Code

Optimization
Optimized
Intermediate
code
Parser .| Static _ Integ;tggiate intermediate | Code Optimizéd
Checker Generator code Generator Targetc de
front end ~{ back end

Basic Blocks & Flow graphs

* Introduce a graph representation of intermediate code that is
helpful for discussing code generation
* Even if the graph is not constructed explicitly by a code-
generation algorithm.

* Code generation benefits from context.

* We can do a better job of register allocation if we know how
variables are defined and used.

Basic Blocks & Flow graphs

The representation is constructed as follows:

1. Partition the intermediate code into basic blocks, which are maximal se-
quences of consecutive three-address instructions with the properties that

(a) The flow of control can only enter the basic block through the first
instruction in the block. That is, there are no jumps into the middle
of the block.

(b) Control will leave the block without halting or branching, except
possibly at the last instruction in the block.

2. The basic blocks become the nodes of a flow graph, whose edges indicate
which blocks can follow which other blocks.

Basic Blocks
We begin a new basic block with the first instruction
Keep adding instructions
* until we meet either a jump, a conditional jump,

* oralabel on the following instruction.

In the absence of jumps and labels, control proceeds sequentially
from one instruction to the next.

Task: Identify leaders, that is, the first instructions in some basic
block.

Basic Blocks - Leaders

1. The first three-address instruction in the intermediate code is a leader.

2. Any instruction that is the target of a conditional or unconditional jump
is a leader.

3. Any instruction that immediately follows a conditional or unconditional
jump is a leader.

Basic Blocks

1) i=1
for i from 1 to 10 do 2) j=1
for j from 1 to 10 do 3) t1=10x*i
ali, j] = 0.0; 4) t2=1tl+]
for i from 1 to 10 do 5) t3 =28 t2
ali,i] = 1.0; 6) t4 =13 - 88
7) alt4] = 0.0
8 j=i+1
9) if j <= 10 goto (3)
leaders are instructions 10) i=13d+1
1,2,3,10, 12, and 13 11) if i <= 10 goto (2)
12) i=1
13) t5 i-1

al[tB] = 1.0
i=i+1

)
)
)
14) t6 = 88 % t5
)
)
) if i <= 10 goto (13)

Basic Blocks

Y
’5-1
EEE
[61 =10 # 1
[t2 =t +]
tz3 =8 * to
ty = t3 - 88
i=ji+1

if j <= 10 goto Bs

'

i=3i+1
if i <= 10 goto B»

Flow Graphs

* We represent the flow of control by a flow graph.
* The nodes of the flow graph are the basic blocks.
* There is an edge from block B to block C if and only if
* itis possible for the first instruction in block C to
immediately follow the last instruction in block B.
There are two ways that such an edge could be justified:
* There is a conditional or unconditional jump from the end of B
to the beginning of C.
* Block C immediately follows Block B in the original order of the
three-address instructions
* Bdoes not end in an unconditional jump
* Maybe due to labels

We say that B is a predecessor of C, and C is a successor of B.

Flow Graphs

* Often we add two nodes, called the entry and exit,

* There is an edge from the entry to the first executable node
of the flow graph,
* thatis, to the basic block that comes from the first
instruction of the intermediate code.

* Thereis an edge to the exit from any basic block that
contains an instruction that could be the last executed
instruction of the program.

Flow Graphs
B,

B,

By

Bs

Bs

ENTRY

i=1

t1 =10+ i

t2 =t +

t3 =8 % t2

te = t3 - 88
j=i+1

if j <= 10 goto B3

'

i=i+1
if i <= 10 goto B;

ts =i -1

ts = 88 * t5
l[tg]'l.o
i=i+ 1

if i <= 10 goto Bs

Loops

Many code transformations depend upon the
identification of "loops" in a flow graph. We say that a set
of nodes L in a flow graph is a loop if

1. There is a node in L called the loop entry with the property that no other
node in L has a predecessor outside L. That is, every path from the entry
of the entire flow graph to any node in L goes through the loop entry.

2. Every node in L has a nonempty path, completely within L, to the entry
of L.

Loops

1. Bj by itself.
2. Bg by itself.
3. {Bz, B3, Bs}.

The first two are single nodes with an edge to the node itself. For instance,
Bs; forms a loop with Bj as its entry. Note that the second requirement for a
loop is that there be a nonempty path from Bj to itself. Thus, a single node
like Bs, which does not have an edge Bs — Bs, is not a loop, since there is no
nonempty path from Bj to itself within {Bs}.

The third loop, L = { B3, B3, B4}, has B5 as its loop entry. Note that among
these three nodes, only B, has a predecessor, By, that is not in L. Further, each
of the three nodes has a nonempty path to B staying within L. For instance,
By has the path By = B3 — B4 — Bs-.

Flow Graphs
B,

B,

By

Bs

Bs

ENTRY

i=1

t1 =10+ i

t2 =t +

t3 =8 % t2

te = t3 - 88
j=i+1

if j <= 10 goto B3

'

i=i+1
if i <= 10 goto B;

ts =i -1

ts = 88 * t5
l[tg]'l.o
i=i+ 1

if i <= 10 goto Bs

Next-Use Information

Knowing when the value of a variable will be used next is essential for
generating good code.
* If the value of a variable that is currently in a register will never be
referenced subsequently, then that register can be re-assigned to
another variable.

Suppose three-address statement i assigns a value to x.
If statement j has x as an operand, and control can flow from statement itoj
along a path that has no intervening assignments to x, then we say statement
j uses the value of x computed at statement i.

* We further say that x is live at statement i.

We wish to determine for each three-address statement x = y + z what the
next uses of x, y, and z are.
* We store the information in the symbol table.

Focus on the basic block containing this three-address statement.

The algorithm to determine liveness and next-use information makes a
backward pass over each basic block.

Next-Use Information

INPUT: A basic block B of three-address statements. We assume that the
symbol table initially shows all nontemporary variables in B as being live on
exit.

OUTPUT: At each statement i: ¢ = y + z in B, we attach to i the liveness and
next-use information of z, y, and z.

METHOD: We start at the last statement in B and scan backwards to the
beginning of B. At each statement i: = y + z in B, we do the following:
1. Attach to statement i the information currently found in the symbol table
regarding the next use and liveness of z, y, and y.
2. In the symbol table, set to “not live” and “no next use.”
3. In the symbol table, set y and z to “live” and the next uses of y and z to
i.

DAG Representation of Expression
a+a*(b-c +(b-2c) *d

+/+*
N, /\d
N
S

Directed Acyclic Graphs for Expressions

Like the syntax tree for an expression, a DAG has leaves corresponding to
atomic operands and interior codes corresponding to operators. The difference
is that a node N in a DAG has more than one parent if N represents a com-

would be replicated as many times as the subexpression appears in the original
expression. Thus, a DAG not only represents expressions more succinetly, it
gives the compiler important clues regarding the generation of efficient code to
evaluate the expressions.

DAG Representation of Expression

a+a*(b-c +(b-2c) *d

\/\/\

The leaf for a has two parents, because a appears twice in the expression.
More interestingly, the two occurrences of the common subexpression b-c are
represented by one node, the node labeled —. That node has two parents,
representing its two uses in the subexpressions a*(b-c) and (b-c)*d. Even
though b and ¢ appear twice in the complete expression, their nodes each have
one parent, since both uses are in the common subexpression b-c.

Application of SDD — Syntax tree
construction D E T Bk

E.node = new Node{'+', By.node, T.node)
2) E— B -T | Enode=new Nodel' -, Fy.node, T.node)

3) E=T E.node = T.nade
ax J— 4 TH(E) T.node = E.node
sy nt tree fOI' a 4 +c 5 Toid T.node = new Leaf (id, id.entry)
6) T -num | T.node=new Leaf (num, mum.val)
E.node
v PN, _ If the rules are evaluated during a
E.nodé” + K T node Postordertraversal of the parse tree,
i \ .
SN R % C o or
ol - : N
' \ .~ with reductions during a bottom-u
E.node fi= T.node : id & P
! 4 ’

. parse, then the sequence of steps

p1 = new Leaf(id, entry-a);
ps = new Leaf(num, 4);

ps = new Node('—',p1,p2);
ps = new Leaf(id, entry-c);
ps = new Node('+',p3,pa);

to entry for a

It will construct a DAG if,
Detore creating a new node, these tunctions first check whether an 1den11cal node
already exists. If a previously created 1dent1cal node_exisis S
is returned. For instance,
we check whether there is=aireacdy o]0 (o qOCT O, Aand Cii IE]t and
right, in that order. If so, Node returns the existing node; othemme, it creates

a new node.

PRODUCTION

SEMANTIC RULES

1)
2)
3)
4)
5)
6)

E—-E+T
E-E,-T
E—-T
T (E)
T —id
T — num

E .node = new Node('+', E1.node,T.node)
E.node = new Node('—', E1.node, T.node)
E.node = T.node

T.node = E.node

T.node = new Leaf(id, id.entry)

T.node = new Leaf(num, num.val)

a+tax(b-o0

1)
2)
3)
4)
3)
6)
7)
8)
9)
10)
11)
12)
13)

+ (b-c¢) xd

p1 = Leaf(id, entry-a)

pa = Leaf(id, entry-a) = ;m
ps = Leaf (id, entry-b)

ps = Leaf (id, entry-c)

ps = Node('—', p3, pa)

ps = Node('+',p1, ps)

pr = Node('+',p1, pe)

ps = Leaf (id, entry- I
py = Leaf (id, eniry{ D4
o = Node('—', ps, ;1) = s
pu = Leaf (id, entry-d)

P2 = NOde('*’:Pﬁ,Pll}

p13 = Node('+',pz, p12)

b) =
)=

DAG Representation of Expression

a+a*(b-c +(b-2c) *d

\/\/\

The leaf for a has two parents, because a appears twice in the expression.
More interestingly, the two occurrences of the common subexpression b-c are
represented by one node, the node labeled —. That node has two parents,
representing its two uses in the subexpressions a*(b-c) and (b-c)*d. Even
though b and ¢ appear twice in the complete expression, their nodes each have
one parent, since both uses are in the common subexpression b-c.

DAG Representation of Basic Blocks: Value Number Method

1=1+ 1U
= I to entry
\ 1| id — e sl
" e for i
,/ \.‘ 2 llum 10 I
{ + EaEEm
! VRN 3 T L _1 4__; |
\ //l \\ 4 = 1 l 3 !
i 10 5 |
(a) DAG (b) Array.

* The nodes of a syntax tree or DAG are stored in an array of records

* In this array, we refer to nodes by giving the integer index of the record for
that node within the array.

* Each row of the array represents one record, and therefore one node.

* In each record, the first field is an operation code, indicating the label of the
node.

Optimization of Basic Blocks

DAG Representation of Basic Blocks

1. There is a node in the DAG for each of thefinitial values of the variables

appearing in the basic block.

9. There is a naode N

The children of N
"The Jast dennitions, prior to s, of the

associated with]each statement s w1th1n the block.
¢ those nodes COIT '

opera.nds used by s

3. Node N is labeled by thc operator applied at s| and also attached to N

is th

list of variables

for which 1t 1s the last definition within the block.

4. Certain nodes are designated output nodes. These are the nodes whose
variables are live on exit from the block; that is, their values may be
used later, in another block of the flow graph.

Finding Local Common Subexpressions

Cc

a=b+c
b=a-4d b,d
c b+ c
d=a-4d +) a do

bo co

Common subexpressions can be detected by noticing, as a new node
M is about to be added, whether there is an existing node N with the
same children, in the same order, and with the same operator.

Finding Local Common Subexpressions

a=b+c
b=a-4d b,d
c b+ c
d=a-4d +) 2 do

bo co

Since there are only three nonleaf nodes in the DAG, the basic block in
can be replaced by a block with only three statements.
b+ c

a-d
d +c

a
d
C
* If bis not live on exit from the block, then we do not need to
compute b variable, and can use d to receive the value
* If both b and d are live on exit, then a fourth statement must be
used to copy the value from one to the other

Dead Code Elimination

o 0 o

o n oo
[
o

If a and b are live but c and e are not, we can immediately remove the
root labeled e.

Then, the node labeled c becomes a root and can be removed.

The roots labeled a and b remain, since they each have live variables
attached

The Use of Algebraic Identities

T+0=0+z=12 r—0=2
rxl=1xzr=x z/l=z

reduction in strength,

EXPENSIVE CHEAPER
.1‘2 = T XT
2xzx = Ttz
z/2 = zx05

constant folding.
Thus the expfession 2 % 3.14 would be replaced by 6.28.
* 1S commutative .

T*Y = Y*T.

The Use of Algebraic Identities

Associative laws might also be applicable to expose common
subexpressions

a=b+c
t c+d
e t + Db

If t is not needed outside this block, we can change this sequence to

]

a b + c
e =a+d

Representation of Array References

x = ali] z=x ?7?
aljl =y
z = ali]

i 3 like x = al[il, is represented by creating a
node with : d two children representm value of
the array, ag in this ca.sc and the index i. Variabl label of
this new node.

gnipent o an arrayj like alj] = y, is represented by a new node

={and three children representing ag, j and y. There is
no variable ae ing this node.

this node kills all currently constructed nodes whose value depends on ag.
A node that has been killed cannot receive any more labels; that is, it
cannot become a common subexpression.

Representation of Array References

x = ali]
aljl =y
z = al[il

ag ip Jo Yo

An assignment from an array, like x = a[il, is represented by creating a
node with operator =[] and two children representing the initial value of
the array, ag in this case, and the index i. Variable x becomes a label of

this new node.

An assignment to an array, like a[j] = y, is represented by a new node
with operator [|= and three children representing ag, j and y. There is
no variable labeling this node.

this node kills all currently constructed nodes whose value depends on ag.
A node that has been killed cannot receive any more labels; that is, it
cannot become a common subexpression.

Reassembling Basic Blocks From DAG 's

* After we perform whatever optimizations are possible while constructing the
DAG or by manipulating the DAG once constructed,
* we may reconstitute the three-address code for the basic block from
which we built the DAG

* For each node that has one or more attached variables,
* we construct a three-address statement that computes the value of one
of those variables.

* We prefer to compute the result into a variable that is live on exit from the block.
* However, if we do not have global live-variable information to work from, we

need to assume that every variable of the program (but not temporaries that are
generated by the compiler to process expressions) is live on exit from the block.

Reassembling Basic Blocks From DAG 's

a=b+c
b=a-4d b,d
c b+ c
d=a-4d +) 2 do

bo co

Since there are only three nonleaf nodes in the DAG, the basic block in
can be replaced by a block with only three statements.
b+ c

a-d
d +c

a
d
C
* If bis not live on exit from the block, then we do not need to
compute b variable, and can use d to receive the value
* If both b and d are live on exit, then a fourth statement must be
used to copy the value from one to the other

Reassembling Basic Blocks From DAG 's

If both b and 4 are live on exit, or if we are not sure whether or not they
are live on exit, then we need to compute b as well as d. We can do so with the
sequernce

=b +c
=a-d
=d

=d+c

0 o

This basic block is still more efficient than the original. Although the number
of instructions is the same, we have replaced a subtraction by a copy, which
tends to be less expensive on most machines. Further, it may be that by doing
a global analysis, we can eliminate the use of this computation of b outside
the block by replacing it by uses of 4. In that case, we can come back to this
basic block and eliminate b =4 later. Intuitively, we can eliminate this copy if
wherever this value of b is used, d is still holding the same value. That situation
may or may not be true, depending on how the program recomputes d. 0O

Peephole Optimization

* Improve the quality of the target code by applying "optimizing"
transformations to the target program

* Peephole optimization is done by examining a sliding window of target
instructions (called the peephole) and

* Replacing instruction sequences within the peephole by a shorter or
faster sequence,

Eliminating Redundant Loads and Stores

LD a, RO
ST RO, a

* Redundant loads and stores of this nature would not be generated by the

simple code generation algorithm

However, a naive code generation algorithm would generate redundant

sequences

* Note that if the store instruction had a label, we could not be sure that
the first instruction is always executed before the second, so we

could not remove the store instruction.

Instruction Selection — Example

example, every three-address

statement of the form x =y +z, where x, y, and z

are statically allocated, can be translated into the code sequence

LD RO, ¥y 1/
ADD RO, RO, z //
ST x, RO //

would be translated into

LD RO, b
ADD RO, RO, c
ST a, RO
LD RO, a
ADD RO, RO, e
ST d, RO

RO =y (load y into register RO)

RO = RO + z (add z to RO)

x = RO (store RO into x)
a=b+c
d=a+e

// RO = b

// RO = RO + ¢

// a=R0O (e

//ro - a e=m Redundant

// RO = RO + e
// d = RO

Eliminating Unreachable Code

An unlabeled instruction immediately following an unconditional jump
may be removed.
One obvious peephole optimization is to eliminate jumps over jumps
if debug == 1 goto L1
goto L2
L1: print debugging information
L2:

After optimization

if debug != 1 goto L2
print debugging information
L2:

If debug is set to 0 at the beginning of the program, constant propagation
would transform this sequence into

if 0 !'= 1 goto L2
print debugging information
L2:

Flow-of-Control Optimizations

* Simple intermediate code-generation algorithms frequently
produce
* jumps to jumps, jumps to conditional jumps, or
conditional jumps to jumps.

goto L1

L1: goto L2
by the sequence

goto L2

L1: goto L2 {BRemove this, if no other jump at L1

if a < b goto L1

L1: goto L2
can be replaced by the sequence

if a < b goto L2

L1: goto L2 .

goto L1

Ll: if a < b goto L2
L3:

may be replaced by the sequence

if a < b goto L2
goto L3

L3:

While the number of instructions in
the two sequences is the same,

* we sometimes skip the
unconditional jump in the
second sequence,

* but never in the first
sequence .

Optimization — Beyond basic blocks

void quicksort(int m, int n)
/* recursively sorts a[m] through a[n] */

{
int i, j;
int v, x;
if (n <= m) return;
/* fragment begins here */
i=m-1; j =n; v =alnl;
while (1) {
do i = i+1; while (a[i] < v);
do j = j-1; while (a[jl > v);
if (i »= j) break;
x = alil; ali) = a(j]; alj] = x; /* swap a[i], a[j] */
x = alil; alil = a[n]; aln] = x; /* swap a(il, aln] */)
/* fragment ends here x/ 1) i=m-1 (16) 7 = 4xi
quicksort(m,j); quicksort(i+1i,n); (@ j=n n t8 = 4]
3 (3) tl = 4%n (18) t9 = a[t8]
(4) v = alti] (19) alt7] = t9
(5) i=i+1 (20) 10 = 4%j
(6) t2 = 4xi (21) al[t10] = x
N t3 = a[t2] (22) goto (5)
(8) if t3<v goto (5) (23) tll = 4xi
9 j=j-1 (24) x = altl1]
(10) td = 4xj (25) t12 = 4xi
(11) 5 = a[t4] (26) t13 = 4#n
(12) if t5>v goto (9) (27) t14 = a[t13]
(13) if i>=j goto (23) (28) alt12] = t14
(14) 6 = 4xi (29) t15 = 4*n

(15) x = a[t6] (30) a[t15] = x

(1) i=m-1 (16) t7 = 4xi
(2) j=n 17 t8 = 4x%j
(3) tl = 4n (18) t9 = al[t8]
(4) v = a[t1] (19) al[t7] = t9
(5) i=i+1 (20) 10 = 4%j
(6) t2 = 4xi (21) alt10] = x
(7) t3 = a[t2] (22) goto (5)
(8) if t3<v goto (5) (23) 11 = 4*i
(9) j=3j-1 (24) x = a[t11]
(10) td = 4x%]j (25) t12 = 4%i
(11) t5 = a[t4] (26) t13 = 4*n
(12) if t5>v goto (9) (27) t14 = a[t13]
(13) if i>=j goto (23) (28) alt12] = t14
(14) t6 = 4x%i (29) t15 = 4*n
‘ (15) x = a[t6] (30) alt1s] = x
x = ali] is translated as alj] = x becomes
t6 = 4x%i t10 = 4x%]
x = a[t6] al[t10] = x

Notice that every array access in the original program translates into a pair of
steps, consisting of a multiplication and an array subscription operation.

Short program fragment translates into a rather long sequence of three-address
operations.

i=m1
j=n

tl = 4*n
v = a[tl)

i=i+1

t2 = 4%
t3 = a[t2]
if t3<v goto B2

J =J=L

td = 4%j

t5 = a[t4)

if t5>v gcn:oa3

if i>=j goto Bg

a[tl2] = t14
t15 = 4*n
a[tl5] = x

Global Common Subexpressions

* An occurrence of an expression E is called a common subexpression
* If E was previously computed and the values of the variables in
E have not changed since the previous computation.
* We avoid recomputing E if we can use its previously
computed value

ft6 = 4*i BS t6 = 4»i 55

X = a[t6] x = a[te]
‘it?--i'i £8 = 4%j

t8 = 4%j t9 = a[t8] |

t9 = a[t8] a[t6] = t9

af[t7] = t9 a[tB] = x
‘ t10 = 4*j |goto B,

a[tlo] = x L —

(89t B, |

(a) Before, (b) After.

Compute the common subexpressions 4 * i and 4 * j, respectively

Global Common Subexpressions

D

t6 = 4*i B,
= a[t6] '

t8 = 4*j |

t9 = a[ta] |

afte] =

a[tB] = x

| goto B2

|

t8 = 4xj
t9 = a[t8]
a[t8] =

in By can be replaced by

9 = a[t4]
alt4] = x

aftlo] = x
\ I gotu B,

13 = 3-1
| td = 4%j

t5 = a[t4)

if t5>v goto 83

|if i>=

t6 = 4*i
|x-aum
t7 = 4*i
t8 = 4*j
|t9 = a[ts)
a[t7] = t9
t10 = 4%

Control passes from the evaluation of 4 * j
in B3 to B5,

No change to j and no change to t4, so t4
can be used if 4 * jis needed.

Global Common Subexpressions

— /ﬂ}:ﬁ% B,
= td = 4%§ -
£6 = 4+ Bﬁ t5 = anJ:4]
X = a[tﬁ] if t5>v goto B,
L8 = arj
t9 = a[t8]
afte] = t9 |it‘ i>=j gotoB, | B,
a[tB] = x
| goto B2 \ E
e | £6 = 4*i
|x = a[t6]
\ t7 = 4*i
‘ta = 4
- |t9 = 8
tg — a[t.é] n[t?]altc;
t10 = 4=5
a [t5] a[tlo; =x
gotu

in B; therefore can be replaced by

\ |

a[t4], a value computed into a temporary
t5, retains its value as control leaves B3
and then enters B5

alt6] =

Optimize:
Homework

i=m1
j=n

tl = 4*n
v = a[tl]

i1=1+1
t2 = 4%
t3 = a[t2]

if t3<v goto B2

i
v
J

J =J=L

td = 4%j

t5 = a(t4)

if t5>v goto33

if i>=j goto B‘i

t6 = 4+*i Bg
x = a[t6]
t7 = 4+*i

t8 = 4*j

t9 = a[t8)
a[t7] = t9
t10 = 4%j
a[tlo] = x
goto B2

a[tl2] = t14
t15 = 4*n
a[tl5] = x

Copy Propagation

(a) (b)

We must use a new variable t to hold the value of d + e
After the copy statement u = v, use v for u

B x =13 ¢m
alt2] = t5
al[td4] = t3

goto B

Dead-Code Elimination

x =t3 ‘

2]
alt2] = t5 alt
altd] = t3 — a[t4]

goto B goto Bs

th
t3

if (debug) prinmt ...

debug = FALSE em copy propagation

Drop this code segment
Constant folding

Code Motion

* Loops are a very important place for optimizations, especially the inner
loops where programs tend to spend the bulk of their time.
* The running time of a program may be improved if we decrease the
number of instructions in an inner loop,
* even if we increase the amount of code outside that loop.

* Code Motion takes an expression
* That yields the same result independent of the number of
times a loop is executed (a loop-invariant computation) and
* Evaluates the expression before the loop

while (i <= limit-2) /* statement does not change limit */
Code motion will result in the equivalent code

t = limit-2
while (i <= t) /* statement does not change limit or t */

Induction variable and reduction in

strength

i= i+l
t2 = 4*i

€3 = a[t2) |
if t3< to B, |
i v gotoB, |

,/_\in¥= -1
[t4 = 4*j
t5 = a[td)
if t5>v gotoB

i

Bg

B x = t3 ’
£14 = a[tl)
a[t2] = tld4/

a[tl] = x

=t3

t5
X

= t4-4
= a[td]
£5>v goto B

i>=j goto B

Induction variable and reduction in

strength

X = t3
=t5
a[td] = x
goto B,

By
"
'
Y
i= i+l B,
t2 = 4*i
t3 = a[t2]
if t3<v goto B,
B
t5 = a[td]
if t5>v goto b‘3
if i>=j gotoB | B,
By X =t3
tld4 = a[tl]
a[t2] = tl14
a[tl] = x

B

a[t7)] = t5
a[tlo] = t
| goto B,
(it

= a[t2]

..
t4 = td-4
t5 = a[td4)

if t5>v goto B,

3

H<

'

if t2>t4 gotoB

.
tl4 = a[tl]
art2] = t14
aft1] = €3

