsls]
STACK INpUT
E$ id + id * id! Predictive
5 Stack Parsing — Output
Program
* The parser considers (i) the symbol
on top of the stack X, and (ii) the)
current input symbol a Parsing
urre put sym : Table
* If Xiis a nonterminal, the parser M
chooses an X-production from M[X, a] of
the parsing table. e — LT Siiko (—
* Otherwise, it checks for a match E EoTE ETE
. E' E —+TFE' E 2¢e|lE —e
between the terminal X and current , - -
input symbol a. g T e | oaFr T | e
F F—id F > (E)

ip

!

Input u |

[Tal+To]s]
/

Predictive

Program

o

Parsing
Table a

Parsing — Output

NON - INPUT SYMBOL
TERMINAL id + ¥ C 1D $
E E—TE E—TE
E E - +TE' E »¢|E —e
T T — FT' T — FT'
T T'—se |T —+FT' T —e|T —e
F F—id F—(E)

set, ip to point to the first symbol of w;
set X to the top stack symbol;
while (X #§) { /* stack is not empty */
if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a]=X 2 1Ys---Y) {
output the production X — ¥1Y5---¥};

pop the stack;

push Y%, Yi—1,..., Y7 onto the stack, with ¥7 on top;

set }i:o the top stack symbol;

Y,

e NON - INPUT SYMBOL
) ’ TERMINAL id T B () 3
- L] L]
ld | ld ¥ ld B ESTE EoTE
B E' = +TE' E —¢|E —e¢
T T - FT' T - FT'
T T'—e |T —«FT' T »e|T —e
F F—id F 5 (B)
MATCHED STACK INnPUT ACTION

E$ id + id * id$
TE'$S id + id *id$ output £ — T E’
FTI'E'$ id + id *id$ output 7" — FT'
id 7TVE'$ id + id *id$ output F — id

id T'E'S$ + id * id$ match id

id E'$ + id * id$ output 7" — €

id + TE'$ + id * id$ output B — + T E'
id + TE'S id * id$ match +

id + FT'E'$ id * id$ output 7" — FT'
id + id T'E'$ id * id$ output F — id

id + id T'E'$ * id$ match id

id + id * FT'E'$ * id$ output T — x FT"
id + id * FT'E'S id$ match *

id + id * id T'E'$ id$ output F — id

id + id * id T'E'$ $ match id

id + id * id E'$ $ output 7’ — €

id + id = id $ $ output E’ — €

MATCHED STACK INPUT AcCTION

E$ id + id = id$
TE'$ id~+ id*id$ output E — TE'
FI'E'$ id+ id * id$ output 7" — FT'
id 7VE'$ id + id * id$ output F — id

id T'E'S$ + id * id$ match id

id E'S$ + id * id$ output I7 — €

id 4 T F'$ + id i 4 4
I id + TE'S$ id * id$ match +

el e el=r=ired T i

id + id 7" E'$ id * id$ output F — id

id + id T'E'$ * id$ match id

id + id « FT'E'$ * id$ output 7' — « FT"

id +id = FT'E'$ id$ match *

id + id = id T'E’$ id$ output £ — id

id + id * id T'E'$ $ match id

id + id * id o $ output 7’ — ¢

id + id * id $ $ output E' — €

Leftmost derivation

im

E= TE' =5 FI'E'= idT'F' = idE'= id+TFE =
Im im Im im Im

Predictive Parsing

The stack contains a sequence of grammar symbols

If w is the input that has been matched so far, then the stack holds a

sequence of grammar symbols & such that

S5 wa
Im

E= TE' = FT'E'= idT'E'= idE =
im Im Im im)

m

id +

TE' = -

im

==

Bottom Up Parsing

* A bottom-up parse corresponds to the construction of a parse tree for an

input string
* Beginning at the leaves (the bottom) and working up towards the

root (the top)

id + id F x+id T « id T x F T E
| |] /N |
id F Fid T s F T
I | | /IN
id id f|7' id ’.'ll"*,f‘
id 1|7' id
id
Input . id = id.
E - E+T|T
T - TxF | F
F - (E)| id

E => E = E = E E = E
im T/\E’ Im T/ \E Im T/ \E, Im T/ AN , Im T/
! E E

/N /\ /\ /1

S S & B
id id ¢ id €

Choose the correct

E production
;: \) ;;" /E\ 17: /E\

T T E’ T E’
ARRVANNN VARRVAANN ARV
= o F T+ T E F T+ T FE

E - TE o /N 1 SN
E = +TE]|« id e ‘r id e J]m /"f\
T —» FT id id « F T
T —= *xFT | ¢
E
F > (BE)li| = A & /N,
F/i!”' ’ \T\ E /:,"’ 4 \;\E F/T' +/ \;\ E
N A -LT /N4
TN N A AN 2 AN
id+ F T id :dt}‘v"T’

id-+id*id

Bottom Up Parsing

Sentential forms

id * id F *x id T % id T F T
] |] /1N
id I|7' 1|3' id fll’* II*"
id id Fl' id
id

Derivation --- Rightmost derivation

E=T=>TxF=>Txid= Fxid=idxid

Bottom-up parsing is therefore to construct a rightmost derivation in

reverse

Reduction

* A specific substring of input matching the body of a production
* Replaced by the nonterminal at the head of that production.

Production

Bcdxy=>Axy A-> Bed

* Bottom-up parsing as the process of "reducing" a string w to
the start symbol of the grammar

Challenges
(a) when to reduce and
(b) what production to apply, as the parse proceeds.

Reduction

f d =>?7?7?
id * id F * id T = T
i L_vT-I ARSI i
1d F F id T x F T
| I | I /TN
id id F id T %« F
Reduction steps i¢|j flr' ill
i
E - E+T|T
T = TxF|F
Challenges F - (E)|id

(a) when to reduce and
(b) what production to apply, as the parse proceeds.

Handle

* “Handle" is a substring of input that matches the body of a production
* Allows reduction => Towards start symbol=>reverse of a rightmost derivation

Production

Bcdxy=>Axy A-> Bed

Right sentential forms

Terminal ,

afw ﬁ-aAE SR production 4 — S
*

handle

RIGHT SENTENTIAL FORM | HANDLE | REDUCING PRODUCTION

id; * id> id; F-id
Fxids F T F
TxF TxF E->T x F

Identifying the handle is a challenge

Shift Reduce parsing

Bottom-up parsing in which
(a) Stack holds grammar symbols and
(b) Input buffer holds the rest of the string to be parsed.
(c) handle always appears at the top of the stack
Initial config. Final config.

STACK InpPUT STACK INPUT
$ w$ $5 $

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of
the stack. I:ocate the left end of the string within the stack Imd decide

with what nonterminal to replace the string.

3. Accept. Announce successful completion of parsing.

4. Error. Discover a syntax error and call an error recovery routine.

Shift Reduce parsing E - E+T|T

T —- TxF | F
F - (E)|id

STACK INPUT ACTION

$ id; xid> $ shift

$id; *ids § reduce by F' — id

$ F xid2$ reduceby T — F

$T xido § shift

$T « id, § shift

$7T x1ids $ reduce by F' — id

$T x F $ reduceby T — T xF

$T $ reduceby E =T

$F $ accept

Handle always appears at the top of the
stack

A-> 3B
(1) S adz= afByz = afyyz B_>YB Y
rm rm rm
STACK INPUT
$afBy yz$

The parser reduces th§ handle y{to B to reach the configuration

$apB yz$

The parser can now shift the string y onto the stack by a sequence of zero or
more shift moves to reach the configuration

$aBBy z$

Handle always appears at the top of the
stack

A->y

(2) S= aBrdz= an;'y'év=> ayTyz
rm rm rm B->y

$ary zyz$

thd handle + fis on top of the stack. After reducing the handle v to B, the parser
can shift the string zy to get the next handle y on top of the stack, ready to be
reduced to A:

$aBzy 2%

Conflict

Shift/reduce conflict: Cannot decide whether to shift or to reduce

Reduce/reduce conflict: Cannot decide which of several reductions to
make

Shift/reduce conflict

stmt — if expr then stmt
| if expr then stmt else stmi
| other

STACK INpPUT
- if ezpr then stmt else --- §

Shift Reduce parsing E - E+T|T

T —- TxF | F
F - (E)|id

STACK INPUT ACTION

$ id; xid2 $ shift

$id; xid2 $§ reduce by F' — id

$ F xido $§ reduce by T' — F

$T xidy § shift

$T x id2 § shift

$T *ids $ reduce by F —id

$T x F $ reduceby T - TxF

$T $ reduceby E—T

$E $ accept

LR Parsing

Challenges in shift-reduce parsing
(a) when to reduce and
(b) what production to apply, as the parse proceeds.

Examples:
Simple LR, LR(1), LALR

* LR parser makes shift-reduce decisions by LR(0) automaton
and maintaining states

* State represent sets of items

Items

production 4 — XYZ yields the four items

A— -XYZ
A= XYZ
A XY-Z
A XYZ.

production A — ¢ generates only one item, A — -

Intuitively, an item indicates how much of a production body we
have seen at a given point in the parsing process.

Ao -XYZ Indicates that wg hope to see a string derivable from
XYZ on the next input

Indicates that we have just seen on the input a string
A XYZ . ;
= derivable from X and that we hope next to see a string

derivable from YZ
A XVZ = Indicates that we have seen the body XYZ on input

string and that it may be time to reduce XYZ to A

Canonical LR(0) collection

Sets of items => One state

Collection of sets of items=> canonical LR(0) collection => Collection
of states

LR(0) automaton: Construct a deterministic finite automaton that is
used to make parsing decisions

To construct the canonical LR(0) collection for a grammar G,

we define (a) augmented grammar and (b) two functions, CLOSURE and
GOTO

Augmented grammar: If G is a grammar with start symbol S, then the
augmented grammar G'

start symbol S’ and production §' — S.

Closure of Item Sets

Similarto |

If I'is aEet of items ffor a grammar G, then CLOSURE(]) is the set of items
constructed from I by the two rules:

1. Initially, add every item in I to CLOSURE(J).

2. 'If A — a-Bf is in CLOSURE(I) and B — « is a production, then add the
1ter{1 B — -y to CLOSURE(I), if it is not already there. Apply this rule
until no more new items can be added to CLOSURE(I).

Intuitivell A — o-BB I cL.OSURE(J) indicates that, at some point in the

parsing process, we think jwe_might next see a substring derivable from BJ

as input. The substring derivable from| B will have a prehx |derivable from
B by applying one of the E-productions')

We therefore add items for all the

B-productioné; that is, i@s a production, we also include B — -y in
CLOSURE([).

Closure of Item Sets

If I is a set of items for a grammar G, then CLOSURE([) is the set of items
constructed from I by the two rules:

1. Initially, add every item in I to CLOSURE(J).

2. If A — a-Bf is in CLOSURE(I) and B — v is a production, then add the
item B — -y to CLOSURE(I), if it is not already there. Apply this rule
until no more new items can be added to CLOSURE(I).

SetOfTtems CLOSURE(I) {

b}
repeat
for (each item A - B in J)
for (each production B — v of G)
if (B — -yisnotin J)
add B = -y to J;
until no more items are added to J on one round;
return .J;

Closure of Item Sets

If I is a set of items for a grammar G, then CLOSURE([) is the set of items
constructed from I by the two rules:

1. Initially, add every item in I to CLOSURE(J).

2. If A — a-Bf is in CLOSURE(I) and B — v is a production, then add the
item B — -y to CLOSURE(I), if it is not already there. Apply this rule
until no more new items can be added to CLOSURE(I).

£ €E@ Augmentation E — E
E+T | T ,

T«+F
(E)

F
id

oy
111l

I_If I is the set of one item [[E’' — -E]}, then CLOSURE(]) contains

Kernel items: the initial item, §' — .S, and all items whose dots are not

Closure (I) at the left end.

E’—)-VE

Can be easily derived from Kernel items

Nonkernel items: all items with theiy dots at the left end,| except for
S — -5,

Closure of Item Sets

GOTO of Item Sets

* The second useful function is GOTO(I, X) where I is a set of items and X
is a grammar symbol.

* Defines the transitions in the LR(0) automaton

Assume that [A - a- Xplisin I,

GOTO(Z, X) is defined to be theclosure

[A —+ aX-f]

12=GOTO(I1, X)

12

X

13

bf the set of all items

GOTO(I,X) specifies the

transition from the state for

| under input X

12=GOTO(13, X)

GOTO of Item Sets

* The second useful function is GOTO(I, X) where I is a set of items and X
is a grammar symbol.

* Defines the transitions in the LR(0) automaton

Assume that [A - a- Xplisin I,

GOTO(Z, X) is defined to be theclosure
[A = aX 0]

5 -

X 8

12=GOTO(I1, X)

11-

x
| _——>

12

X

13

bf the set of all items

GOTO(I,X) specifies the

transition from the state for

| under input X

12=GOTO(13, X)

GOTO of Item Sets

If I is the set of two items {[E' — E.], [E —» E- + T}

GoTO(I,+) contains the items

E—-FE+-T
T TxF
T—-F 11 set
F — (F)
F — id
E' - FE
E - E+T | T
T = T+F | F
E = (E)]id

Canonical LR(0) collection

LR(0) automaton: Construct a deterministic finite automaton that is
used to make parsing decisions

* Sets of items => One state
* Collection of sets of items=> canonical LR(0) collection => Collection
of states

To construct the canonical LR(0) collection for a grammar G,
we define (a) augmented grammar and (b) two functions, CLOSURE and
GOTO

Augmented grammar: If G is a grammar with start symbol S, then the
augmented grammar G'

start symbol S’ and production §' — S.

Canonical collection of sets of items

au%mented grammar G’

LR(0) automaton

void items(G’) {
C = crosurg({[S" - -S]});
repeat
for (each set of items [in C')
for (each grammar sy

ol X)

if (goTo(I, X) is

not empty

and

not in C')

add GOTO(

LXTwo

until no new sets of items are added to C on a round;

_'C

Thf the LR(0) automaton is CLOSURE({[S" — -5]})
LR(0) automaton

E - E

E - E+T | T
E T - TxF | F

E = (E)]|id

(a) The states of this
automaton are the
sets of items from the
canonical LR(0)
collection,

(b) the transitions are
given by the GOTO
function

We say "state j" to refer to
the state corresponding to the
set of items I,.

J Symbol
representation : X

LR-Parsing Algorithm

Stack

Input

o]

273

Tels)

LR

Sm

Sm—1

Parsing
Program

—— Qutput

/N

.

ACTION | GOTO

Parsing table

The stack holds a sequence of states gy, ... s,.. where sy, is on top.

Where a shift-reduce parser shifts a symbol, an LR parser shifts a state

Top of the stack state (s_m) represents the state of the parser

Role of LR(0) automata in shift-reduce decisions

Key Idea Input: w=yaa

Consider we are in state j (maybe after scanning y symbols)

Next input symbol a
* |[f statej has a transition on a.
* Shift (to state k) on next input symbol a
* Otherwise, we choose to reduce;
* The items in state j will tell us which production to use

d

I "1k

All transitions to state k must be for the same grammar symbol a. Thus,
each state has a unique grammar symbol associated with it (except the
start state 0)

Multiple states may have same grammar symbol

Key Idea states
/
L
LINE | STACK | SYMBOLS INPUT | ACTION
1 |o $ id id § | shift to 5
(2) (05 $id *xid $ | reduce by F — id
3) 103 $ F #id§ reduce by T — F
(4) 02 $§T *1d § | shift to 7
(5) (027 $T id§ | shift to 5
6) |0275 | $§T=xid $ | reduce by F — id
(7) | 02710 | $T*F $ | reduceby T - T F
(8) |02 $T $ | reduce by £ - T
(99 |01 $ £ $ | accept
Reduction

With symbols,
Reduction is implemented by popping the body of the production (the
body is id) from the stack and pushing the head of the production (in
this case, F).
With states, (a) we pop state 5, which brings state 0 to the top and
(b) look for a transition on F, the head of the production.

(c) we push state 3

Shift Reduce parsing

Bottom-up parsing in which
(a) Stack holds grammar symbols and
(b) Input buffer holds the rest of the string to be parsed.
(c) handle always appears at the top of the stack
Initial config. Final config.

STACK InpPUT STACK INPUT
$ w$ $5 $

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of
the stack. I:ocate the left end of the string within the stack Imd decide

with what nonterminal to replace the string.

3. Accept. Announce successful completion of parsing.

4. Error. Discover a syntax error and call an error recovery routine.

Shift Reduce parsing E - E+T|T

T —- TxF | F
F - (E)|id

STACK INPUT ACTION

$ id; xid> $ shift

$id; *ids § reduce by F' — id

$ F xid2$ reduceby T — F

$T xido § shift

$T « id, § shift

$7T x1ids $ reduce by F' — id

$T x F $ reduceby T — T xF

$T $ reduceby E =T

$F $ accept

LR(O) automaton

Structure of the LR Parsing Table

i ists of two parts: § parsing-action function ACTION and
goto function GOTO.

1. Thlie ACTION function takes as arguments a ftate ¢ and a terminal a [(or

$, the input endmarker). The value of ACTIONIZ, @] Call HAve ONE Of four

forms:

(a) Shift j, where j is a state. The action taken by the parser effectively
shifts input a to the stack, but uses state j to represent a.

(b) Reduce 4 — 3. The action of the parser effectively reduces 8 on the
top of the stack to head A. ¢=mmm Pop and push

(c) Accept. The parser accepts the input and finishes parsing:

(d) Error. The parser discovers an error in its input and takes some
corrective action. We shall have more to say about how such error-
recovery routines work in Sections 4.8.3 and 4.9.4.

2. We extend the GOTO function, defined on sets of ite b
GoTO[I;, A] = I, then GOTO also maps a state ¢ and anonterminal A t

state j.
L TA"

ACTION GOTO
STATE

id + 9« () $ E T F

0 sb s4 1 2 3
1 s6 acc
2 2 s7 2 r2
3 r4 r4 4 14

4 s5 sd 8 2 3
5 6 16 6 r6

6 s5 s4 9 3

7 85 s4 10

8 s6 511

9 rl s7 rl rl
10 r3 13 r3 r3
11 5 19 5 rd

1. si means shift and stack state i,

Thg codes for the act.ionslare:

(1) E—-E+T
() E-T
() T—T+F

2. rj means reduce by the production numbered 3,

3. acc means accept,

4. blank means error.

SLR Parsing
table

4 ToF
(5) F-(E)
(6) F-id

LR-parsing algorithm.

METHOD: Initially, the parser has where s is the initial state,
and w$ in the input buffer. The pa ates the program : -
0

toput [ar [Jai[-~ Ja [5]
let a be the first symbol of w$;
while(1) { /* repeat forever */
let s be the state on top of the stack; Stk Fif;:é Outpirs

if (ACTION[s,a] = shift ¢) {
push ¢ onto the stack; =
let @ be the next input symbol; o GoTo

} else if (ACTION[S a] reduce A - ﬂ
pog o DOIS O & SURCK;
ot htate £ now be on top p the stac
push GOTO[t, A| onto the stack;
output the production 4 — 3;
} else if (ACTION[s,a] = accept) break; /* parsing is done */
else call error-recovery routine;

Optional

¥

LINE | STACK | SYMBOLS INPUT | ACTION
(1) (o $ id +id § | shift to 5
(2) (05 $id xid § | reduce by F' — id
(3) |03 $ F xid § | reduce by T = F
(4 |02 $T *id § | shift to 7
(5) [027 §T % id § | shift to 5
6) |0275 | $T+«id $ | reduce by F' — id
(7) | 02710 | $T*F $ | reduce by T -5 T+ F
(8) |02 $T $ | reduceby E - T
(9 |01 $E $ | accept

ACTION GOTO
STATE

id + 9« () $ E T F

0 sb s4 1 2 3
1 s6 acc
2 2 s7 2 r2
3 r4 r4 4 14

4 s5 sd 8 2 3
5 6 16 6 r6

6 s5 s4 9 3

7 85 s4 10

8 s6 511

9 rl s7 rl rl
10 r3 13 r3 r3
11 5 19 5 rd

1. si means shift and stack state i,

Thg codes for the act.ionslare:

(1) E—-E+T
() E-T
() T—T+F

2. rj means reduce by the production numbered 3,

3. acc means accept,

4. blank means error.

SLR Parsing
table

4 ToF
(5) F-(E)
(6) F-id

LR(O) automaton

Constructing SLR-Parsing Tables

LR parser using an SLR-parsing table as an SLR parser
Same for LR(1), LALR parser

Step 1: Given a grammar, G, we augment G to produce G, with
a new start symbol S*
Step 2: Construct LR(0) items and LR(0) automata
* We construct canonical collection of sets of items for
G' together with the GOTO function.
Step 3: Construct the parsing table
* Determine the ACTION and GOTO entries

SLR-Parsing Table: Algorithm

1. Construct C' = {Io, I, ..., I}, the collection of sets of LR(0) items for
G

The parsing actions for state ¢ are deter-

2. [State 4 is constructed from J;.
mined as follows:

(a) I [A = cwaf] is in I; and GOTO(J;,a) = I;, then set ACTION[{, a] to
“shift 7.” Here @ must be a terminal.

(b) If [A — o] is in [;, then set ACTION[i,a] to “reduce A — a” for all
a in FOLLOW(A); here A may not be §’.

(c) I£[S" = S is in I;, then set ACTION[I, $] to “accept.”

Input string

mput [[] | l;l+|b|$J

|.
i :
IJ

a
[A > a-af] [A_>qa.p

GOTO(I;,a) = Ij.

Stack: ...0lA looking for an handle

Key Idea /States
L

LINE | STACK | SYMBOLS INPUT | ACTION
(1 |0 $ id #id § | shift to 5
(2) (05 $id %id § | reduce by F — id
3 |03 $ F *id$ | reduceby T —» F
(4) 02 $T *1d § | shift to 7
(5) (027 $T id§ | shift to 5
6) |0275 | $§T=xid $ | reduce by F — id
() [02710 | $T+F $ | reducebyT - T« F
(8) |02 $T $ | reduce by F — T
(99 |01 $ £ $ | accept

SLR-Parsing Table: Algorithm

1. Construct C' = {Io, I, ..., I}, the collection of sets of LR(0) items for
G

The parsing actions for state ¢ are deter-

2. [State 4 is constructed from J;.
mined as follows:

(a) I [A = cwaf] is in I; and GOTO(J;,a) = I;, then set ACTION[{, a] to
“shift 7.” Here @ must be a terminal.

» (b) If [A — o] is in [;, then set ACTION[i,a] to “reduce A — a” for all
a in FOLLOW(A); here A may not be §’.

(c) I£[S" = S is in I;, then set ACTION[I, $] to “accept.”

Input string

mput [[] | l;l+|b|$J

a

A = o]

Stack: ...Ql... *May* detected a handle!!

S=> Aa =>0a If this is a sentential form.

Input string

mput [[] | l;l+|b|$J

a

A = o]

Stack: ...0Ol.. *May* detected a handle!!

S=> Aa =>03 e If this is a sentential form.

* afollows A

Input string

mput [[] | l;l+|b|$J

a

A = o]

Stack: ...0ld.. *May* detected a handle!!

S=> Aa =>03 e If this is a sentential form.

* afollows A
ain Follow(A)!

SLR-Parsing Table: Algorithm

1. Construct C' = {Io, I, ..., I}, the collection of sets of LR(0) items for
G

The parsing actions for state ¢ are deter-

2. [State 4 is constructed from J;.
mined as follows:

(a) I [A = cwaf] is in I; and GOTO(J;,a) = I;, then set ACTION[{, a] to
“shift 7.” Here @ must be a terminal.

(b) If [A — o] is in [;, then set ACTION[i,a] to “reduce A — a” for all
a in FOLLOW(A); here A may not be §’.

» (c) I£[S" = S is in I;, then set ACTION[I, $] to “accept.”

Input string
mpus [[] [[af+[n]s]
(S' £]

[S" = 8] Done!!

SLR-Parsing Table: Algorithm

1. Construct C' = {Io, I, ..., I}, the collection of sets of LR(0) items for
G

2. State ¢ is constructed from I;. The parsing actions for state ¢ are deter-
mined as follows:

(a) I [A = cwaf] is in I; and GOTO(J;,a) = I;, then set ACTION[{, a] to
“shift 7.” Here @ must be a terminal.

(b) If [A — o] is in [;, then set ACTION[i,a] to “reduce A — a” for all
a in FOLLOW(A); here A may not be §’.

(c) I£[S" = S is in I;, then set ACTION[I, $] to “accept.”

If any conflicting actions result from the above rules, we say the grammar
is not SLR(1). The algorithm fails to produce a parser in this case.

ACTION GOTO
STATE

id + 9« () $ E T F

0 sb s4 1 2 3
1 s6 acc
2 2 s7 2 r2
3 r4 r4 4 14

4 s5 sd 8 2 3
5 6 16 6 r6

6 s5 s4 9 3

7 85 s4 10

8 s6 511

9 rl s7 rl rl
10 r3 13 r3 r3
11 5 19 5 rd

1. si means shift and stack state i,

Thg codes for the act.ionslare:

(1) E—-E+T
() E-T
() T—T+F

2. rj means reduce by the production numbered 3,

3. acc means accept,

4. blank means error.

SLR Parsing
table

4 ToF
(5) F-(E)
(6) F-id

SLR-Parsing Table: Algorithm

. Construct C = {Ip, I, ... , I}, the collection of sets of LR(0) items for
e

. State 4 is constructed from I;. The parsing actions for state { are deter-
mined as follows:

(a) If [A — avaf] is in I; and GOTO(J;,a) = I;, then set ACTION(i, a] to
“shift j.” Here ¢ must be a terminal.

(b) If [A — o] is in [;, then set ACTION[i,a] to “reduce A — o for all
a in FOLLOW(A); here A may not be §’.

(c) I£[S" = S is in I;, then set ACTION[I, $] to “accept.”

- The goto transitions for state i are constructed for all honterminals A
using the rule: If GOTO(I;, A) = I;, then GOTO[i, A] = j.

. All entries not defined by rules (2) and (3) are made “error.”

. The initial state of the parser is the one constructed from the set of items
containing [S" — -S].

SLR-Parsing Table: Example

. STATE ACTION GOTO

First consider the set of items fg: id + « () $ |FE T F

0 $5 s4 1 2 3
E = -E 1 s6 acc
. 2 r2 s7 2 r2
E - E + T 3 rd r4 4 r4d

E—-.T 4 |5 s4 8 2 3
T - ,T * F 5 6 16 6 16

6 50 s4 9 3

T—>-F 7 | s4 10

F - (E) 8 56 s11

2 9 rl s7 rl rl
F—-id 10 13 13 3 13
11 r5 15 r5 15

The item F — -(E) gives rise to the entry ACTION[0, (] = shift 4, and the
item F — -id to the entry ACTION[0,id] = shift 5. Other items in Iy yield no
actions. Now consider I;:

E' > E-

E-E+T
The first item yields ACTION[1, $] = accept, and the second yields ACTION[L, +]
= shift 6. ‘

LR(O) automaton

SLR-Parsing Table: Example

Next consider I:

E =T
T>T-%F

Since FOLLOW(E) = {$, +,)}, the first item makes
ACTION][2,] = ACTION[2, +] = ACTION(2,)] = reduce E - T

The second item makes ACTION[2, #] = shift 7. Continuing in this fashion

STATE ACTION GOTO
id + « () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 7 r2 12

3 r4 r4 r4d r4

4 s5 s4 8 2 3
(1) E-E+T 49 T->F 5 6 16 6 16
2) E-»T (5) F— (E) 6 85 s4 9 3
(8) T—TxF 6) F-id 7|5 s4 10

8 s6 s11

9 rl s7 rl 1l

10 r3 r3 r3 13

11 5 1 r5 15

Non-SLR: Example

S - L=R | R
AR Grammar
R —- L
Is: S—=L=-R
— R L
- L—- %R
I, S—»L-=R / Loee
R— L

Conflicting action!!

ACTION([2, =] = “shift 6.

FOLLOW(R) containd =]® ACTION[2, =] to “reduce R — L.

Non-SLR: Where is the problem?

L=R| R id=*id
R |

Right sentential derivation

I
id

T
114
t

S->L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Stack: S Input string: id=*idS SLR parsing
Stack: S id Input string: =*idS

Stack: S L Input string: =*idS (Reduction with R->L??)
Stack: S L= Input string: *id$

Stack: S L=*id Input string: S

Stack: S S Input string: S

Non-SLR: Where is the problem?

L=R| R id=*id
R |

Right sentential derivation

I
id

T
114
t

S->L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Stack: S Input string: id=*idS SLR parsing
Stack: S id Input string: =*idS

Stack: S L Input string: =*idS (Reduction with R->L??)
Stack: SR Input string: =*idS |ncorrect!
Stack: S L=*id Input string: S

Stack: S S Input string: S

Viable Prefixes

* The LR(0) automaton characterizes the strings of grammar symbols
that can appear on the stack of a shift-reduce parser for the
grammar.

* The stack contents must be a prefix of a right-sentential form.

* If the stack holds a and the rest of the input is x, then a sequence of
reductions will take ax to S.

.
S = ar.
.o

Not all prefixes of right-sentential forms can appear on the stack
E= Fxid= (E)=id
T rm

The prefixes of right sentential forms that can appear on the stack of
a shift reduce parser are called viable prefixes.

Handle always appears at the top of the
stack prefix

Y

| A-> BBy
1) §= adz= afByz = agii;z
() Tm 7 ﬂ y T B->y
STACK INPUT
$afBy yz$

The parser reduces th§ handle y{to B to reach the configuration

$apB yz$

The parser can now shift the string y onto the stack by a sequence of zero or
more shift moves to reach the configuration

$aBBy z$

LR(O) automaton

v

Viable Prefixes

* the set of valid items for a viable prefix y is
* Set of items reached from the initial state S along the
path labeled y in the LR(0) automaton

SLR parsing is based on the fact that LR(0) automata recognize

viable prefixes and valid items.

We say item A — [3;-02 is wvalid for a viable prefix a3, if there is a
derivation S’ & aAw = af few. In general, an item will be valid for many

T™m
viable preﬁxes.

A — B1-B2 is valid for af; Viable prefix
if g2 #¢, Shift

If B2 = ¢ then it looks as if A — (1 is the handle, .
Reduction

SLR says...

(b) If [A = a] is in [;, then set ACTION[i,a] to “reduce A — a” for all
@ in FOLLOW(A); here A may not be §'.

In some situations, however, when state ¢ a:ppears on top of the stack, the
viable prefix fa on the stack is such that SA cannot be followed by a in any
right-sentential form. Thus, the reduction by A — « should be invalid on input

a. Bat
mput [[] | l;l+|b|$J
stack
@ Ba _
a Invalid right sentential form I

B

S#> ...fAa..=> Baa

SLR says...

(b) If [A = a] is in [;, then set ACTION[i,a] to “reduce A — a” for all
@ in FOLLOW(A); here A may not be §'.

In some situations, however, when state ¢ a:ppears on top of the stack, the
viable prefix fa on the stack is such that SA cannot be followed by a in any
right-sentential form. Thus, the reduction by A — « should be invalid on input

a.
Ba
Avoid
mpus | | | | laf+[0 B reduction!
stack 1
Ba l.
a |
B

Invalid right sentential form

S#> ...BAa..=>Baa | Invaliditem

Non-SLR: Where is the problem?

L=R| R id=*id
R |

Right sentential derivation

I
id

T
114
t

S->L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Stack: S Input string: id=*idS SLR parsing
Stack: S id Input string: =*idS

Stack: S L Input string: =*idS (Reduction with R->L??)
Stack: S L= Input string: *id$

Stack: S L=*id Input string: S

Stack: S S Input string: S

Non-SLR: Where is the problem?

L=R| R id=*id
R |

Right sentential derivation

I
id

T
114
t

S->L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Stack: S Input string: id=*idS SLR parsing
Stack: S id Input string: =*idS

Stack: S L Input string: =*idS (Reduction with R->L??)
Stack: SR Input string: =*idS |ncorrect!
Stack: S L=*id Input string: S

Stack: S S Input string: S

Non-SLR: Example

S - L=R | R
AR Grammar
R —- L
Is: S—=L=-R
— R L
- L—- %R
I, S—»L-=R / Loee
R— L

Conflicting action!!

ACTION([2, =] = “shift 6.

FOLLOW(R) containd =]® ACTION[2, =] to “reduce R — L.

Non-SLR: Where is the problem?

(b) If [A = a] is in [;, then set ACTION[i,a] to “reduce A — a” for all
@ in FOLLOW(A); here A may not be §'.

FOLLOW(R) contains =

Since S =>L=R=x*R=R *id=id

It is possible to carry extra information in the state that will
allow us to rule out some of these invalid reductions

LR(1) Parser, CLR

(b) If [A = a] is in [;, then set ACTION[i,a] to “reduce A — a” for all
@ in FOLLOW(A); here A may not be §'.

FOLLOW(R) contains =

Since Sﬁ‘L:R#*R:R

It is possible to carry extra information in the state that will
allow us to rule out some of these invalid reductions

* Splitting states

* Each state of an LR parser indicates exactly which input symbols
can follow a handle a for which there is a possible reduction to A

* This extra information is incorporated into the state by redefining

items to include a terminal symbol as a second component.

LR(1) Parser

The extra information is incorporated into the state by redefining iten@bto
include a terminal symbol as a second component. The general form of an item
becomes|[A — « - 3,a], where A — /3 is a production and a is a terminal pr
the right endmarker $§. We call such an object an LR(1) item.

an item of the form [4 — -, a] calls for a reduction by A — a
next input symbol is a.

Thus, we are compelled to reduce by A4 — o only on
those input symbols a for which [A — a-,a] is an LR(1) item in the state on
top of the stack. The set of such a’s will always be a subset of FOLLOW(A),

Look-ahead a is implicit for SLR

lookahead has no effect in an item of the form [A = «-B,a], where B is not e,

SetOfltems CLOSURE(I) {
J=1

LR(1) Sets of Items o A)

for (each production B — v of G)
if (B —-yisnotin J)
add B = -y to J;

Setoﬂtems CLOSURE(I) { :::i:o]r;nore items are added to J on one round;
repeat '
for (each item [A = -BfB,a]in [)
for (each production B — yin G’)
for (each terminal b in FIRST(Ba))
add [B — v,b] to set I;
until no more items are added to I;

return [;
}
consider an item of the form [A — «-Bf,al
S5 SAaz = daBfax B - v = da
by
y

S % ~Bby = ~nby. Thus, [B — -5,b] is valid for .

b can be any terminal FirsT(Sa).

Closure of Item Sets — LR(1)

s 5 8 [A — a-B ﬁ) a]
g s C C add [B — -y, b] for each production B — «y and terminal b in FIRST(fa).
C = ¢C|d

closure of {[$' — -, $]}
we add [S — -CC, $]. FIRST(Ba) Bise ais¥,

Closure of Item Sets

s 5 8 [A — a-B ﬁ) a]
g s C C add [B — -y, b] for each production B — «y and terminal b in FIRST(fa).
C = ¢C|d

closure of {[S" — -5, 9]}
we add [S — -CC, §]. FIRST(fa) Bise ais$,

adding all items [C' — -y,b] for b in FIRST(C$)

FIRST(C$) = FIRST(C)

FIRST(C) contains terminals ¢ and d L: S—-58
S—.CC, $
C - -cC, c/d
C—d c/d

LR(1) automation -- GOTO

SetOfltems GoTO(I, X) {
initialize J to be the empty set;
for (each item [A - - X3,a] in I)
add item [A — aX-8,a] to set J;
return CLOSURE(J);

LR(1) automation

void items(G') {
initialize C' to CLOSURE({[S" — -, $]});
repeat
for (each set of items I in C')
for (each grammar symbol X)
if (GOTO(J, X) is not empty and not in C)
add coTo(I,X) to C;
until no new sets of items are added to C:;

LR(1) automation S 5 S

- S - S - CC
0 1
S .5, 5.8 C - ¢C | d
S—+-CC,$
C—-cC,c/d - c -
2 5
C—-d,ec/d - §55C-C,$ S50 8
S oo
C—-d$ A c_ T
L—C—>C—>C-C,$. lgoeCs
C—-cC.$
O |
jd
d Ir
C—d,$
¢ I C I
C—c-C,eld . | C—=eChyefd
C—cCiofd
C—"df/d €8 No redundant states
d
d n
—_———

C—d,c/d

LR(1) Parsing table

1. Construct C' ={Iy, 1y, -+ ,I,}, the collection of sets of LR(1) items for
&' ’
2. State i of the parser is constructed from I;. The parsing action for state
i is determined as follows.
(a) If[A = a-aB,b] is in I; and GOTO(J;,a) = I;, then set ACTION[i, a]
to “shift j.” Here a must be a terminal. b is not important

(b) f[A = a,a]isin [;; A # 9, then set ACTION[i, a] to “reduce
A—al?

(c) If[S" — S-, 8] is in I;, then set ACTION[, §] to “accept.”

If any conflicting actions result from the above rules, we say the grammar
is not LR(1). The algorithm fails to produce a parser in this case.

3. The goto tramsitions for state i are constructed for all nonterminals A
using the rule: If coTO(I;, A) = I;, then GoTO[i, A] = j.

4. All entries not defined by rules (2) and (3) are made “error.”

5. The initial state of the parser is the one constructed from the set of items
containing [S* — -5, $].

Input string

mput [[] | l;l+|b|$J

|.
i :
IJ

a
[A > a-af] [A_>qa.p

GOTO(I;,a) = I;

Stack: ...0lA expecting an handle

LR(1) Parsing table

ACTION GOTO
STATE

¢c d % |[§ C
0 sd s4 112
1 acc
2 s6 s7 3
3 s3 8
4 3 13
b} rl
6 s6 87 9
7 r3
& r2 r2
9 r2

Ip
S'—-5,$
S—-CC,$
C—-cC,cfd
Cosdiefd

——(5 soss |—»aACC

I

S—=C-C,$
C—-cC,$
C—-d,$

4 I5
S§-CC- 8

Input: dd

c

»

In

C—cC-,$

Stack
S0

S0 4

$02
$027

$025
01

LALR

* Considerably smaller than the canonical LR tables

* Most common syntactic constructs of programming languages
can be expressed conveniently by an LALR grammar

Iy

Same core geC8

items, different
lookahead

Sets of LR(1) items having the same core, that is, set of first
components,

Merge these sets with common cores into one set of LALR
items.

Merge

C—c-C,c/d S
C—-cC,c/d,S
C—-d,c/d S

LALR -- GOTO

losds | T o A
< C—e-C,8 C—=eC-,$
C —-cC,$:")
C—-d,§
Ld
d Iz
C—d.$
N
I3 c_ Is 37 76 8 '¢
C—ec-C,c/d 1 C—eCefd

C —cC, cfd

a

* Since the core of GOTO(I,X) depends only on the core,
* Goto's of merged sets can themselves be merged.
* Thus, there is no problem revising the GOTO function as we
merge sets of items.

LR(1) automation -- GOTO

SetOfltems GoTO(I, X) {
initialize J to be the empty set;
for (each item [A - - X3,a] in I)
add item [A — aX-8,a] to set J;
return CLOSURE(J);

LALR Parsing table

1. Construct C = {Ip, l1,... , I}, the collection of sets of LR(1) items.

2. For each core present among the set of LR(1) items, find all sets having
that core, and replace these sets by their union.

3. Let C'" = {Jo,Ji,... ,Jm} be the resulting sets of LR(1) items. The
parsing actions for state i are constructed from J; in the same manner as
in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails
to produce a parser, and the grammar is said not to be LALR(1}.

4. The GOTO table is constructed as follows. If J is the union of one or
more sets of LR(1) items, that is, J = Iy N L N --- N Iz, then the
cores of GOTO(I, X), GOTO(L», X),... ,GOTO(I}, X) are the same, since
I, I, ..., I; all have the same core. Let K be the union of all sets of
items having the same core as GOTO(f;, X). Then GoTO(J, X) = K.

I33:

147:

Isg:

C —cC, c/df$
C — -cC, c/d[$
C—-d, c/d/$

C—d, c/dl$

C - cC-, ¢/d/$

ACTION GOTO
STATE
c d $ |S5 C
0 536 s47 1 2
1 acc

2 s36 =47 5
36 836 47 89

47 3 r3 r3

5 rl

89 2 r2 12

LALR conflicts

LALR item
[A — a-,d] Shift reduce conflict on a
: * Shares same core in LR(1)!!
B _+~ﬁ.ary"b] * Same conflict for LR(1)!
LR(1) items LALR item!
{[A = ¢, d], [B—c, €]} A e, dfe

B e, dfe

{[A = c,e], [B— ¢, d}

Reduce-reduce conflict on d, e!

No Reduce-reduce conflicton d, e

Efficient Construction of LALR Parsing Tables

e First, we can represent any set of LR(0) or LR(1) items I by its kernel,
that is, by those items that are either the initial item — [S' —+ -S] or
[S" —+ -5, 8] — or that have the dot somewhere other than at the beginning
of the production body.

e We can construct the LALR(1)-item kernels from the LR(0)-item kernels
by a process of propagation and spontaneous generation of lookaheads,
that we shall describe shortly.

¢ If we have the LALR(1) kernels, we can generate the LALR(1) parsing
table by closing each kernel, using the function CLOSURE of Fig, 4.40, and
then computing table entries by Algorithm 4.56, as if the LALR(1) sets
of items were canonical LR(1) sets of items.

We must attach the proper lookaheads to the LR(0) items in the
kernels, to create the kernels of the sets of LALR(l) items.

LR(0) item B — ¥-6

1. There is a set of items I, with a kernel item A =+ a-f,a, and J =
GOTO(I, X), and the construction of

GOTO (CLOSURE({[A = a-B,d]}), X)

as given in Fig. 4.40, contains [B — ~-d, b], regardless of a. Such a looka-
head b is said to be generated spontaneously for B — ~-6.

2. As a special case, lookahead § is generated spontaneously for the item
S" — -S in the initial set of items.

SetOfltems CLOSURE(I) {
J=1

LR(1) Sets of Items o A)

for (each production B — v of G)
if (B —-yisnotin J)
add B = -y to J;

Setoﬂtems CLOSURE(I) { :::i:o]r;nore items are added to J on one round;
repeat '
for (each item [A = -BfB,a]in [)
for (each production B — yin G’)
for (each terminal b in FIRST(Ba))
add [B — v,b] to set I;
until no more items are added to I;

return [;
}
consider an item of the form [A — «-Bf,al
S5 SAaz = daBfax B - v = da
by
y

S % ~Bby = ~nby. Thus, [B — -5,b] is valid for .

b can be any terminal FirsT(Sa).

We must attach the proper lookaheads to the LR(0) items in the
kernels, to create the kernels of the sets of LALR(l) items.

LR(0) item B — -6

3. All is as in (1), but a = b, and GOTO(CLOSURE({[A — a-3,}]}),X), as
given in Fig. 4.40, contains [B — ~-4, b] only because A — a-3 has b as
one of its associated lookaheads. In such a case, we say that lookaheads
propagate from A — -3 in the kernel of I to B — ~-d in the kernel of
J. Note that propagation does not depend on the particular lookahead
symbol; either all lookaheads propagate from one item to another, or none
do.

LR(1) automation -- GOTO

SetOfltems GoTO(I, X) {
initialize J to be the empty set;
for (each item [A - - X3,a] in I)
add item [A — aX-8,a] to set J;
return CLOSURE(J);

We need to determine thq spontaneously generated lookaheadd for each set
of LR(0) items, and also to determime which 1tens[propagate lookaheadd from
which. The test is actually quite simple. Let # be a symbol not in the grammar

at hand. Let A — a-6 be a kernel LR(0) item in set I. Compute, for each X,
J = GOTO(CLOSURE({[A — a-B,#]}),X). For each kernel item in J, we
examine its set of lookaheads. If # is a lookahead, then lookaheads propagate
to that item from A — @:8. Any other lookahead is spontaneously generated.

INPUT: The kernel K of a set of LR(0) items I and a grammar symbol X.

OUTPUT: The lookaheads spontaneously generated by items in I for kernel
items in GOTO(!, X) and the items in I from which lookaheads are propagated

to kernel items in coTO(I, X).

METHOD:

for (each item A -+ a-fin K) {
J := cLOSURE({[4 = a-3,#]});
if ([B —+-X4,a] isin J, and a is not #)
conclude that lookahead a is generated spontaneously for item
B — X4 in coTO(I,X);
if([B— vX6,#]isin J)
conclude that lookaheads propagate from A —+ a3 in I to
B =+ vX-6 in goTo(I, X);

We are now ready to attach lookaheads to the kernels of the sets of
LR(0) items to form the sets of LALR(l) items.

First, we know that $ is a lookahead for S'-> .S in the initial set of
LR(0) items.

Algorithm gives us all the lookaheads generated spontaneously.

After listing all those lookaheads, we must allow them to propagate
until no further propagation is possible.

Keep track of "new” lookaheads that have propagated into an item
but which have not yet propagated out.

METHOD:

1. Construct the kernels of the sets of LR(0) items for G. If space is not at
a premium, the simplest way is to construct the LR(0) sets of items, as in
Section 4.6.2, and then remove the nonkernel items. If space is severely
constrained, we may wish instead to store only the kernel items for each
set, and compute GOTO for a set of items I by first computing the closure
of I.

2. Apply Algorithm 4.62 to the kernel of each set of LR(0) items and gram-
mar symbol X to determine which lookaheads are spontaneously gener-
ated for kernel items in GOTO([, X), and from which items in [lookaheads
are propagated to kernel items in GOoTO(I, X).

3. Initialize a table that gives, for each kernel item in each set of items, the
associated lookaheads. Initially, each item has associated with it only
those lookaheads that we determined in step (2) were generated sponta-
neously.

4. Make repeated passes over the kernel items in all sets. When we visit an
item 4, we look up the kernel items to which i propagates its lookaheads,
using information tabulated in step (2). The current set of lookaheads
for i is added to those already associated with each of the items to which
i propagates its lookaheads. We cdntinue making passes over the kernel
items until no more new lookaheads are propagated.

Iol

II:

Iz:

132

=yl o V)
11l

S = .5
S—:L=R
S—-R

L —+-xR
L—-id
R—-L

S'=8S.

S—L-=R
R— L-

S— R

L — +=R
R—-L
L—-xR
L —id

M~ % [~
)

Is:

Iﬁ:

I7:

Is:

L — id-
S—+L=-R
R— L
L— - xR
L — -id
L — xR
R— L

S—=L=R-

I]I

Is:

Ll:

S'—-S
5= S

SSL=R
R— L-

S = R-

L= xR

i

=l)

1114

V5!
I

-

Iﬁ:

fft

Ig:

L = id-
S—+L=-R

L — «R-

R—= L

S—+L=R-

IU: .S'r—} S

first compute CLOSURE({[S’ — -S,#]}), which is

S'—}S,# L — %R, #,’:
S=:-L=R, # L-id, #/ =
S—-R, # R—= L, #

Among the items in the closure, we see two where the lookahead = has been

generated spontaneously. The first of these is L — - % R, This item, with * to
the right of the dot, gives rise to [L — *-R,=]. That is, = is a spontaneously

generated lookahead for L —+ #-R, which is in set of items I4. Similarly, [L —

?d, =] tells us that = is a spontaneously generated lookahead for L — id- in
5

As # is a lookahead for all six items in the closure, we determine that the
item S’ — -S in Iy propagates lookaheads to the following six items:

S'— S in L L—sRinl
S—»>L=Rinl, L—=id inls
S—=R-m I3 R— L in I
FrOM To
ID: S'=.5 I]: 5= S
I.: S—= L =R
I»: R— L-
Ia: S — R-
I;: L—= %R

| I52

L — id-

FroMm To

Iy: §'—=-S L: 858
I, S—=L =R
I R— L-
Is: S—= R
I;: L—= xR
Is: L —id-

I:. S=L=R|Is: S—L=-R

Ii: L—= %R I;: L—= %R
Is: L —id
I;: L — +R-
Is: R— L

Ig: S—L=-R 14: L= %R
Is: L —id
Is: R—L-
IQI S—+L=R-

LOOKAHEADS

SET e IniT | Pass 1 | Pass 2 | Pass 3
Ip: S'—-S $ $ $ $
L §'—= S $ 3 $
Iy S—+L=R $ $ $

R—L- $ $ $
I: S—R: $ $ $
I,: L—+=xR = =/$ =/% =/$
I L—id - =/$ =/$ =/$
Iy S—»L=-R $ $
I: L—+*R- = =/$ =/$
Iz R— L = =/$ =/$
Iy: S— L=R- $

USing Ambiguous Grammars unambiguous grammar

E - E4+T|T
id T - T+F|F
F = (E)]id

E—-E+E|ExE|(E)

* This grammar is ambiguous because it does not specify the associativity or
precedence of the operators + and *.

* The unambiguous grammar gives + lower precedence than *, and makes both
operators left associative.

* we might prefer to use the ambiguous grammar
* the parser for the unambiguous grammar will spend a substantial
fraction of its time reducing by the productionsE->Tand T ->F,
* whose sole function is to enforce associativity and precedence.

* The parser for the ambiguous grammar will not waste time reducing by these
single productions (productions whose body consists of a single nonterminal).

Iy:

I

Iy:

I3:

Iy

E' - -E
E—.-E+E
E— .-E+E
E — -(E)
E - .id

E' - E-
E=E-+E
E E+E

E— (-E)
E—-.E+E
E— -ExE
E— «(E)
E—-id

E —id-

E->E+-E
E—-E+E
E— -ExE
E - (E)
E - -id

Is:

Ig:

Ir:

Iy:

Iy:

E—E+-E
E— -E+E
E— ExE
E—(E)
E—ad

E - (E)
E+E+E
E—E-+E

E—E+E
E-E+E
ES E+E
E—- ExE-
E-E+E
E— E+E

E— (EB)-

Conflicts

]
<=

Follow(E)={+,*}

Conflict resolution

However, these problems can be resolved using the precedence and
associativity information for + and *.
Consider the input id + id * id, which causes a parser to enter state 7 after

processing id + id;
In particular the parser reaches a configuration

PREFIX STACK INPUT
F+FE 0147 *1d §

If * takes precedence over +, the parser should shift * onto the stack
Thus the relative precedence of + followed by * uniquely determines how

the parsing action conflict between reducing E -> E + E and shifting on * in
state 7 should be resolved.

Conflict resolution

Problems can be resolved using the associativity information for +.
Consider the input id + id + id, which causes a parser to enter state 7 after
processing id + id;

In particular the parser reaches a configuration

PREFIX STACK INPUT
FE+F 0147 +id $

associativity of the + operator determines how this conflict should be resolved.
If + is left associative, the correct action is to reduce by E — E + E. That is,
the id symbols sirrounding the first + must be grouped first. Again this choice
coincides with what the SLR parser for the unambiguous grammar would do.

Conflict resolution

However, these problems can be resolved using the precedence and associativity
information for + and *.

Consider the input id * id + id, which causes a parser to enter state 8 after
processing id * id;

In particular the parser reaches a configuration

PREFIX STACK INPUT
E xE 0148 +id$

that = is left associative and takes precedence over +, we can argue that state
8, which can appear on top of the stack only when E x E are the top three
grammar symbols, should have the action reduce E — E * E on both + and *
inputs. In the case of input +, the reason is that x takes precedence over +,
while in the case of input *, the rationale is that # is left associative.

Iy:

I

Iy:

I3:

Iy

E' - -E
E—.-E+E
E— .-E+E
E — -(E)
E - .id

E' - E-
E=E-+E
E E+E

E— (-E)
E—-.E+E
E— -ExE
E— «(E)
E—-id

E —id-

E->E+-E
E—-E+E
E— -ExE
E - (E)
E - -id

Is:

Ig:

Ir:

Iy:

Iy:

E—E+-E
E— -E+E
E— ExE
E—(E)
E—ad

E - (E)
E+E+E
E—E-+E

E—E+E
E-E+E
ES E+E
E—- ExE-
E-E+E
E— E+E

E— (EB)-

Conflicts

]
<=

Follow(E)={+,*}

ACTION
STATE

d + *) $ E
0 s3 §2 1
1 sd sb acc
2 s3 §2 6
3 rd r4d rd rd
4 s3 s2 7
5 s3 s2 8
6 s4 sh s9
7 rl sh rl rl
8 2 12 2 r2
9 r3 13 r3 13

Conflict resolution

stmt — if expr then stmt else stmt
| if expr then stmt
| other

an abstraction of this grammar, where i stands for if ezpr then, e stands for
else, and a stands for “all other productions.” We can then write the grammar,
with augmenting production S’ — S, as

s - S i
S = iSeS|iS|a (4.67)

ID: S — S
S — iSeS
S-S
S—=-a

ILi: S§'—=8S

I,: S —i-SeS
S —iS
S — -iSeS
S =4S
S—-a

13!

Iy:

IEj:

S = a

§3iSeS 85— iS <4(umm
53 iSeS

5 - -iSeS

S — 1S

S —-a

S —=+iSeS-

guity in (4.67) gives rise to a.‘shift/redtice conflict in 1y. Thef::: S — iS-eS calls
for a shift of e and, since FOLLOW(S) = {e, $}, item S — iS- calls for reduction

by S — iS on input e.

if expr then stmt else stmit.

STACK INPUT
- if expr then stmt else ---§

should we shift else onto the
stack (i.e., shift e) or reduce if erpr then stmt (i.e, reduce by S — i5)?

The answer is that we should shift else, because it is "associated"
with the previous then.

We conclude that the shift/reduce conflict should be
resolved in favor of shift on input else

ACTION GOTO
STATE -
' i e a $ S
0 s2 s3 1
1 acc
2 s2 s3 4
3 r3 r3
4 S r2
5 s2 s3 6
6 rl rl

