
Lex or flex

Lex or flex

• Allows one to specify and construct a lexical analyzer by
• Specifying regular expressions to describe patterns for tokens.

• The input notation for the Lex tool is referred to as the Lex language
• Specify the patterns

• Lex compiler transforms the input patterns into a transition diagram

• Generates code, in a file called lex.yy.c, that simulates this transition
diagram.

Lexical analyser

yylex()

(a) auxiliary declarations

(b) regular definitions yylex()

Additional functions --- say main()
etc

(a) auxiliary declarations
(i)declaration of variable, functions
(ii) inclusion of header file,
(iii)Defining macro

• Enclosed within %{ and %}

• Auxiliary declarations are copied as
such by LEX to the output lex.yy.c
file.

• Not processed by the LEX
tool.

(b) regular definitions

Optional

Lex.yy.c
yylex()

Additional functions --- say main()
etc

(a) Each pattern is a regular expression, which may use the regular definitions of the
declaration section.
(b) The actions are fragments of C code

• yylex() function checks the input stream for the first match to one of the patterns
• Executes code in the action part corresponding to the pattern.

if + 78 else 0

Input file

Tokens: if, else, op (+,-), number, other

Auxiliary declarations

Regular expressions Actions

Lex – example

Generates yylex()

%%Any char

(a) auxiliary declarations

(b) regular definitions yylex()

Additional functions --- say main()
etc

• LEX generates C code for the rules specified in the Rules section and places this
code into a single function called yylex().

• In addition to this LEX generated code, the programmer may wish to add his own
code to the lex.yy.c file.

• The auxiliary functions section allows the programmer to achieve this.

Lex – example

Auxiliary functions

Any char

yylex()

• When yylex() is invoked, it reads the input file and scans through
the input looking for a matching pattern.

• When the input or a part of the input matches one of the given
patterns, yylex() executes the corresponding action associated
with the pattern as specified in the Rules section.

• yylex() continues scanning the input
(a) till one of the actions corresponding to a matched pattern

executes a return statement or
(b) till the end of input has been encountered.

• Note that if none of the actions in the Rules section executes a
return statement, yylex() continues scanning for more matching
patterns in the input file till the end of the file.

yylex()

Lex – example-1

lex_first.l

yytext is the string (of type char*) indicating the lexeme currently
found. [like LexemeBegin]

Each invocation of the function yylex() results in yytext carrying a
pointer to the lexeme found in the input stream

yyleng is a variable of the type int and
it stores the length of the lexeme pointed to by
yytext.

Lexical analyser

yylex()

if + 78 else 0

Lex – example-1
Input file – input_first

Tokens: if, else, op (+,-), number, other

%{#include<stdio.h>
#define IF 1
#define ELSE 2
#define NUM 3
#define OP 4
#define ERR 5%}
/* Declarations*/

%%
if return (IF);
Else return (ELSE);
[0-9]+ return(NUM);
[+-] return(OP);
. return(ERR);
%%

lex_first_v1.l

Lex – example-2

if + 78 else 0

Input file – input_first

lex_first_v2.l

Lex – example-3

lex_first_v3.l

Note: main() is missing

Lex – example-4

scanner_v1.c

if + 78 else 0

Input file – input_first

Input file – input_f

Lex – example-5

Lex – example-5

lex_check.l

Regular Definitions for terminals

Recognition of Tokens

stripping out whitespace, by recognizing the "token" ws

• Token ws is different from the other tokens in that,
• Once we recognize it, we do not return it to the parser,

• Rather restart the lexical analysis from the character that follows the whitespace.
It is the following token that gets returned to the parser.

ASCII chars

head.h

scanner.c

Input file – input_f

Input file – input_f

Lexical analyzer to recognize the following
tokens

(a) auxiliary declarations

(b) regular definitions

macros

Regular definitions {} are used to
define the RE of Rules

Symbols
{} for symbols usage
\ for meta-symbols (., * etc)

Seq. is
important

yylval: attributes

Regular Definitions for terminals

Recognition of Tokens

stripping out whitespace, by recognizing the "token" ws

• Token ws is different from the other tokens in that,
• Once we recognize it, we do not return it to the parser,

• Rather restart the lexical analysis from the character that follows the whitespace.
It is the following token that gets returned to the parser.

ASCII chars

Auxiliary section

yyin variable

yyin is a variable of the type FILE* and points to the input file.

• Defacto -- LEX assigns yyin to stdin(console input)

• If the programmer assigns an input file to yyin in the auxiliary functions
section, then yyin is set to point to that file..

$./a.out input_file

yywrap()

• LEX declares the function yywrap() of return-type int in the file lex.yy.c .

• LEX does not provide any definition for yywrap().

• yylex() makes a call to yywrap() when it encounters the end of input.

• If yywrap() returns zero (indicating false) yylex() assumes there is more input and it
continues scanning from the location pointed to by yyin.

• If yywrap() returns a non-zero value (indicating true), yylex() terminates the scanning
process and returns 0 (i.e. “wraps up”).

• If the programmer wishes to scan more than one input file using the generated lexical
analyzer, it can be simply done by setting yyin to a new input file in yywrap() and
return 0.

• As LEX does not define yywrap() in lex.yy.c file but makes a call to it under yylex(), the
programmer must define it in the Auxiliary functions section OR

• provide %option noyywrap in the declarations section.
• This options removes the call to yywrap() in the lex.yy.c file.

Homework

{
int x;
int y;
x = 2;
y = 3;
x = 5 + y * 4;

}

Complete example

