
Syntax Analysis, Parsing

if + 78 else 0

Lex – example-1
Input file – input_first

Tokens: if, else, op (+,-), number, other

► Every programming language has precise grammar rules that describe the
syntactic structure of well-formed programs

► In C, the rules states a program consists of functions, a function
consist of declarations and statements, a statement consists of
expressions, and so on.

► The task of a parser is to

(a) Obtain strings of tokens from the lexical analyzer and verify that the string
follows the rules of the source language

(b) Parser reports errors and sometimes recovers from it

• Type checking,
semantic analysis and
translation actions can
be interlinked with
parsing

• Implemented as a
single module.

Parsing

► Two major classes of parsing

► top-down and bottom-up

► Input to the parser is scanned from left to right, one symbol at a
time.

► The syntax of programming language constructs can be specified
by context-free grammars

► Grammars systematically describe the syntax of programming
language constructs like expressions and statements.

► Quick recall

Parsing

► A CFG is denoted as G = (N, T, P, S)

N : Finite set of non-terminals -- syntactic variables (stmt, expr)

T : Finite set of terminals ---- Tokens, basic symbols from which strings and
programs are formed

S : The start symbol -- set of strings it generates is the language generated
by the grammar

P : Finite set of productions -- specify the manner in which the terminals and
nonterminals can be combined to form strings

Productions

Start symbol:
head body

Context free grammar

Task of a parser

Output of the parser is some representation of the parse tree for the stream of
tokens as input, that comes from the lexical analyzer.

• Top-down parser works for LL grammar
• Bottom-up parser works for LR grammars
• Only subclasses of grammars

• But expressive enough to describe most of the syntactic constructs
of modern programming languages.

Concentrate on parsing expressions
• Constructs that begin with keywords like while or int are relatively easy to

parse
• because the keyword guides the parsing decisions

• We therefore concentrate on expressions, which present more of challenge,
because of the associativity and precedence of operators

Derivations

The construction of a parse tree can be conceptualized as derivations

Derivation: Beginning with the start symbol, each rewriting step replaces a
nonterminal by the body of one of its productions.

A sentence of G is a sentential form with no nonterminals.
The language L(G) generated by a grammar G is its set of sentences.

Derivations

The construction of a parse tree can be conceptualized as derivations

Beginning with the start symbol, each rewriting step replaces a nonterminal by
the body of one of its productions.

Consider a grammar G

Derivation

1. Derivation of –(id+id) from start symbol E
2. –(id+id) is a sentence of G
3. At each step in a derivation, there are two choices to be made.

• Which nonterminal to replace? : leftmost derivations
• Accordingly we must choose a production

Consider a grammar G

Derivations-- Rightmost derivations

1. Derivation of –(id+id) from E
2. –(id+id) is a sentence of G
3. At each step in a derivation, there are two choices to be made.

• Which nonterminal to replace?
• Accordingly we must pick a production → Rightmost derivations,

► A parse tree is a graphical representation of a derivation that
exhibits

► the order in which productions are applied to replace
non-terminals

► The internal node is a non-terminal A in the head of the
production

► The children of the node are labelled, from left to right,
by the symbols in the body of the production by which
A was replaced during the derivation

► Same parse tree for leftmost and rightmost derivations

Parse trees

parse tree for - (id + id)

Sentential form
(leaves of a
parse tree)

► A grammar that produces more than one parse tree for some sentence is
said to be ambiguous

► An ambiguous grammar is one that produces more than one leftmost
derivation or more than one rightmost derivation for the same sentence.

Ambiguity

Two distinct leftmost derivations for the sentence id + id * id

Ambiguity

Ambiguity
Unambiguous grammar

Top-Down Parsing

• Top-down parsing can be viewed as the problem of
• Constructing a parse tree for the input string,

• starting from the root and creating the nodes of the parse tree in
preorder

• Top-down parsing can be viewed as finding a leftmost derivation for an input
string

parse tree for - (id + id)

Top-Down Parsing

parse tree for - (+ id) ???

Derivation

Top-Down Parsing

Left recursive

Non-Left recursive

Eliminating left recursion.

Generalization

Immediate left recursion

Eliminating left recursion.

Top-Down Parsing

Eliminating left recursion.

Eliminating left recursion.

Unfolding all the left recursions

Top-Down Parsing

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct
A-production to be applied
(b) Predictive parsing: No backtracking!
looking ahead at the input a fixed number of symbols (next symbols) – LL(k),
LL(1) grammars

Choose the correct
production

Recursive-Descent Parsing

(a) A recursive-descent parsing consists of a set of procedures, one for each
nonterminal.

(b) Execution begins with the procedure for the start symbol S,
(c) Halts and announces success if S() returns and its procedure body scans the

entire input string.
(d) Backtracking: may require repeated scans over the input

Nondeterministic

Try other productions!

The leftmost leaf, labeled c, matches the first
symbol of input w (i.e. c), so we advance the
input pointer to a

• We have a match for the second input symbol, a,
• So we advance the input pointer to d, the third

input symbol
• Compare d against the next leaf, labeled b
Failure !! Backtrack!

we must reset the input pointer to position a

• The leaf a matches the second input symbol of w (i.e. a)
and the leaf d matches the third input symbol d

• Since S() returns and we have scanned w and produced a
parse tree for w,

• We halt and announce successful completion of parsing

Top-Down Parsing

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct
A-production to be applied
(b) Predictive parsing: No backtracking!
looking ahead at the input a fixed number of symbols (next symbols) –
LL(k), LL(1) grammars

One sentential form
S=> aXY….

Input string w=abcd
Grammar productions
1. X-> bA…

2. X->cP ……

First symbol

Another sentential form
S=> aXb

Grammar productions
1. X-> €
2. X-> ……

We know that b Follows X in any
sentential form

Basic concept of Predictive parsing

First(A)

How to compute First(X)

One sentential form
S=> aXY….

Input string w=abcd
Grammar productions
1. X-> bA…

2. X->cP ……

First symbol

Another sentential form
S=> aXb

Grammar productions
1. X-> €
2. X-> ……

We know that b Follows X in any
sentential form

Basic concept of Predictive parsing

Follow(A)

S-> xAyz

How to compute Follow(A)

y in Follow(A)

S-> xAy
->xαBy Follow(B)=Follow(A)

Follow(A)=y

Follow(F)=Follow(T)

Challenges:
At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A.

(a) Recursive descent parsing: May require backtracking to find the correct
A-production to be applied
(b) Predictive parsing: No backtracking!
looking ahead at the input a fixed number of symbols (next symbols) –
LL(k), LL(1) grammars

Predictive parsing

Predictive parsing

Parsing table M

LL(1) grammar => avoid confusion!!

First(α) and First(β) Disjoint sets

One sentential form
S=> aXY….

Input string w=abcd

Grammar productions
1. X-> bA…

2. X-> bY……
First symbol

Another sentential form
S=> aXb

Grammar productions
1. X-> €
2. X-> ……
3. X->bY….

We know that b Follows X in any
sentential form …. Follow(X)=b

Basic concept of Predictive parsing

Left Factoring

Left Factoring

One sentential form
S=> bAY….

Input string w=bacd

Grammar productions
1. A-> aX…

2. A-> ……
First symbol

Obvious

Parsing table M

One sentential form
S=> aAb

Grammar productions
1. A-> α=>€
2. A-> ……

Input string w=abcd

We know that b Follows A in any
sentential form …. Follow(A)=b

First(FT’)={(,id}

Follow(T’)={+,),$}

First(*FT’)={*}

First((E))={(} First(id)={id}

Example of Non-LL(1) grammar

• For every LL(1) grammar, each parsing-table entry uniquely identifies a
production or signals an error.
• left-recursive or ambiguous grammars are not LL(1)

Input string
i b t i b t a e a

if b
then
if b

then
a

else
a

Example of Non-LL(1) grammar

Predictive Parsing
• Non-recursive version

• maintaining a stack explicitly, rather than implicitly via
recursive calls

Initial configuration

Recursive-Descent Parsing

(a) A recursive-descent parsing consists of a set of procedures, one for each
nonterminal.

(b) Execution begins with the procedure for the start symbol S,
(c) Halts and announces success if S() returns and its procedure body scans the

entire input string.
(d) Backtracking: may require repeated scans over the input

Nondeterministic

Try other productions!

Predictive Parsing
• Non-recursive version

• maintaining a stack explicitly, rather than implicitly via
recursive calls

Initial configuration

Predictive Parsing

• The parser considers (i) the symbol
on top of the stack X, and (ii) the
current input symbol a.

• If X is a nonterminal, the parser
chooses an X-production from M[X, a] of
the parsing table.
• Otherwise, it checks for a match

between the terminal X and current
input symbol a.

Initial configuration

a

Y1

Leftmost derivation

The stack contains a sequence of grammar symbols

w

α

Predictive Parsing

Bottom Up Parsing
• A bottom-up parse corresponds to the construction of a parse tree for an

input string
• Beginning at the leaves (the bottom) and working up towards the

root (the top)

Input

Choose the correct
production

Derivation --- Rightmost derivation

Bottom Up Parsing

Bottom-up parsing is therefore to construct a rightmost derivation in
reverse

Sentential forms

Reduction

• A specific substring of input matching the body of a production
• Replaced by the nonterminal at the head of that production.

Bcdxy=>Axy
A-> Bcd

Production

• Bottom-up parsing as the process of "reducing" a string w to
the start symbol of the grammar

Challenges
(a) when to reduce and
(b) what production to apply, as the parse proceeds.

E*id =>???

Challenges
(a) when to reduce and
(b) what production to apply, as the parse proceeds.

Reduction

Reduction steps

Handle

• “Handle" is a substring of input that matches the body of a production
• Allows reduction => Towards start symbol=>reverse of a rightmost derivation

A-> Bcd
Production

Right sentential forms

handle

Terminals

Bcdxy=>Axy

Identifying the handle is a challenge

Shift Reduce parsing

Bottom-up parsing in which
(a) Stack holds grammar symbols and
(b) Input buffer holds the rest of the string to be parsed.
(c) handle always appears at the top of the stack

Initial config. Final config.

Shift Reduce parsing

Handle always appears at the top of the
stack

A-> βBy
B->ɣ

Handle always appears at the top of the
stack

A-> y
B->ɣ

Conflict

Shift/reduce conflict: Cannot decide whether to shift or to reduce

Reduce/reduce conflict: Cannot decide which of several reductions to
make

Shift/reduce conflict

Shift Reduce parsing

LR Parsing

Examples:
Simple LR, LR(1), LALR

• LR parser makes shift-reduce decisions by LR(0) automaton
and maintaining states

• State represent sets of items

Challenges in shift-reduce parsing
(a) when to reduce and
(b) what production to apply, as the parse proceeds.

Items

Intuitively, an item indicates how much of a production body we
have seen at a given point in the parsing process.

Indicates that we hope to see a string derivable from
XYZ on the next input

Indicates that we have just seen on the input a string
derivable from X and that we hope next to see a string
derivable from YZ
Indicates that we have seen the body XYZ on input
string and that it may be time to reduce XYZ to A

Canonical LR(0) collection

• Sets of items => One state
• Collection of sets of items=> canonical LR(0) collection => Collection

of states

LR(0) automaton: Construct a deterministic finite automaton that is
used to make parsing decisions

To construct the canonical LR(0) collection for a grammar G,
we define (a) augmented grammar and (b) two functions, CLOSURE and
GOTO

Augmented grammar: If G is a grammar with start symbol S, then the
augmented grammar G'

Closure of Item Sets
Similar to I

Closure of Item Sets

Closure of Item Sets

Augmentation

Can be easily derived from Kernel items

Closure (I)

Closure of Item Sets

GOTO of Item Sets

• The second useful function is GOTO(I, X) where I is a set of items and X
is a grammar symbol.

• Defines the transitions in the LR(0) automaton

Assume that

I1 I2
X

I2=GOTO(I1, X)
GOTO(I,X) specifies the
transition from the state for
I under input X

I3
X I2=GOTO(I3, X)

GOTO of Item Sets

• The second useful function is GOTO(I, X) where I is a set of items and X
is a grammar symbol.

• Defines the transitions in the LR(0) automaton

Assume that

I1 I2
X

I2=GOTO(I1, X)
GOTO(I,X) specifies the
transition from the state for
I under input X

I3
X I2=GOTO(I3, X)

I5 I8X

GOTO of Item Sets

I1 set

Canonical LR(0) collection

• Sets of items => One state
• Collection of sets of items=> canonical LR(0) collection => Collection

of states

LR(0) automaton: Construct a deterministic finite automaton that is
used to make parsing decisions

To construct the canonical LR(0) collection for a grammar G,
we define (a) augmented grammar and (b) two functions, CLOSURE and
GOTO

Augmented grammar: If G is a grammar with start symbol S, then the
augmented grammar G'

Canonical collection of sets of items

LR(0) automaton

I1 C
I1 CI2

LR(0) automaton

(a) The states of this
automaton are the
sets of items from the
canonical LR(0)
collection,

(b) the transitions are
given by the GOTO
function

We say "state j" to refer to
the state corresponding to the
set of items Ij.

Symbol
representation : X

LR-Parsing Algorithm

Where a shift-reduce parser shifts a symbol, an LR parser shifts a state

The stack holds a sequence of states

Parsing table

Top of the stack state (s_m) represents the state of the parser

S0

Key Idea

Role of LR(0) automata in shift-reduce decisions

Consider we are in state j (maybe after scanning y symbols)

Next input symbol a
• If state j has a transition on a.

• Shift (to state k) on next input symbol a
• Otherwise, we choose to reduce;

• The items in state j will tell us which production to use

Input: w=yaα

j
a

k

• All transitions to state k must be for the same grammar symbol a. Thus,
each state has a unique grammar symbol associated with it (except the
start state 0)

• Multiple states may have same grammar symbol

With symbols,
Reduction is implemented by popping the body of the production (the
body is id) from the stack and pushing the head of the production (in
this case, F).
With states, (a) we pop state 5, which brings state 0 to the top and
(b) look for a transition on F, the head of the production.
(c) we push state 3

Key Idea

Reduction

States

Shift Reduce parsing

Bottom-up parsing in which
(a) Stack holds grammar symbols and
(b) Input buffer holds the rest of the string to be parsed.
(c) handle always appears at the top of the stack

Initial config. Final config.

Shift Reduce parsing

LR(0) automaton

i jA

Pop and push

SLR Parsing
table

LR-parsing algorithm.

S0

Optional

SLR Parsing
table

LR(0) automaton

Constructing SLR-Parsing Tables

• LR parser using an SLR-parsing table as an SLR parser
• Same for LR(1), LALR parser

• Step 1: Given a grammar, G, we augment G to produce G', with
a new start symbol S‘

• Step 2: Construct LR(0) items and LR(0) automata
• We construct canonical collection of sets of items for

G' together with the GOTO function.
• Step 3: Construct the parsing table

• Determine the ACTION and GOTO entries

SLR-Parsing Table: Algorithm

A->αa.β
a

Input string

Ii Ij

Stack: …αa looking for an handle

Key Idea States

SLR-Parsing Table: Algorithm

Input string

Ii

Stack: …α… *May* detected a handle!!

S=>..Aa…=>αa If this is a sentential form.

α

Input string

Ii

Stack: …α.. *May* detected a handle!!

• If this is a sentential form.
• a follows A

α

S=>..Aa…=>αa

Input string

Ii

Stack: …αa.. *May* detected a handle!!

• If this is a sentential form.
• a follows A
• a in Follow(A)!

α

S=>..Aa…=>αa

SLR-Parsing Table: Algorithm

Input string

Ii

S

Done!!

SLR-Parsing Table: Algorithm

SLR Parsing
table

SLR-Parsing Table: Algorithm

SLR-Parsing Table: Example

LR(0) automaton

SLR-Parsing Table: Example

=

Grammar

Non-SLR: Example

Conflicting action!!

S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ L= Input string: *id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing

S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ R Input string: =*id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing

Incorrect!

Viable Prefixes

• The LR(0) automaton characterizes the strings of grammar symbols
that can appear on the stack of a shift-reduce parser for the
grammar.

• The stack contents must be a prefix of a right-sentential form.

• If the stack holds α and the rest of the input is x, then a sequence of
reductions will take αx to S.

Not all prefixes of right-sentential forms can appear on the stack

The prefixes of right sentential forms that can appear on the stack of
a shift reduce parser are called viable prefixes.

Handle always appears at the top of the
stack

A-> βBy
B->ɣ

prefix

LR(0) automaton Viable prefix E+T

• the set of valid items for a viable prefix γ is
• Set of items reached from the initial state S along the

path labeled γ in the LR(0) automaton

SLR parsing is based on the fact that LR(0) automata recognize

viable prefixes and valid items.

Viable prefix

Shift

Reduction

Viable Prefixes

SLR says…

A→α.
.....
......

βα

β

α

… S≠> …βAa..=> βαa

Invalid right sentential form
Ii

βα

stack
IO

SLR says…

A→α
.....
......

βα

β

α

…
S≠> …βAa..=> βαa

Invalid right sentential form
Ii

Invalid item

Avoid
reduction!

βα

stack
IO

S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ L= Input string: *id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing

S-> L=R -> L=L -> L=*R -> L=*L -> L=*id -> id=*id

Input string: id=*id$Stack: $

Stack: $ id Input string: =*id$

Stack: $ L Input string: =*id$ (Reduction with R->L??)

Stack: $ R Input string: =*id$

Stack: $ L=*id Input string: $

Stack: $ S Input string: $

Non-SLR: Where is the problem?

Right sentential derivation

id=*id

SLR parsing

Incorrect!

=

Grammar

Non-SLR: Example

Conflicting action!!

Since

It is possible to carry extra information in the state that will

allow us to rule out some of these invalid reductions

Non-SLR: Where is the problem?

……… *id=id

Since

It is possible to carry extra information in the state that will

allow us to rule out some of these invalid reductions

• Splitting states
• Each state of an LR parser indicates exactly which input symbols

can follow a handle α for which there is a possible reduction to A
• This extra information is incorporated into the state by redefining

items to include a terminal symbol as a second component.

LR(1) Parser, CLR

LR(1) Parser

Look-ahead a is implicit for SLR

LR(1) Sets of Items

by

Closure of Item Sets – LR(1)

Closure of Item Sets

LR(1) automation -- GOTO

LR(1) automation

I1 C
I1 CI2

LR(1) automation

No redundant states

LR(1) Parsing table

b is not important

A->αa.β
a

Input string

Ii Ij

Stack: …αa expecting an handle

LR(1) Parsing table

Stack Input
dd$$0

d$$0 4

$$0 2 7

$$0 2 5

$$0 1

acc Input: dd

d$$0 2 C->d

C->d

S->CC

LALR

• Considerably smaller than the canonical LR tables

• Most common syntactic constructs of programming languages
can be expressed conveniently by an LALR grammar

Same core
items, different
lookahead

• Sets of LR(1) items having the same core, that is, set of first
components,

• Merge these sets with common cores into one set of LALR
items.

, $

, $
, $

Merge

• Since the core of GOTO(I,X) depends only on the core,
• Goto's of merged sets can themselves be merged.

• Thus, there is no problem revising the GOTO function as we
merge sets of items.

I3, I6 I8, I9
C

LALR -- GOTO

LR(1) automation -- GOTO

LALR Parsing table

Shift reduce conflict on a

LALR conflicts

• Shares same core in LR(1)!!
• Same conflict for LR(1)!

LALR item

LR(1) items LALR item!

Reduce-reduce conflict on d, e!
No Reduce-reduce conflict on d, e

Efficient Construction of LALR Parsing Tables

We must attach the proper lookaheads to the LR(0) items in the
kernels, to create the kernels of the sets of LALR(l) items.

LR(1) Sets of Items

by

We must attach the proper lookaheads to the LR(0) items in the
kernels, to create the kernels of the sets of LALR(l) items.

LR(1) automation -- GOTO

• We are now ready to attach lookaheads to the kernels of the sets of
LR(0) items to form the sets of LALR(l) items.

• First, we know that $ is a lookahead for S'-> .S in the initial set of
LR(0) items.

• Algorithm gives us all the lookaheads generated spontaneously.

• After listing all those lookaheads, we must allow them to propagate
until no further propagation is possible.

• Keep track of "new“ lookaheads that have propagated into an item
but which have not yet propagated out.

Using Ambiguous Grammars Unambiguous grammar

• This grammar is ambiguous because it does not specify the associativity or
precedence of the operators + and *.

• The unambiguous grammar gives + lower precedence than *, and makes both
operators left associative.

• we might prefer to use the ambiguous grammar
• the parser for the unambiguous grammar will spend a substantial

fraction of its time reducing by the productions E -> T and T -> F,
• whose sole function is to enforce associativity and precedence.

• The parser for the ambiguous grammar will not waste time reducing by these
single productions (productions whose body consists of a single nonterminal).

Follow(E)={+,*}

Conflicts

However, these problems can be resolved using the precedence and

associativity information for + and *.

Consider the input id + id * id, which causes a parser to enter state 7 after

processing id + id;

In particular the parser reaches a configuration

Conflict resolution

If * takes precedence over +, the parser should shift * onto the stack

Thus the relative precedence of + followed by * uniquely determines how
the parsing action conflict between reducing E -> E + E and shifting on * in
state 7 should be resolved.

Problems can be resolved using the associativity information for +.

Consider the input id + id + id, which causes a parser to enter state 7 after

processing id + id;

In particular the parser reaches a configuration

Conflict resolution

However, these problems can be resolved using the precedence and associativity

information for + and *.

Consider the input id * id + id, which causes a parser to enter state 8 after

processing id * id;

In particular the parser reaches a configuration

Conflict resolution

Follow(E)={+,*}

Conflicts

Conflict resolution

The answer is that we should shift else, because it is "associated"
with the previous then.

We conclude that the shift/reduce conflict should be
resolved in favor of shift on input else

