
Code generation
& Optimization

Code generation

Input to the Code Generator
(a) Intermediate representation (IR) of the source program produced

by the front end,
(b) Symbol table that is used to determine the run-time addresses of

the data objects

The Target Program
Instruction-set architecture of the target machine
• Has a significant impact on the difficulty of constructing a good

code generator that produces high-quality machine code.
• The most common target-machine architectures are RISC

(reduced instruction set computer), CISC (complex instruction set
computer)

• A RISC machine typically has many registers, three-address
instructions, simple addressing modes, and a relatively simple
instruction-set architecture.

Instruction Selection

The code generator must map the IR program into a code sequence that can
be executed by the target machine.
The complexity of performing this mapping is determined by a factors such as
• the level of the IR
• the nature of the instruction-set architecture
• the desired quality of the generated code.

• The code generator may translate each IR statement into a sequence of
machine instructions using code templates.

• Such statement by statement code generation, however, often produces
poor code

Translation scheme: If we do not care about the efficiency of the
target program, instruction selection is straightforward.
For each type of three-address statement, we can design a code
skeleton that defines the target code to be generated for that
construct

Redundant

Instruction Selection – Example

• On most machines, a given IR program can be implemented by many
different code sequences,

• Significant cost differences between the different
implementations.

• A naive translation of the intermediate code may therefore lead to correct
but unacceptably inefficient target code.

• For example, if the target machine has an "increment" instruction (INC)
• The three-address statement a = a + 1 may be implemented more efficiently

by the single instruction INC a,
• Rather than by a more obvious sequence that loads a into a register,

adds one to the register, and then stores the result back into a

Instruction Selection – Example

Register Allocation

• A key problem in code generation is deciding what values to hold in what
registers.

• Registers are the fastest computational unit on the target machine,
• but we usually do not have enough of them to hold all values.
• Values not held in registers need to reside in memory.

• Instructions involving register operands are invariably shorter and faster than
those involving operands in memory,

• Efficient utilization of registers is particularly important.

The use of registers is often subdivided into two subproblems:
1. Register allocation, during which we select the set of variables that will

reside in registers at each point in the program.
2. Register assignment, during which we pick the specific register that a

variable will reside in.

Basic Blocks & Flow graphs

• Introduce a graph representation of intermediate code that is
helpful for discussing code generation

• Even if the graph is not constructed explicitly by a code-
generation algorithm.

• Code generation benefits from context.

• We can do a better job of register allocation if we know how
variables are defined and used.

Basic Blocks & Flow graphs

Basic Blocks

• We begin a new basic block with the first instruction

• Keep adding instructions
• until we meet either a jump, a conditional jump,
• or a label on the following instruction.

• In the absence of jumps and labels, control proceeds sequentially
from one instruction to the next.

• Task: Identify leaders, that is, the first instructions in some basic
block.

Basic Blocks - Leaders

leaders are instructions

1, 2, 3, 10, 12, and 13

Basic Blocks

Basic Blocks

Flow Graphs

• We represent the flow of control by a flow graph.
• The nodes of the flow graph are the basic blocks.
• There is an edge from block B to block C if and only if

• it is possible for the first instruction in block C to
immediately follow the last instruction in block B.

There are two ways that such an edge could be justified:
• There is a conditional or unconditional jump from the end of B

to the beginning of C.
• Block C immediately follows Block B in the original order of the

three-address instructions
• B does not end in an unconditional jump
• Maybe due to labels

We say that B is a predecessor of C, and C is a successor of B.

• Often we add two nodes, called the entry and exit,

• There is an edge from the entry to the first executable node
of the flow graph,

• that is, to the basic block that comes from the first
instruction of the intermediate code.

• There is an edge to the exit from any basic block that
contains an instruction that could be the last executed
instruction of the program.

Flow Graphs

Flow Graphs

Code Generator
• Algorithm that generates code for a single basic block

• It considers each three-address instruction in turn, and keeps track
of what values are in what registers so it can avoid generating
unnecessary loads and stores.

• Deciding how to use registers to best advantage

• In most machine architectures, some or all of the operands of an
operation must be in registers in order to perform the operation.

• These are competing needs, since the number of registers available
is limited.

Code Generator
• We further assume that for each operator, there is exactly one

machine instruction that takes the necessary operands in registers
and performs that operation, leaving the result in a register. The
machine instructions are of the form

Register and Address Descriptors
• Our code-generation algorithm considers each three-address

instruction in turn and decides what loads are necessary to get
the needed operands into registers.

• After generating the loads, it generates the operation itself.

• Then, if there is a need to store the result into a memory
location, it also generates that store.

• We require a data structure that tells us what program
variables currently have their value in a register, and in which
register

• We also need to know whether the memory location for a
given variable currently has the proper value for that variable

• Since a new value for the variable may have been
computed in a register and not yet stored.

Register Descriptors

• a register descriptor keeps track of the variable names whose
current value is in that register.

• All register descriptors are empty. As the code generation
progresses, each register will hold the value of zero or more

names.

Address Descriptors
For each program variable, an address descriptor keeps track of the
location or locations where the current value of that variable can be
found.
The location might be a register, a memory address etc.

The information can be stored in the symbol-table entry for that
variable name.

The Code-Generation Algorithm

• An essential part of the algorithm is a function getReg(I),
• which selects registers for each memory location

associated with the three-address instruction I.

• Function getReg has access to the register and address
descriptors for all the variables of the basic block

• While we do not know the total number of registers available
for local data belonging to a basic block, we assume that there
are enough registers

Ending the Basic Block

• If the variable is live on exit from the block,
• Or if we don't know which variables are live on exit,
• then we assume that the value of the variable is

needed later.

• In that case, for each variable x whose address descriptor
does not say that its value is located in the memory location
for x

• We must generate the instruction ST x, R, where R is a register
in which x value exists at the end of the block.

Managing Register and Address Descriptors

• As the code-generation algorithm issues load, store, and other machine
instructions,

• It needs to update the register and address descriptors.
• The rules are as follows:

Machine Instructions for Copy Statements

three-address copy statement of the form x = y.

• We assume that getReg will always choose the same register
for both x and y

• If y is not already in that register Ry,
• then generate the machine instruction LD Ry, y.
• If y was already in Ry, we do nothing.

• It is only necessary that we adjust the register description for
Ry

• So that it includes x as one of the values found there.

Machine Instructions for Copy Statements

Design of the Function getReg

• There are many options,
• although there are also some absolute prohibitions against

choices that lead to incorrect code due to the loss of the value of
one or more live variables

• We use x = y + z as the generic example.
• First, we must pick a register for y and a register for z.
• The issues are the same, so we shall concentrate on picking

register Ry for y.

Selection of the register Rx

