
Introduction

► Programs are the instructions written in high-level languages.

► Source code -- User convenience

► Computer executes the programs written in machine language

► Machine code --- machine convenience

Machine code
Machine dependent

Assembly code

Op codeComputer Architecture
Mnemonics

Introduction

► Programs are the instructions written in high-level languages.

► Source code -- User convenience

► Computer executes the programs written in machine language

► Machine code --- machine convenience

► Programming in machine language requires memorization of the binary
codes — difficult for program-writers

► Hence, the requirement of Compilers

Introduction

► A Compiler is a software

► Task of a compiler

► Read a program in one language (source) and

► Translate it into an equivalent program in machine
language (target)

Target programCompilerSource program

► Report any errors in the source program that it detects during the
translation process.

► We use compilers for generating target machine language program
from the input high-level language program

► Target program is used by user to generate output from input

Compiler structure

► Analysis and Synthesis

► Analysis - Breaks up the source program and imposes grammatical rules
on them (front-end)

► Generates IR

► Detects errors

► Constructs Symbol table

► Synthesis - Constructs the target program from intermediate representation &
the symbol table (back-end)

Analysis Synthesis

The Phases of a Compiler

Lexical Analysis

► Reads the stream of characters making up the source program and groups the

characters into meaningful sequences called lexemes

► For each lexeme, the LA produces the token, (a) passed to the syntax

analyzer, (b) inserted in the symbol table

<token-name, attribute-value>

► token-name is an abstract symbol that is used during syntax analysis, and the

second component attribute-value points to an entry in the symbol table for

this token

► Blanks separating the lexemes would be discarded by the lexical

analyzer.

Lexical Analysis

position ...

initial ...

rate ...

1

2

3

► position is mapped to a token <id, 1> where id stands for identifier
and 1 points to symbol table entry for position

► *, + map into the token <+>, <*>, respectively

id is an abstract symbol standing for identifier and 1
points to the symbol table entry for position.

information about the id,
such as its name and type

(number, 4)

Syntax Analysis – Parsing

• The parser uses the tokens produced by the lexical analyzer to create a tree-
like intermediate representation

• Depicts the grammatical structure of the token stream.

• The internal nodes represent operation and the leaf nodes represent
arguments of the operation

• Context-free grammars are used to represent grammatical structure (say,
precedence of operations)

• Tree-like intermediate
representation

• Syntax treeTree depicts the order of
operations – precedence

Semantic Analysis

► Uses syntax tree and the symbol table
for checking semantic consistency

► Type checking is one of the major part —
the analyzer checks whether each
operator has matching operands

Binary arithmetic operator may be applied to
(i) either a pair of integers or (ii) to a pair of floating-point numbers.
If the operator is applied to a floating-point number and an integer, the compiler
may convert the integer into a floating-point number.

position, initial, rate are floating point numbers

Lexeme 60 is an integer — it is type casted to a floating point number

Type-casting are performed in this phase

The information is stored into syntax tree or in symbol table

The Phases of a Compiler

Intermediate Code Generation

► In the process of translating a source program into target code,

► compiler constructs multiple intermediate representations

► various forms of Intermediate code (syntax tree etc)

► Explicit low-level or machine-like intermediate representation,
which we can think of as a program for an abstract machine

► (a) IR should be easy to produce and (b) it should be easy to translate into
the target machine.

► Three address code

► Three operands per instruction

► At most one operator at the right hand side

Intermediate Code Generation

Notable points:
(a) Each three-address assignment instruction has at most one operator on the
right side.
Thus, these instructions fix the order in which operations are to be
done; the multiplication precedes the addition.
(b) The compiler must generate a temporary name to hold the value computed
by a three-address instruction.
(c) some "three-address instructions" like the first and last in the sequence, above, have
fewer than three operands

Code Optimization

► Machine independent code-optimization phase attempts to
improve the intermediate code so that better code is
generated in terms of time and space

► A significant amount of time is spent on this phase

► Mostly simple optimizations are tried which improves the code
without slowing down compilation

Code Optimization

Code Optimizer

Code Generator

t1 = id3 * 60.0

id1 = id2 + t1

► Conversion of 60 from integer to float to eliminate inttofloat
operation

► A shorter sequence is sorted out

Code Generation

Code Generator

LDF R2, id3

MULF R2, R2,60.0

LDF R1, id2

ADDF R1, R1, R2

STF id1, R1

► Input : intermediate representation, Output : targetcode

► Registers and memory locations are selected for each variable
used by the program

► Example : above generated code uses only registers R1and
R2

► First operand is the destination

t1 = id3 * 60.0

id1 = id2 + t1

