
Lexical Analysis

► The main task of the lexical analyzer is to

► read the input characters of the source program,

► group them into lexemes, and

► produce as output a sequence of tokens for the source
program.

► stripping out comments and whitespace (blank, newline,
tab etc), that are used to separate tokens in the input.

► Parser invokes the lexical analyzer by getNextToken command

► Lexical analyzer reads the characters from input until it finds the
next lexeme and produce token

Lexical Analysis

Once the lexical analyzer discovers a lexeme
constituting an identifier,
it inserts that lexeme into the symbol table.

Tokens, Patterns and Lexemes

► Lexeme : It is a sequence of characters in the source program that matches the pattern.

It is identified by the lexical analyzer as an instance of that token

► Pattern: Description of the form that the lexemes may take.

• In the case of a keyword, the pattern is just the sequence of characters that form the
keyword.

• For identifiers and some other tokens, the pattern is a more complex structure that is
matched by many strings.

► Token : It is a pair consisting of a token name and an optional attribute value.

• The token name as an abstract symbol represents the kind of lexical unit/lexeme
(keyword/identifier, operator symbol etc)

• Processed by parser

Example of tokens Pattern

Example of tokens Pattern

Find the tokens

► Attribute provides additional piece of information about a lexeme

► Important for the code generator to know which lexeme was found in the
source program

► Example: For the token identifier id, we need to associate with

► its lexeme, its type, and the location at which it is first found

► Attribute value for an identifier id is essentially a pointer to the symbol-
table entry for that identifier

► Example: For the token number, attributes can be the respective numbers (1.3, 0
etc)

Attribute for tokens

position ...

initial ...

rate ...

1

2

3

(number, 60)

► Attribute provides additional piece of information about a lexeme

► Important for the code generator to know which lexeme was found in the
source program

Attribute for tokens

Scanning input from the source file

• Fast reading of the source program from disk
• Challenge to find lexemes

• We often have to look one or more characters beyond
the next lexeme

• To ensure we have the right lexeme.

Note the challenge!

Scanning input from the source file

Two buffer solution

• Each buffer is of the same size N,
• N is usually the size of a disk block (4KB).
• If fewer than N characters remain in the input file, then a special character,

represented by eof

lexemeBegin: marks the beginning of the
current lexeme
Forward: scans ahead until a pattern match
is found

Advancing forward requires that
(a) we first test whether we have reached the end of one of the buffers,
(b) if so, we must reload the other buffer from the input, and move forward to

the beginning of the newly loaded buffer.

Scanning input from the source file
Sentinels (eof)
Each time we advance forward, we make two tests:
(a) if we reached at the end of the buffer, and
(b) determine what character is read----test if the next lexeme is

determined;

(a) We extend each buffer to hold a sentinel eof character at the end
(b) eof retains its use as a marker for the end of the entire input.

Scanning input from the source file

Sentinels

Specification of Tokens – Patterns
• Regular expressions are an important notation for specifying lexeme patterns.

• A string over an alphabet is a finite sequence of symbols drawn from
that alphabet

• Represent all the valid strings with Regular expressions
• Suppose we wanted to describe the set of valid C identifiers
• letter_ stands for any letter or the underscore

• digit stands for any digit

• the language/RE of C identifiers

Specification of Tokens

Regular Definitions Regular expressions

Regular definition for the language of C identifiers

Specification of Tokens

Regular Definitions

Unsigned numbers (integer or floating point)

Specification of Tokens

Notational extensions

Recognition of Tokens

Objective:
• Take the patterns for all the needed tokens
• Build a tool that examines the input string and finds the lexeme matching one of the

patterns

• The terminals of the grammar, --- if, then, else, relop, id, number,
• lexical analyzer recognizes the terminals – Tokens

Regular Definitions for terminals

Recognition of Tokens

stripping out whitespace, by recognizing the "token" ws

• Token ws is different from the other tokens in that,
• Once we recognize it, we do not return it to the parser,

• Rather restart the lexical analysis from the character that follows the whitespace.
It is the following token that gets returned to the parser.

ASCII chars

The goal for the lexical analyzer

Construction of the lexical analyzer

We first convert patterns into "transition diagrams” --- Finite Automata

Collection of nodes, called states

Edges are directed links from one state of
the transition diagram to another state.

If we are in some state S, and the next
input symbol is a, we look for an edge out
of state S labeled by a. If we find such an
edge, we advance the forward pointer and
enter the next state T

Scanning the input looking for a lexeme

Finite Automata

Construction of the lexical analyzer

We first convert patterns into "transition diagrams” --- Finite Automata

Scanning the input looking for a lexeme

• Certain states are said to be
accepting

• These states indicate that a lexeme
has been found between the
lexemeBegin and forward pointers

• Returning a token and an attribute
value to the parser

• If necessary, retract the forward pointer
one position

• additionally place a * near that
accepting state

Finite Automata

Construction of the lexical analyzer:
token relop
We first convert patterns into "transition diagrams” --- Finite Automata

Scanning the input looking for a lexeme

transition diagram that recognizes the
lexemes matching the token relop

Construction of the lexical analyzer:
Keywords and Identifiers

Challenge: Discriminate between Keywords and Identifiers

Lexeme Token Attrb

if IF

else ELSE

count ID float, ..

Install the keywords in the symbol table
initially, with tokens

• Once we find an identifier, we invoke
installlD to insert it in the symbol table if
it is not already in symbol table

• returns a pointer to the symbol-table
entry

The function getToken examines the symbol
table entry for the lexeme found, and returns
whatever token name — either ID or one of
the keyword tokens

Construction of the lexical analyzer:
Keywords and Identifiers

Create separate transition diagrams for each keyword

Differentates then and
then_value

Keyword generating transition diagrams gets priority over ID

Construction of the lexical analyzer:
: Unsigned numbers

Construction of the lexical analyzer:
: whitespace

• When we recognize ws, we do not return it to the parser, but rather
restart the lexical analysis from the character that follows the whitespace.

• It is the following token that gets returned to the parser.

val == temp;

State transition diagram for identifiers

State transition diagram for numbers

State transition diagram for operators

LexemeBegin

forward

Recognizes the
lexeme val

Scans the input stream

Simultaneously Drives all the state machines

start

start

start

Lexical analyzer in action

input stream

val == temp;

State transition diagram for identifiers

State transition diagram for numbers

State transition diagram for rel. operators

LexemeBegin

forward

Recognizes the
lexeme ==

Scans the input stream

start

start

start

Lexical analyzer in action

input stream

Simultaneously Drives all the state machines

