
Syntax Analysis, Parsing 



if  + 78 else  0

Lex – example-1
Input file – input_first

Tokens: if, else, op (+,-), number, other



► Every programming language has precise grammar rules that describe the
syntactic structure of well-formed programs

► In C, the rules states a program consists of functions, a function
consist of declarations and statements, a statement consists of
expressions, and so on.

► The task of a parser is to 

(a) Obtain strings of tokens from the lexical analyzer and verify that the string 
follows the rules of  the source language

(b) Parser reports errors and sometimes recovers from it

• Type checking, 
semantic analysis and 
translation actions can 
be interlinked with 
parsing

• Implemented as a 
single module.

Parsing  



► Two major classes of parsing

► top-down and bottom-up

► Input to the parser is scanned from left to right, one symbol at a 
time.

► The syntax of programming language constructs can be  specified 
by context-free grammars

► Grammars systematically describe the syntax of programming 
language constructs like expressions and statements. 

► Quick recall 

Parsing  



► A CFG is denoted as G = (N, T, P, S)

N : Finite set of non-terminals -- syntactic variables (stmt, expr)

T  : Finite set of terminals ---- Tokens, basic symbols from which strings and 
programs are formed

S  : The start symbol -- set of strings it generates is the language generated 
by the grammar

P : Finite set of productions -- specify the manner in which the terminals and 
nonterminals can be combined to form strings

Productions 

Start symbol: 
head body

Context free grammar   



Task of a parser  

Output of the parser is some representation of the parse tree for the stream of 
tokens as input, that comes from the lexical analyzer.

• Top-down parser works for LL grammar
• Bottom-up parser works for LR grammars
• Only subclasses of grammars

• But expressive enough to describe most of the syntactic constructs
of modern programming languages.

Concentrate on parsing expressions
• Constructs that begin with keywords like while or int are relatively easy to 

parse
• because the keyword guides the parsing decisions

• We therefore concentrate on expressions, which present more of challenge, 
because of the associativity and precedence of operators



Derivations

The construction of a parse tree can be conceptualized as derivations

Derivation: Beginning with the start symbol, each rewriting step replaces a 
nonterminal by the body of one of its productions. 

A sentence of G is a sentential form with no nonterminals. 
The language L(G) generated by a grammar G is its set of sentences.



Derivations

The construction of a parse tree can be conceptualized as derivations

Beginning with the start symbol, each rewriting step replaces a nonterminal by 
the body of one of its productions. 

Consider a grammar G 

Derivation  

1. Derivation of –(id+id) from start symbol E
2. –(id+id) is a sentence of G
3. At each step in a derivation, there are two choices to be made. 

• Which nonterminal to replace? : leftmost derivations
• Accordingly we must choose a production



Consider a grammar G 

Derivations-- Rightmost derivations

1. Derivation of –(id+id) from E
2. –(id+id) is a sentence of G
3. At each step in a derivation, there are two choices to be made. 

• Which nonterminal to replace? 
• Accordingly we must pick a production → Rightmost derivations,



► A parse tree is a graphical representation of a derivation that 
exhibits 

► the order in which productions are applied to  replace
non-terminals

► The internal node is a non-terminal A in the head  of the
production

► The children of the node are labelled, from left to right,
by the symbols in the body of the production by which
A was replaced during the derivation

► Same parse tree for leftmost and rightmost derivations

Parse trees



parse tree for - ( id + id) 

Sentential form
(leaves of a 
parse tree)



► A grammar that produces more than one parse tree for some  sentence is 
said to be ambiguous

► An ambiguous grammar is one that produces more than one leftmost 
derivation or more than one rightmost derivation for the same sentence.

Ambiguity

Two distinct leftmost derivations for the sentence id + id * id



Ambiguity



Ambiguity
Unambiguous grammar 



Top-Down Parsing

• Top-down parsing can be viewed as the problem of 
• Constructing a parse tree for the input string, 

• starting from the root and creating the nodes of the parse tree in 
preorder

• Top-down parsing can be viewed as finding a leftmost derivation for an input 
string





parse tree for - ( id + id) 

Top-Down Parsing 

parse tree for - (+ id) ??? 

Derivation



Top-Down Parsing

Left recursive 

Non-Left recursive 



Eliminating left recursion.

Generalization 

Immediate left recursion  



Eliminating left recursion.



Top-Down Parsing

Eliminating left recursion.



Eliminating left recursion.

Unfolding all the left recursions



Top-Down Parsing

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct 
A-production to be applied
(b) Predictive parsing: No backtracking! 
looking ahead at the input a fixed number of symbols (next symbols) – LL(k), 
LL(1) grammars 



Choose the correct 
production 



Recursive-Descent Parsing

(a) A recursive-descent parsing consists of a set of procedures, one for each 
nonterminal.

(b) Execution begins with the procedure for the start symbol S, 
(c) Halts and announces success if S() returns and its procedure body scans the 

entire input string.
(d) Backtracking:  may require repeated scans over the input

Nondeterministic

Try other productions! 



The leftmost leaf, labeled c, matches the first 
symbol of input w (i.e. c), so we advance the 
input pointer to a

• We have a match for the second input symbol, a, 
• So we advance the input pointer to d, the third 

input symbol
• Compare d against the next leaf, labeled b
Failure !! Backtrack! 



we must reset the input pointer to position a

• The leaf a matches the second input symbol of w (i.e. a) 
and the leaf d matches the third input symbol d

• Since S() returns and we have scanned w and produced a 
parse tree for w, 

• We halt and announce successful completion of parsing



Top-Down Parsing

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct 
A-production to be applied
(b) Predictive parsing: No backtracking! 
looking ahead at the input a fixed number of symbols (next symbols) –
LL(k), LL(1) grammars 



One sentential form 
S=> aXY….

Input string w=abcd
Grammar productions 
1. X-> bA… 

2. X->cP ……

First symbol

Another sentential form 
S=> aXb

Grammar productions 
1. X-> €
2. X-> ……

We know that b Follows X in any 
sentential form  

Basic concept of Predictive parsing





First(A)



How to compute First(X)





One sentential form 
S=> aXY….

Input string w=abcd
Grammar productions 
1. X-> bA… 

2. X->cP ……

First symbol

Another sentential form 
S=> aXb

Grammar productions 
1. X-> €
2. X-> ……

We know that b Follows X in any 
sentential form  

Basic concept of Predictive parsing





Follow(A)



S-> xAyz

How to compute Follow(A)

y in Follow(A)

S-> xAy
->xαBy Follow(B)=Follow(A)

Follow(A)=y







Follow(F)=Follow(T)



Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct 
A-production to be applied
(b) Predictive parsing: No backtracking! 
looking ahead at the input a fixed number of symbols (next symbols) –
LL(k), LL(1) grammars 

Predictive parsing



Predictive parsing

Parsing table M 



LL(1) grammar => avoid confusion!!

First(α) and First(β)  Disjoint sets



One sentential form 
S=> aXY….

Input string w=abcd

Grammar productions 
1. X-> bA… 

2. X-> bY……
First symbol

Another sentential form 
S=> aXb

Grammar productions 
1. X-> €
2. X-> ……
3. X->bY….

We know that b Follows X in any 
sentential form  …. Follow(X)=b

Basic concept of Predictive parsing



Left Factoring



Left Factoring



One sentential form 
S=> bAY….

Input string w=bacd

Grammar productions 
1. A-> aX… 

2. A-> ……
First symbol

Obvious

Parsing table M 



One sentential form 
S=> aAb

Grammar productions 
1. A-> α=>€
2. A-> ……

Input string w=abcd

We know that b Follows A in any 
sentential form  …. Follow(A)=b







First(FT’)={(,id}

Follow(T’)={+,),$}

First(*FT’)={*}

First((E))={(} First(id)={id}



Example of Non-LL(1) grammar 

• For every LL(1) grammar, each parsing-table entry uniquely identifies a
production or signals an error.
• left-recursive or ambiguous grammars are not LL(1)

Input string
i b t i b t a e a

if b 
then 
if b 

then 
a 

else   
a



Example of Non-LL(1) grammar 



Predictive Parsing
• Non-recursive version 

• maintaining a stack explicitly, rather than implicitly via 
recursive calls

Initial configuration 



Recursive-Descent Parsing

(a) A recursive-descent parsing consists of a set of procedures, one for each 
nonterminal.

(b) Execution begins with the procedure for the start symbol S, 
(c) Halts and announces success if S() returns and its procedure body scans the 

entire input string.
(d) Backtracking:  may require repeated scans over the input

Nondeterministic

Try other productions! 



Predictive Parsing
• Non-recursive version 

• maintaining a stack explicitly, rather than implicitly via 
recursive calls

Initial configuration 



Predictive Parsing

• The parser considers (i) the symbol 
on top of the stack X, and (ii) the 
current input symbol a. 

• If X is a nonterminal, the parser
chooses an X-production from M[X, a] of 
the parsing table. 
• Otherwise, it checks for a match

between the terminal X and current 
input symbol a.

Initial configuration 



a

Y1





Leftmost derivation 



The stack contains a sequence of grammar symbols

w

α

Predictive Parsing



Bottom Up Parsing 
• A bottom-up parse corresponds to the construction of a parse tree for an 

input string
• Beginning at the leaves (the bottom) and working up towards the 

root (the top)

Input



Choose the correct 
production 



Derivation --- Rightmost derivation 

Bottom Up Parsing 

Bottom-up parsing is therefore to construct a rightmost derivation in 
reverse

Sentential forms 



Reduction 

• A specific substring of input matching the body of a production 
• Replaced by the nonterminal at the head of that production.

Bcdxy=>Axy
A-> Bcd

Production 

• Bottom-up parsing as the process of "reducing" a string w to 
the start symbol of the grammar

Challenges
(a) when to reduce and
(b) what production to apply, as the parse proceeds.



E*id =>???

Challenges
(a) when to reduce and
(b) what production to apply, as the parse proceeds.

Reduction 

Reduction steps 



Handle 

• “Handle" is a substring of input that matches the body of a production
• Allows reduction => Towards start symbol=>reverse of a rightmost derivation

A-> Bcd
Production 

Right sentential forms 

handle

Terminals 

Bcdxy=>Axy

Identifying the handle is a challenge  



Shift Reduce parsing  

Bottom-up parsing in which 
(a) Stack holds grammar symbols and 
(b) Input buffer holds the rest of the string to be parsed.
(c) handle always appears at the top of the stack

Initial config. Final config. 



Shift Reduce parsing  



Handle always appears at the top of the 
stack

A-> βBy
B->ɣ



Handle always appears at the top of the 
stack

A-> y
B->ɣ



Conflict  

Shift/reduce conflict: Cannot decide whether to shift or to reduce

Reduce/reduce conflict: Cannot decide which of several reductions to 
make

Shift/reduce conflict



Shift Reduce parsing  



LR Parsing  

Examples:
Simple LR, LR(1), LALR

• LR parser makes shift-reduce decisions by LR(0) automaton
and maintaining states

• State represent sets of items

Challenges in shift-reduce parsing 
(a) when to reduce and
(b) what production to apply, as the parse proceeds.



Items  

Intuitively, an item indicates how much of a production body we 
have seen at a given point in the parsing process.

Indicates that we hope to see a string derivable from 
XYZ on the next input

Indicates that we have just seen on the input a string 
derivable from X and that we hope next to see a string 
derivable from YZ
Indicates that we have seen the body XYZ on input 
string and that it may be time to reduce XYZ to A



Canonical LR(0) collection  

• Sets of items => One state
• Collection of sets of items=> canonical LR(0) collection => Collection 

of states

LR(0) automaton: Construct a deterministic finite automaton that is 
used to make parsing decisions

To construct the canonical LR(0) collection for a grammar G, 
we define (a) augmented grammar and (b) two functions, CLOSURE and 
GOTO

Augmented grammar: If G is a grammar with start symbol S, then the 
augmented grammar G'



Closure of Item Sets
Similar to I



Closure of Item Sets



Closure of Item Sets

Augmentation



Can be easily derived from Kernel items 

Closure (I)



Closure of Item Sets



GOTO of Item Sets

• The second useful function is GOTO(I, X) where I is a set of items and X 
is a grammar symbol.

• Defines the transitions in the LR(0) automaton

Assume that 

I1 I2
X

I2=GOTO(I1, X)
GOTO(I,X) specifies the 
transition from the state for 
I under input X

I3
X I2=GOTO(I3, X)



GOTO of Item Sets

• The second useful function is GOTO(I, X) where I is a set of items and X 
is a grammar symbol.

• Defines the transitions in the LR(0) automaton

Assume that 

I1 I2
X

I2=GOTO(I1, X)
GOTO(I,X) specifies the 
transition from the state for 
I under input X

I3
X I2=GOTO(I3, X)

I5 I8X



GOTO of Item Sets

I1 set



Canonical LR(0) collection  

• Sets of items => One state
• Collection of sets of items=> canonical LR(0) collection => Collection 

of states

LR(0) automaton: Construct a deterministic finite automaton that is 
used to make parsing decisions

To construct the canonical LR(0) collection for a grammar G, 
we define (a) augmented grammar and (b) two functions, CLOSURE and 
GOTO

Augmented grammar: If G is a grammar with start symbol S, then the 
augmented grammar G'



Canonical collection of sets of items 

LR(0) automaton

I1 C
I1 CI2



LR(0) automaton

(a) The states of this 
automaton are the
sets of items from the 
canonical LR(0) 
collection, 

(b) the transitions are 
given by the GOTO
function

We say "state j" to refer to 
the state corresponding to the 
set of items Ij.

Symbol 
representation : X



LR-Parsing Algorithm

Where a shift-reduce parser shifts a symbol, an LR parser shifts a state

The stack holds a sequence of states

Parsing table

Top of the stack state (s_m) represents the state of the parser

S0



Key Idea 

Role of LR(0) automata in shift-reduce decisions

Consider we are in state j (maybe after scanning y symbols)

Next input symbol a
• If state j has a transition on a. 

• Shift (to state k) on next input symbol a
• Otherwise, we choose to reduce; 

• The items in state j will tell us which production to use

Input: w=yaα

j
a

k

• All transitions to state k must be for the same grammar symbol a. Thus, 
each state has a unique grammar symbol associated with it (except the 
start state 0) 

• Multiple states may have same grammar symbol



With symbols, 
Reduction is implemented by popping the body of the production (the 
body is id) from the stack and pushing the head of the production (in 
this case, F). 
With states, (a) we pop state 5, which brings state 0 to the top and 
(b) look for a transition on F, the head of the production.
(c) we push state 3

Key Idea 

Reduction 

States



Shift Reduce parsing  

Bottom-up parsing in which 
(a) Stack holds grammar symbols and 
(b) Input buffer holds the rest of the string to be parsed.
(c) handle always appears at the top of the stack

Initial config. Final config. 



Shift Reduce parsing  



LR(0) automaton



i jA

Pop and push



SLR Parsing 
table



LR-parsing algorithm.

S0



Optional



SLR Parsing 
table



LR(0) automaton



Constructing SLR-Parsing Tables

• LR parser using an SLR-parsing table as an SLR parser
• Same for LR(1), LALR parser 

• Step 1: Given a grammar, G, we augment G to produce G', with 
a new start symbol S‘

• Step 2: Construct LR(0) items and LR(0) automata
• We construct canonical collection of sets of items for 

G' together with the GOTO function.
• Step 3: Construct the parsing table

• Determine the ACTION and GOTO entries



SLR-Parsing Table: Algorithm



A->αa.β
a

Input string 

Ii Ij

Stack: …αa looking for an handle 



Key Idea States



SLR-Parsing Table: Algorithm



Input string 

Ii

Stack: …α… *May* detected a handle!! 

S=>..Aa…=>αa If this is a sentential form.

α



Input string 

Ii

Stack: …α.. *May* detected a handle!! 

• If this is a sentential form.
• a follows A

α

S=>..Aa…=>αa



Input string 

Ii

Stack: …αa.. *May* detected a handle!! 

• If this is a sentential form.
• a follows A
• a in Follow(A)!

α

S=>..Aa…=>αa



SLR-Parsing Table: Algorithm



Input string 

Ii

S

Done!!



SLR-Parsing Table: Algorithm



SLR Parsing 
table



SLR-Parsing Table: Algorithm



SLR-Parsing Table: Example



LR(0) automaton



SLR-Parsing Table: Example



=

Grammar 

Non-SLR: Example

Conflicting action!!



S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ L= Input string: *id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing 



S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ R Input string: =*id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing 

Incorrect!



Viable Prefixes 

• The LR(0) automaton characterizes the strings of grammar symbols
that can appear on the stack of a shift-reduce parser for the 
grammar. 

• The stack contents must be a prefix of a right-sentential form. 

• If the stack holds α and the rest of the input is x, then a sequence of 
reductions will take αx to S. 

Not all prefixes of right-sentential forms can appear on the stack

The prefixes of right sentential forms that can appear on the stack of 
a shift reduce parser are called viable prefixes. 



Handle always appears at the top of the 
stack

A-> βBy
B->ɣ

prefix



LR(0) automaton Viable prefix E+T



• the set of valid items for a viable prefix γ is 
• Set of items reached from the initial state S along the 

path labeled γ in the LR(0) automaton 

SLR parsing is based on the fact that LR(0) automata recognize 

viable prefixes and valid items.

Viable prefix

Shift 

Reduction

Viable Prefixes 



SLR says…

A→α.
.....
......

βα

β

α

… S≠> …βAa..=> βαa 

Invalid right sentential form 
Ii

βα

stack
IO



SLR says…

A→α
.....
......

βα

β

α

…
S≠> …βAa..=> βαa 

Invalid right sentential form 
Ii

Invalid item

Avoid 
reduction!

βα

stack
IO



S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ L= Input string: *id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing 



S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ R Input string: =*id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing 

Incorrect!



=

Grammar 

Non-SLR: Example

Conflicting action!!



Since

It is possible to carry extra information in the state that will 

allow us to rule out some of these invalid reductions

Non-SLR: Where is the problem?

……… *id=id



Since

It is possible to carry extra information in the state that will 

allow us to rule out some of these invalid reductions

• Splitting states
• Each state of an LR parser indicates exactly which input symbols

can follow a handle α for which there is a possible reduction to A
• This extra information is incorporated into the state by redefining 

items to include a terminal symbol as a second component.

LR(1) Parser, CLR



LR(1) Parser

Look-ahead a is implicit for SLR



LR(1) Sets of Items

by



Closure of Item Sets – LR(1)



Closure of Item Sets



LR(1) automation -- GOTO



LR(1) automation 

I1 C
I1 CI2



LR(1) automation 

No redundant states 



LR(1) Parsing table  

b is not important



A->αa.β
a

Input string 

Ii Ij

Stack: …αa expecting an handle 



LR(1) Parsing table  



Stack Input
dd$$0

d$$0 4 

$$0 2 7   

$$0 2 5 

$$0 1   

acc Input: dd

d$$0 2 C->d

C->d

S->CC



LALR  

• Considerably smaller than the canonical LR tables

• Most common syntactic constructs of programming languages 
can be expressed conveniently by an LALR grammar

Same core 
items, different 
lookahead



• Sets of LR(1) items having the same core, that is, set of first 
components, 

• Merge these sets with common cores into one set of LALR 
items.

, $

, $
, $

Merge



• Since the core of GOTO(I,X) depends only on the core, 
• Goto's of merged sets can themselves be merged. 

• Thus, there is no problem revising the GOTO function as we 
merge sets of items.

I3, I6 I8, I9
C

LALR -- GOTO 



LR(1) automation -- GOTO



LALR Parsing table 





Shift reduce conflict on a

LALR conflicts   

• Shares same core in LR(1)!!
• Same conflict for LR(1)!

LALR item

LR(1) items LALR item!

Reduce-reduce conflict on d, e!
No Reduce-reduce conflict on d, e



Efficient Construction of LALR Parsing Tables



We must attach the proper lookaheads to the LR(0) items in the 
kernels, to create the kernels of the sets of LALR(l) items.



LR(1) Sets of Items

by



We must attach the proper lookaheads to the LR(0) items in the 
kernels, to create the kernels of the sets of LALR(l) items.



LR(1) automation -- GOTO







• We are now ready to attach lookaheads to the kernels of the sets of 
LR(0) items to form the sets of LALR(l) items.

• First, we know that $ is a lookahead for S'-> .S in the initial set of 
LR(0) items. 

• Algorithm gives us all the lookaheads generated spontaneously. 

• After listing all those lookaheads, we must allow them to propagate
until no further propagation is possible. 

• Keep track of "new“ lookaheads that have propagated into an item 
but which have not yet propagated out. 



















Using Ambiguous Grammars Unambiguous grammar

• This grammar is ambiguous because it does not specify the associativity or
precedence of the operators + and *. 

• The unambiguous grammar gives + lower precedence than *, and makes both 
operators left associative.

• we might prefer to use the ambiguous grammar
• the parser for the unambiguous grammar will spend a substantial 

fraction of its time reducing by the productions E -> T and T -> F, 
• whose sole function is to enforce associativity and precedence. 

• The parser for the ambiguous grammar will not waste time reducing by these 
single productions (productions whose body consists of a single nonterminal).



Follow(E)={+,*}

Conflicts 



However, these problems can be resolved using the precedence and 

associativity information for + and *. 

Consider the input id + id * id, which causes a parser to enter state 7 after 

processing id + id; 

In particular the parser reaches a configuration

Conflict resolution 

If * takes precedence over +, the parser should shift * onto the stack

Thus the relative precedence of + followed by * uniquely determines how 
the parsing action conflict between reducing E -> E + E and shifting on * in 
state 7 should be resolved.



Problems can be resolved using the associativity information for +. 

Consider the input id + id + id, which causes a parser to enter state 7 after 

processing id + id; 

In particular the parser reaches a configuration

Conflict resolution 



However, these problems can be resolved using the precedence and associativity

information for + and *. 

Consider the input id * id + id, which causes a parser to enter state 8 after 

processing id * id; 

In particular the parser reaches a configuration

Conflict resolution 



Follow(E)={+,*}

Conflicts 





Conflict resolution 





The answer is that we should shift else, because it is "associated"
with the previous then. 

We conclude that the shift/reduce conflict should be 
resolved in favor of shift on input else




