Syntax-Directed Translation

The Phases of a Compiler

character stream
Ll

Lexical Analyzer I

R

—
token stream

Syntax Analyzer |
L. _

syntax tree

| Semantic Analyzer

syntax tree

| ‘
Symbol Table Intermediate Code Generator |
-

| intermediate representation

Machine-Tndependent
Code Optimizer

- -
intermediate representation

Code Generator |
|

T
target-machine code

Machine-Dependent
Code Optimizer

T
target-machine code

Syntax-Directed Translation

. — B
(id, 3} inttofloat
|
60

ﬁ'utermediate Code Generator

tl = inttofloat(60)
t2 = id3 #* t1
t3 = id2 + 2
id1l = £3
v
* Semantic analysis and
r tokeh | ‘ ; translation actions can
] i T ' intes diat . . "
_Souree | Lexdeal | s it EERER | be interlinked with
prup;-am‘ Analyzer seinlet| ! tree | Front End |represerftation)
v toke : £ parsing
/ * Implemented as a
Symbol | single module.

Table

Syntax-Directed Translation

Translation of languages guided by context-free
grammars.

Attach attributes to the grammar symbol

Syntax-directed definition specifies the values of
attributes
* By associating semantic rules with the grammar
productions

Syntax-Directed Translation

Syntax-directed definition (SDD) is a context-free grammar together
with attributes and rules

* Attributes are associated with grammar symbols

* Rules are associated with productions.

If X is a grammar symbol and a is one of its attributes,
* X.a denotes the value of the attribute X.

Attributes may be
* numbers, types, table references, or strings,
* Strings may even be code in the intermediate language.

3y ‘nttofloat
|
60

t1 = inttofloat (60)
t2 = id3 * t1
t3 = id2 + 12
idl = t3
v

Attributes

Synthesized attribute:

* Synthesized attribute for a nonterminal A at a parse-tree node N
is defined by

* Semantic rule associated with the production at N.

* The production must have A as its head.

* A synthesized attribute at node N is defined only in terms of
attribute values at the children of N and at N itself.

PRODUCTION SEMANTIC RULE
E—E +T E.code = E,.code || T.code || '+

Attributes

Inherited attribute:
* Inherited attribute for a nonterminal B at a parse-tree node N
is defined by

* Semantic rule associated with the production at the parent
of N

* Note that the production must have B as a symbol in its body.

* Aninherited attribute at node N is defined only in terms of
attribute values at N's parent, N itself, and N's siblings

T S FT | 7".ink = F.val

T« FT, | Tl.inh=T'.inh x F.val

Attributes

* Synthesized attribute at node N to be defined in terms of
inherited attribute values at node N itself.

T - ¢ T .syn = T'.inh

* Do not allow an inherited attribute at node N to be defined in
terms of attribute values at the children of node N

* Terminals can have synthesized attributes, but not inherited
attributes.

* Attributes for terminals have lexical values that are supplied by
the lexical analyzer

F — digit F.val = digit.lexval

Example of SDD

Each of the Non-terminals has a single synthesized
attribute, called val

PRODUCTION SEMANTIC RULES
1) L>En L.val = E.val
2) E—E + T | E.val= E;.val + T.val
3) E-T FE.val = T.val

) T->T) x F T.val = T1.val x F.val
) T F T.val = F.val

6) F—(E) F.val = E.val
) F — digit F.val = digit.lexval

Annotated parse tree.

A parse tree, showing the value(s) of its attribute(s) is called
an annotated parse tree.

Input string:3*5+4n

L.oval=19
We show the resulting values Eval=19
. . Mol =
associated with each node. | n
E. l: 15 N =

Each of the nodes for the m’ * Toval=4
nonterminals has attribute val T val = 15 ‘
computed in a bottom-up order, /'"a l- Fual=4

T.wal=3 * F.val=5 digit.lezval =4

Foual=3 digit.lezval = 5

digit.lezval = 3

Annotation and Evaluation of parse tree

e~
{id, 1) o+
Gd, 2y T N :
(id, 3} inttofloat ft1 = inttofloat(60)
| 1
| 60 I
(id,l)/ _l_ t1 = inttofloat (60)
(id,2)/ > 4 t2 = id3 * ti
(id, 3} inttofloat
|
i 60
t1 = inttofloat (60)| t1 = inttotloat (60)
R t2 = id3 * ti
= \ t2 = id3 % t1 3 = 1d2 + 12
{id, 1§ / t3 = id2 + t2 dict3
—
(id, 2§ * Gd, 1y =

¥
~ a2y >
{id, 3) mtto‘ﬂoat ‘ id 3 " Tittofloat
' j

¥

60

60

Annotated parse tree.

PRODUCTION SEMANTIC RULES
val and syn: Synthesized
1) T FT T".inh = F.val inh: Inherited
T.val =T .syn
2) T »+FT| T}.inh = T'.inh x F.val
T".syn =Ty .syn Annotated parse tree
*
3) T'—e T .syn =T".inh for3*5
4) F — digit F.yal = digit.lezval
T.val =15 7
L T b =3 3
- b =
Foal=3 T'syn=15 6
- Tlinh=15 4
digit.legval = 3 * F.uzal =5 T;.;;n _155

digit.lezval = 5 €

Evaluation Orders of SDD

* "Dependency graphs" are a useful tool for determining an
evaluation order for the attribute instances in a given parse tree.
* Depicts the flow of information among the attribute
instances in a particular parse tree
* Directed edges

* For anode A in parse tree -> node A in dependency graph

A has a synthesized attribute b
Production Semantic Rule
A->.X.. A.b=f(.., X.c, ..)
* Edge from X.cto A.b
* Edge from child attribute to parent attribute

PRODUCTION SEMANTIC RULE
E—-E + T E.wal = E; wval + T.wval

Evaluation Orders of SDD

* "Dependency graphs" are a useful tool for determining an
evaluation order for the attribute instances in a given parse tree.
* Depicts the flow of information among the attribute
instances in a particular parse tree
* Directed edges
* For anode A in parse tree -> node A in dependency graph

B has an inherited attribute ¢
Production Semantic Rule
A->..B.X.. B.c=f(.., X.a, ..)
* Edge from X.a to B.c
* Edge from attribute a of X (parent or sibling of B) to
attribute c of B (body of the production)

T.val = 15

PRODUCTION SEMANTIC RULES
1) THFT T'.inh = F.val ;
T.val=T".syn Foual=3 T’ anh =3
. A T'.syn =15
2) T' > xFT{ T}.inh = T".inh x F.val
T’ .syn =TY.syn
) —_—
3) T'—e T'.syn =T'.inh digit.lezval = 3 * Foal=5 g:} .inh =15
1-5yn =15
4) F — digit F.val = digit.lezval
digit.lezval =5 €

Annotated parse tree for3 * 5

lezval

digit 2 lezval €

Ordering the Evaluation of Attributes

The dependency graph characterizes the possible evaluation orders
* In which we can evaluate the attributes at the various nodes of a
parse tree.

If the dependency graph has an edge from node M to node N,
* Attribute corresponding to M must be evaluated before the
attribute of N.

If there is an edge of the dependency graph from Ni to Nj, such thati<j
* the only allowable orders of evaluation are those sequences of
nodes N1, N2,... ,Nk

Embeds a directed graph into a linear order, and is called a topological
sort of the graph

Topological Sort- Ordering the Evaluation

digit 2 lezval €

* One topological sort is the order in which the nodes have already
been numbered: 1,2,...,9.

* There are other topological sorts as well, such as 1,3,5,2,4,6,7,8,9.

Ordering the Evaluation — Cycles

PRODUCTION SEMANTIC RULES
A B A.s = B.i;
Bi=As+1

@ As

These rules are circular; it is impossible to : < >
evaluate either A.s or B.i e B
.1

Classes of SDD

(a) S-Attributed Definitions
(b) L-Attributed Definitions

Guarantee an evaluation order

S-Attributed SDD

An SDD is S-attributed if every attribute is synthesized.

PRODUCTION SEMANTIC RULES

1) L En L.val = E.val

2) E—E + T | E.val= E .val + T.val
3) E=T E.val = T.val

4) T T x F T.val = Ty .val X F.val
5) T—>F T.val = F.val

6) F—(E) F.val = E.val

7) F — digit F.pal = digit.lexval

L-Attributed SDD

* The idea behind L-attributed SDD class is that,
* Between the attributes associated with a production
body, dependency-graph edges can go from left to right,
* But not from right to left (hence "L-attributed")

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is
a production A = XX, -- X, and that there is an inherited attribute
X;.a computed by a rule associated with this production. Then the rule
may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated with the occur-
rences of symbols X, Xs,... , X, located to the left of X;.

(c) Inherited or synthesized attributes associated with this occurrence
of Xj itself, but only in such a way that there are no cycles in a
dependency graph formed by the attributes of this X;.

L-Attributed SDD

PRODUCTION SEMANTIC RULES
1) THFT T".inh = F.val -
T.val =T".syn
2) T'—+FT, | Tj.inh=T"inhx Fual -
T'.syn =Ty .syn
3) IT'—e T'.syn = T'.inh
4) F — digit F.val = digit.lezval
PRODUCTION SEMANTIC RULES
A—-BC A.s = B.b;

B.i= f(C.c,A.s)

Side Effects

Print a result,
Enter the type of an identifier into a symbol table.

PRODUCTION SEMANTIC RULES

1) L En L.val = E.val

2) E—E + T | E.val= E .val + T.val
3) E=T E.val = T.val

4) T T x F T.val = Ty .val X F.val
5) T—>F T.val = F.val

6) F—(E) F.val = E.val

7) F — digit F.pal = digit.lexval

PRODUCTION SEMANTIC RULE

1) Lo En print(E.val)
L.val =19
E.val =19 n
/ \
E.val=15 -l|— Twal=4
T.val=15 F'.vall= 4
T.val=3 * Fval=5 digit.lezval =4
F.val =3 digit.lezval = 5

digit.lezval = 3

Side Effects — examples

The SDD takes a simple declaration D consisting of a basic type T
followed by a list L of identifiers.

T can be int or float.

For each identifier on the list, the type is entered into the symbol-
table entry for the identifier.

L.inh = T.type €@ The typeis passed to the attribute L.inh
Evaluate the synthesized attribute T.type,
T. type = float .giving it the appropriate value, integer or float.

Ly.inh = L.inh €= passes L.inh down the parse tree
addType(id.entry, L.inh) Function addType() properly installs the

PRODUCTION SEMANTIC RULES
1) D->TL
2) T —int T.type = integer
3) T — float
4) L—L,id
5) L—id

add’[{upe(id.entry, L.inh) type L.inh as the type of the identifier.

Side Effects
float id, , id->, id3

L 6 _entry
L , ids "3 entry
L : 8 entry
X s ids 2 entry
inh 9 \5;(10 entry PRODUCTION SEMANTIC RULES
: ‘* 1) D-»TL L.inh = T .type
id; 1 entry 2) T —int T.type = integer
3) T — float T.type = float

4) L—L,id Ly.inh = L.inh
addType(id. entry, L.inh)
5) L—id addType(id.entry, L.inh)

Declaration statement
Representing data types: Type Expressions

Types have structure, which we shall represent using type
expressions.

* A type expression is either a basic type (boolean, char, integer,
float, and void)
or

* is formed by applying an operator called a type constructor to a
type expression.

* A type expression can be formed by applying the array type
constructor to a number and a type expression.

Declaration statement

* The array type int [2] [3] can be read as "array of 2
arrays of 3 integers each"

* Can be represented as a type expression array(2,
array(3, integer)).

* This type is represented by the tree.

N

array
integer

* The operator array takes two parameters, a number
and a type.
* Here the type expression can be formed by
applying the array type constructor to a number
and a type expression.

De

claration statement

Example SDD

PRODUCTION SEMANTIC RULES

T - BC Tt=Ct
Cb=DB1t

B — int B.t = integer

B — float B.t = float

C = [num]C; C.t = array (num.val, C;.t) . Type Expressions
Ci.b=0Cb

C — ¢ Ct=Cb

Nonterminal T generates either a basic type or an array type.
Nonterminal B generates one of the basic types int and float.

T generates a basic type when C derives €.

Otherwise, C generates array components consisting of a sequence of
integers, each integer surrounded by brackets.

Declaration statement
Example SDD

PRODUCTION SEMANTIC RULES

T - BC Tt=Ct
Cb=DB1t

B — int B.t = integer

B — float B.t = float

C = [num]C; | C.t= array(num.val, C;.t) . Type Expressions
Ci.b=Cb

C - ¢ Ct=0Cb

* The nonterminals B and T have a synthesized attribute t
representing a type.

* The nonterminal C has two attributes: an inherited attribute b
and a synthesized attribute t.

Declaration statement —

Example SDD oo | Ti-or

B — int B.t = integer
1 H H B — float B.t = float
InpUt Strlng Int [2] [3] C = [num]C; C.t = array (num.val, C;.t)
Cib=Cb
, C — ¢ Ct=Cb
T.t = array(2, array(3, integer))
< Cb= integer
Bt mtager C.t = array(2, array(3, integer))
| /N
" ~ C.b = integer
s [2] C.t = array(3, integer)

2 N
[/;/]/ C.b = integer

C.t = integer
\
* The nonterminal C has two attributes: an inherited attribute b
and a synthesized attribute t.
* The inherited b attributes pass a basic type down the tree, and
the synthesized t attributes accumulate the result.

Application of SDD — Syntax tree
construction

* Each node in a syntax tree represents a construct; the children of
the node represent the meaningful components of the construct.

* A syntax-tree node representing an expression E1 + E2 has label +
and two children representing the subexpressions E1 and E2

We shall implement the nodes of a syntax tree by objects with a suitable
number of fields. Each object will have an op field that is the label of the node.
The objects will have additional fields as follows:

¢ If the node is a leaf, an additional field holds the lexical value for the leaf.
A constructor function Leaf(op, val) creates a leaf object.

e If the node is an interior node, there are as many additional fields as the
node has children in the syntax tree. A constructor function Node takes
two or more arguments: Node(op,cy,ca,... ,ci) creates an object with
first field op and k additional fields for the & children ci, ..., cg-

Application of SDD — Syntax tree
construction

Syntax tree for a —4 + ¢

to entry for ¢

Application of SDD — Syntax tree

construction

Each node in a syntax tree represents a construct; the children of
the node represent the meaningful components of the construct.

A syntax-tree node representing an expression E1 + E2 has label +
and two children representing the subexpressions E1 and E2

PRODUCTION SEMANTIC RULES
1) E— Ei +T | E.node=new Node('+', E,.node, T.node)
2) E-E-T E.node = new Node('—', Ey.node, T.node)
3) E-T E.node = T.node
4) T (FE) T.node = E.node
5 T —id T.node = new Leaf (id, id.entry)
6) T — num T.node = new Leaf (num, num.val)

Application of SDD — Syntax tree

= PRODUCTION SEMANTIC RULES
CO n St r u Ctl O n 1) E->E+T E.node = new Node('+', Ey.node, T.node)
2) EsE~T | Enode=new Node('~', Ey.node, T.node)
3) E-T E.node = T.node
Syntax tree fora —4 + ¢ 9 T() | Taode= Eroe
5) T —id T.node = new Leaf (id, id.entry)
6) T —num T.node = new Leaf (num, num.val)

E.node

\

to entry for a

Application of SDD — Syntax tree
construction e

E—-E+T E.node = new Node('+', Ey.node, T.node)
2) EsE~T | Enode=new Node('~', Ey.node, T.node)
3) E-T E.node = T.node
Syntax tree for a —4 + ¢ 9 T (F) | Tooie= Erode
5) T—id T.node = new Leaf (id, id.entry)

6) T —num

T.node = new Leaf (num, num.val)
E.node
SR If the rules are evaluated during a
E.nodé” + \\\ o ‘T node Postordertraversal of the parse tree,
) ,-"/I‘ o \\ \\ Or))

.- - \ e .

Hoiads '/ S T node ; i \\\ with reductions during a bottom-up
! 4 ’ \

parse, then the sequence of steps

p1 = new Leaf(id, entry-a);
ps = new Leaf(num, 4);
ps = new Node('—',p1,p2);

ps = new Leaf(id, entry-c);
ps = new Node('+',p3, pa);

to entry for a

PRODUCTION SEMANTIC RULES

(=R
=T

-1

E-TE E.node = E'.syn Syntax tree fora —4 + ¢
E'.inh = T.node

E' - +TE; | E{.inh =new Node('+', E'.inh, T.node)
E'.syn = E{.syn

E' -+ —TE, | Ej.inh=new Node('—', E'.inh, T.node)
E'.syn = E|.syn

E' —e E'.syn= E'.inh

T-(E) T.node = E.node

T—id T.node = new Leaf(id, id.entry)

T — num T.node = new Leaf (num, num.val)

. E 13gode

T 2 fode ink 5 E 1‘2759/"

id 1 entry -y min\j

num 3wl + T 8fiode inhé E™10 sym
id 7 entry €

Dependency graph for a —4 +¢,

Syntax-Directed Translation Schemes

* Syntax-directed translation schemes are a complementary notation to syntax
directed definitions.

* All of the applications of syntax-directed definitions can be implemented using
syntax-directed translation schemes.

* Syntax-directed translation scheme (SDT) is a context free grammar with
program fragments embedded within production bodies.

* The program fragments are called semantic actions and can appear at any
position within a production body.

Syntax-Directed Translation Schemes

En { print(E.val); }
E1+T { E.val= E.val+ T.val; }

T { E.val=T.val; }
Ty *F { T.val=T).val X F.val; }
F { T.val = F.val; }

(E) { F.val = E.val; }
digit { F.val = digit.lezval; }

NN DE e
i1 id

* The simplest SDD implementation occurs when we can parse the grammar
bottom-up and the SDD is S-attributed.

* Inthat case, we can construct an SDT in which each action is placed at the end
of the production

* Executed along with the reduction of the body to the head of that
production.

* SDT's with all actions at the right ends of the production bodies are called

postfix SDT’s.

Syntax-Directed Translation Schemes

En { print(E.val); }
Ei+T { E.val= Ej.val+ T.val; }

T { E.val=T.val; }
Ty *F { T.val=T).val X F.val; }
F { T.val = F.val; }

(E) { F.val = E.val; }
digit { F.val = digit.lezval; }

MNNRE e
14444l

SDT’s that can be implemented during parsing can be characterized by in-
troducing distinct marker nonterminals in place of each embedded action; each
marker M has only one production, M — €. If the grammar with marker non-
terminals can be parsed by a given method, then the SDT can be implemented
during parsing,

Parser Implementation of Postfix SDT's

* Postfix SDT's can be implemented during LR parsing by executing

the actions when reductions occur.

* The attribute(s) of each grammar symbol can be put on the stack in
a place where they can be found during the reduction.

* The parser stack contains records with a field for a grammar symbol
(or parser state) and, below it, a field for an attribute

Z.z

top

State/grammar symbol

Synthesized attribute(s)

The three grammar symbols XY Z
are on top of the stack.

Perhaps they are about to be
reduced according to a production
like A->XY Z

Parser Implementation of Postfix SDT's

X\| Y| Z State/grammar symbol

Xz Yy 2.2 Synthesized attribute(s)
: A->XY Z
top

» If the attributes are all synthesized, and the actions occur at the ends
of the productions
* then we can compute the attributes for the head when we
reduce the body to the head.

* If we reduce by a production such as A-> XY Z, then
* we have all the attributes of X, Y, and Z available, at known
positions on the stack.

* After the action, A and its attributes are pushed at the top of the stack,
in the position of the record for X

En { print(E.val); }

i E, +T {E.val= Ej.val+ T.vak
Actions of the desk- 1 { B.val = By.val +T.val; }

T { E.wal=T.val; }
calculator SDT so that TyxF { T.val=Ti.val x Fvaly }
F { T.val = F.val; }

they manipulate the

. (E) { F.val = E.val; }
parser stack explicitly

digit { F.val = digit.lezval; }

NN DD
il

PRODUCTION ACTIONS

L—+En { print(stack[top — 1].val);
top = top —1; }

E—E +T { stack[top — 2].val = stack [top — 2].val + stack|top].val;
top=top—2; }

E-T

T—=T+F { stack[top — 2].val = stack[top — 2].val x stack|top].val;
top=top—2; }

T—F

F—(E) { stack[top — 2].val = stack[top — 1].val;

top=top—2; }
F — digit

SDT's With Actions Inside Productions

An action may be placed at Jany position within the body of a prodnction.'
IIt is performed Immedia.telylafter all symbols to its left are processed.| Thus,
if we have a production B — X {a} Y, the action a is done after we have
(if X is a terminal) or all the terminals derived from X (if X is
a nonterminal). More precisely,

o If the parse is bottom-up, then we perform action a as soon as this oc-
currence of X appears on the top of the parsing stack.

e If the parse is top-down, we perform a just before we attempt to expand
this occurrence of Y (if ¥ a nonterminal) or check for ¥ on the input (if
Y is a terminal).

SDT for infix-to-prefix translation during parsing

3%x5 44 +*354.
1) L — En
2) E — A{prnt(+');} E1+T
3) E - T
4) T — {print('+');} ThW=F
5 T - F
6) F — (E)
7 F = digit { print(digit.lezval); }

It is impossible to implement this SDT during either topdown or
bottom-up parsing,
* because the parser would have to perform semantic
actions, like printing instances of * or +,
* long before it knows whether these symbols will appear in
its input .

Any SDT can be implemented as follows:
1. Ignoring the actions, parse the input and produce a parse tree as a result.

2. Then, examine each interior node N, say one for production 4 =+ @. Add
additional children to N for the actions in @, so the children of N from
left to right have exactly the symbols and actions of .

3. Perform a preorder traversal of the tree, and as soon
as a node labeled by an action is visited, perform that action.,

parse tree for expression 3 x 5 4 4 | \
{ print(’+');/} E/ \ T
If we visit the nodes in preorder, ‘ }L
we get the prefix form of the / | \ |
expression:+*354 { print(’'+'); } T s digit { print(4); }

1‘;' diLit ;\;;r'int(f'); }

digit { print(3); }

