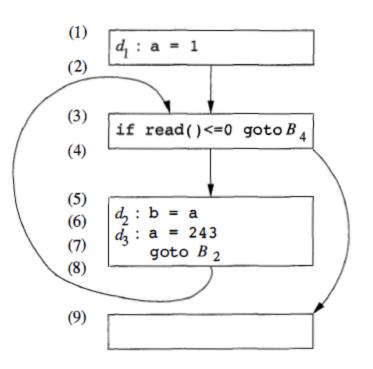
- These are techniques that derive information about the flow of data along program execution paths
- An execution path (or path) from point p₁ to point p_n is a sequence of points p₁, p₂, ..., p_n such that for each
 i = 1, 2, ..., p = 1, either

i = 1, 2, ..., n - 1, either

- p_i is the point immediately preceding a statement and p_{i+1} is the point immediately following that same statement, or
- 2 p_i is the end of some block and p_{i+1} is the beginning of a successor block

Different execution paths of the program



Not entering the loop at all, the shortest complete B_1 execution path consists of the program points (1, 2, 3,4,9).

 B_2 The next shortest path executes one iteration of the loop and consists of the points (1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 9).

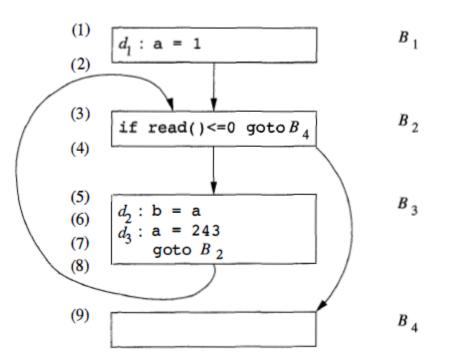
B_3

 B_4

Flow of data value

- For example, the first time program point (5) is executed, the value of a is 1 due to definition d1.
 - We say that d1 reaches point (5) in the first iteration.

In subsequent iterations, d3 reaches point (5) and the value of a is 243.



To help users debug their programs, we may wish to find out what are all the values a variable may have at a program point, and where these values may be defined. For instance, we may summarize all the program states at point (5) by saying that the value of a is one of $\{1, 243\}$, and that it may be defined by one of $\{d_1, d_3\}$. The definitions that may reach a program point along some path are known as *reaching definitions*.

- A data-flow value for a program point represents an abstraction of the set of all possible program states that can be observed for that point
- The set of all possible data-flow values is the domain for the application under consideration
 - Example: for the <u>reaching definitions</u> problem, the domain of data-flow values is the set of all <u>subsets</u> of definitions in the program
 - A particular data-flow value is a set of definitions
- IN[s] and OUT[s]: data-flow values before and after each statement s May extend for blocks
- The *data-flow problem* is to find a solution to a set of constraints on *IN*[*s*] and *OUT*[*s*], for all statements *s*

- * We denote the data-flow values before and after each statement s by IN[S] and OUT[S], respectively.
- * The data-flow problem is to find a solution to a set of constraints on the IN [S] 'S and OUT[S] 'S, for all statements s.
- * There are two sets of constraints:
- * (a) "Transfer functions" (based on the semantics of the statements)
- * (b) Flow of control functions.

(a) Transfer Functions

b=a

p(i+1)

- The data-flow values before and after a statement are constrained by the TF (semantics of the statement) p(i)
- For example, suppose data-flow analysis involves
 determining the value of variables at points.
- * If variable a has value v before executing statement b = a, then both a and b will have the value v after the statement.
- This relationship between the data-flow values before and after the assignment statement is known as a transfer function.

(a) Transfer Functions

- Transfer functions come in two flavors: information may propagate forward along execution paths,
- * Or it may flow backwards up the execution paths.
- In a forward-flow problem, the transfer function fs of a statement s,
- * (i) takes the data-flow value before the statement and
- * (ii) produces a new data-flow value after the statement

(a) Transfer Functions

usually denote f_s , takes the data-flow value before the statement and produces a new data-flow value after the statement. That is

 $OUT[s] = f_s(IN[s]).$

Conversely, in a backward-flow problem, the transfer function f_s for statement s converts a data-flow value after the statement to a new data-flow value before the statement. That is,

 $IN[s] = f_s(OUT[s]).$

(b) Control-Flow Constraints

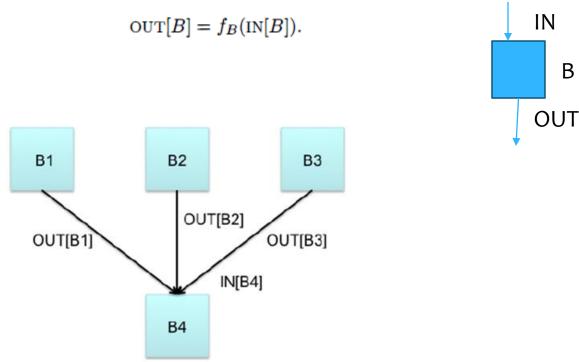
The second set of constraints on data-flow values is derived from the flow of control. Within a basic block, control flow is simple. If a block B consists of statements s_1, s_2, \ldots, s_n in that order, then the control-flow value out of s_i is the same as the control-flow value into s_{i+1} . That is,

 $IN[s_{i+1}] = OUT[s_i]$, for all i = 1, 2, ..., n-1.

- However, control-flow edges between basic blocks create more complex constraints between the last statement of one basic block and the first statement of the following block.
- For example, if we wish to collect all the definitions that may reach a program point,
- Then the set of definitions reaching the leader statement of a basic block is the
- **union** of the definitions after the last statements of each of the predecessor blocks.

(b) Control-Flow Constraints

Suppose block B consists of statements s_1, \ldots, s_n , in that order. If s_1 is the first statement of basic block B, then $IN[B] = IN[s_1]$, Similarly, if s_n is the last statement of basic block B, then $OUT[B] = OUT[s_n]$. The transfer function of a basic block B, which we denote f_B , can be derived by composing the transfer functions of the statements in the block. That is, let f_{s_i} be the transfer function of statement s_i . Then $f_B = f_{s_n} \circ \ldots \circ f_{s_2} \circ f_{s_1}$. The relationship between the beginning and end of the block is

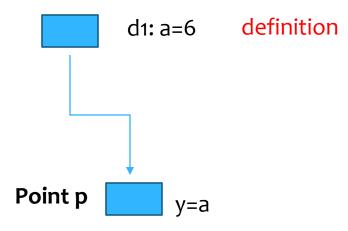


В

- A data-flow value for a program point represents an abstraction of the set of all possible program states that can be observed for that point
- The set of all possible data-flow values is the domain for the application under consideration
 - Example: for the <u>reaching definitions</u> problem, the domain of data-flow values is the set of all <u>subsets</u> of definitions in the program
 - A particular data-flow value is a set of definitions
- IN[s] and OUT[s]: data-flow values before and after each statement s May extend for blocks
- The *data-flow problem* is to find a solution to a set of constraints on *IN*[*s*] and *OUT*[*s*], for all statements *s*

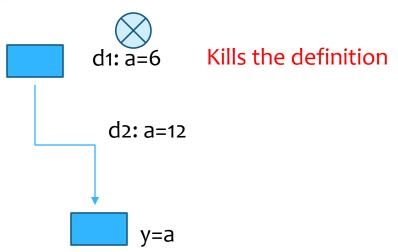
Reaching Definitions (RD) Problem

A definition *d* reaches a point *p*, if there is a path from the point immediately following *d* to *p*, such that *d* is not *killed* along that path

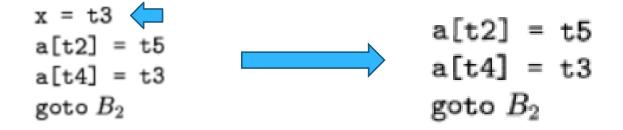


Reaching Definitions (RD) Problem

- We kill a definition of a variable *a*, if between two points along the path, there is an assignment to *a*
- A definition d reaches a point p, if there is a path from the point immediately following d to p, such that d is not killed along that path



Motivation: Usage



if (debug) print ...

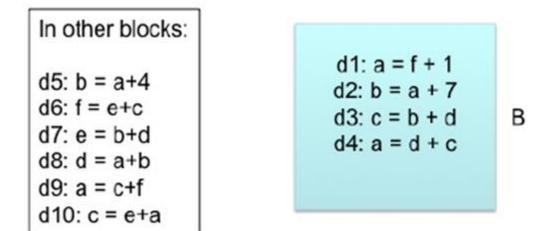
debug = FALSE (Copy propagation

- Drop this code segment
- Constant folding

RD Problem

- GEN[B] = set of all definitions inside B that are "visible" immediately after the block - downwards exposed definitions
 - If a variable x has two or more definitions in a basic block, then only the last definition of x is downwards exposed; all others are not visible outside the block
- KILL[B] = union of the definitions in all the basic blocks of the flow graph, that are killed by individual statements in B
 - If a variable x has a definition d_i in a basic block, then d_i kills all the definitions of the variable x in the program, except d_i

RD Analysis: GEN and KILL



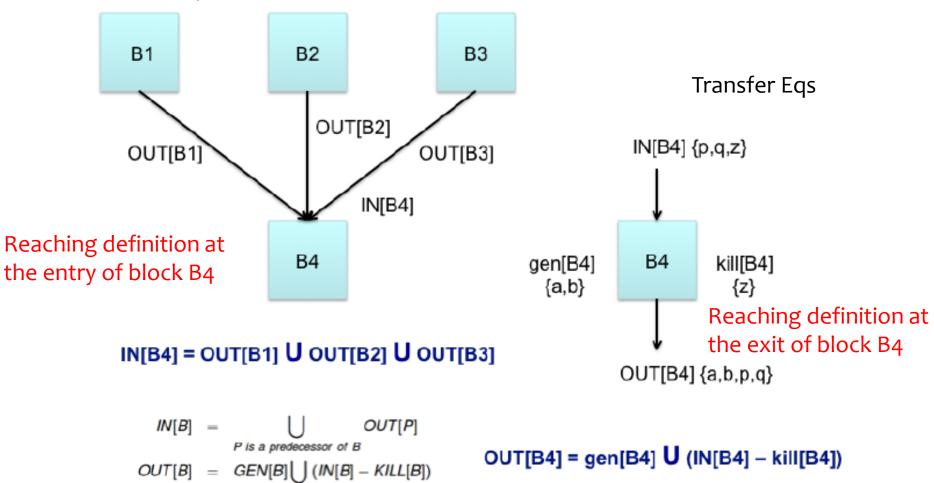
Set of all definitions = {d1,d2,d3,d4,d5,d6,d7,d8,d9,10}

GEN[B] = {d2,d3,d4}

Kills(d9, d5, d10, d1)

RD Analysis: **DF** Equations

Control flow Eqs



RD Problem

The data-flow equations (constraints)

$$IN[B] = \bigcup_{\substack{P \text{ is a predecessor of } B}} OUT[P]$$
$$OUT[B] = GEN[B] \bigcup (IN[B] - KILL[B])$$
$$IN[B] = \phi, \text{ for all } B \text{ (initialization only)}$$

- If some definitions reach B₁ (entry), then IN[B₁] is initialized to that set
- Forward flow DFA problem (since OUT[B] is expressed in terms of IN[B]), confluence operator is ∪
 - Direction of flow does not imply traversing the basic blocks in a particular order
 - The final result does not depend on the order of traversal of the basic blocks

RD algorithm

 $OUT[ENTRY] = \emptyset;$ 1)

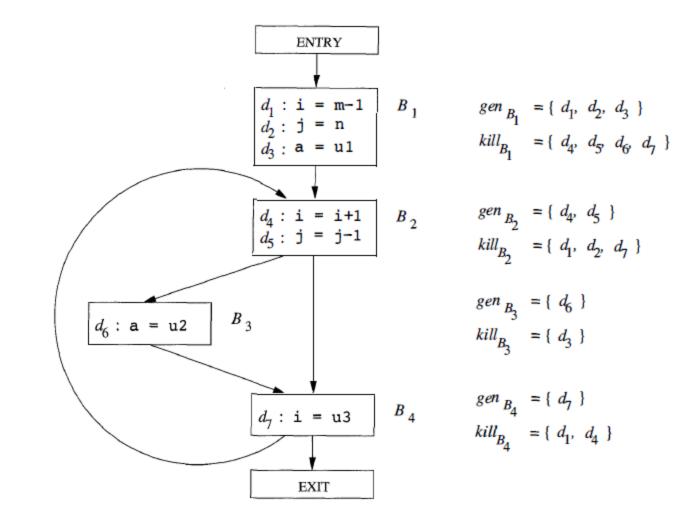
}

6)

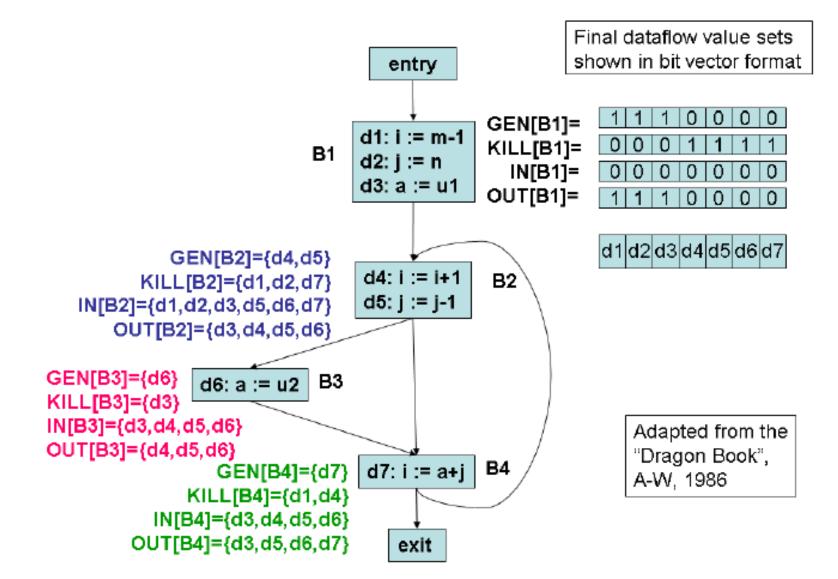
for (each basic block B other than ENTRY) $OUT[B] = \emptyset$; 2)while (changes to any OUT occur) 3) 4) 5)

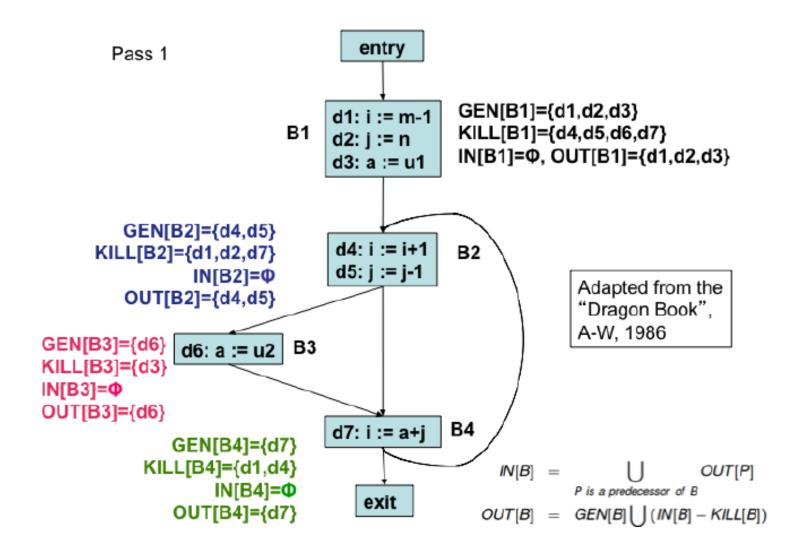
for (each basic block B other than ENTRY) { $IN[B] = \bigcup_{P \text{ a predecessor of } B} OUT[P];$ $OUT[B] = gen_B \cup (IN[B] - kill_B);$

Block B	$OUT[B]^0$	$IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$
B_1	000 0000	000 0000	111 0000	000 0000	111 0000
B_2	000 0000	$111\ 0000$	001 1100	$111 \ 0111$	001 1110
B_3	000 0000	$001 \ 1100$	$000\ 1110$	$001\ 1110$	000 1110
B_4	000 0000	$001 \ 1110$	001 0111	001 1110	$001 \ 0111$
EXİT	000 0000	001 0111	$001 \ 0111$	$001 \ 0111$	$001 \ 0111$



RD: Bit vector representation

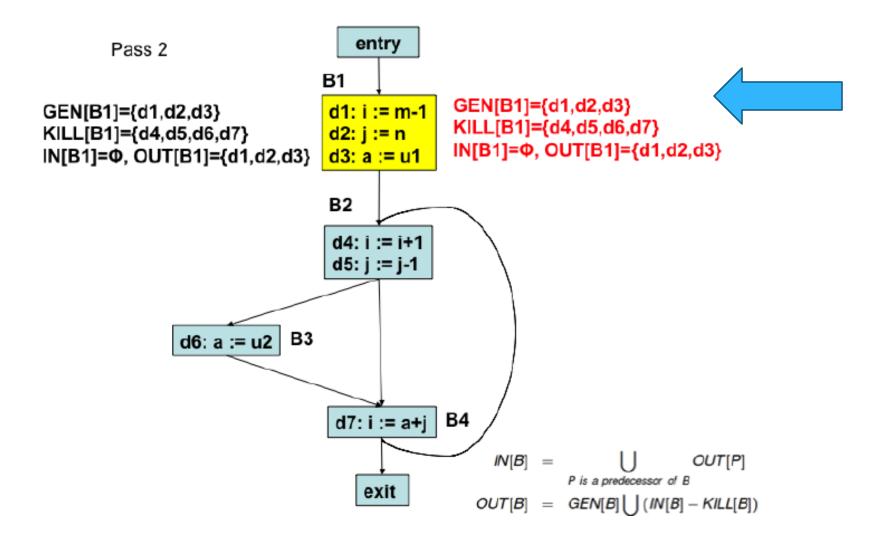




RD algorithm

1) OUT[ENTRY] = \emptyset ; 2) for (each basic block *B* other than ENTRY) OUT[*B*] = \emptyset ; 3) while (changes to any OUT occur) 4) for (each basic block *B* other than ENTRY) { 5) IN[*B*] = $\bigcup_{P \text{ a predecessor of } B \text{ OUT}[P]$; 6) OUT[*B*] = $gen_B \cup (IN[B] - kill_B)$; }

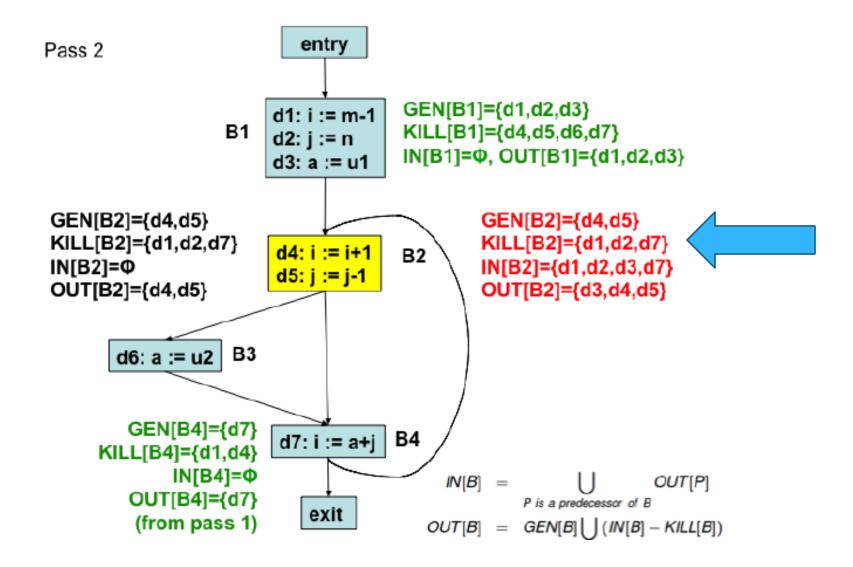
Block B	$OUT[B]^0$	$IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$
B_1	000 0000	000 0000	111 0000	000 0000	111 0000
B_2	000 0000	$111\ 0000$	001 1100	$111 \ 0111$	001 1110
B_3	000 0000	$001 \ 1100$	$000\ 1110$	$001 \ 1110$	000 1110
B_4	000 0000	001 1110	001 0111	001 1110	$001 \ 0111$
EXİT	000 0000	001 0111	001 0111	$001 \ 0111$	$001 \ 0111$

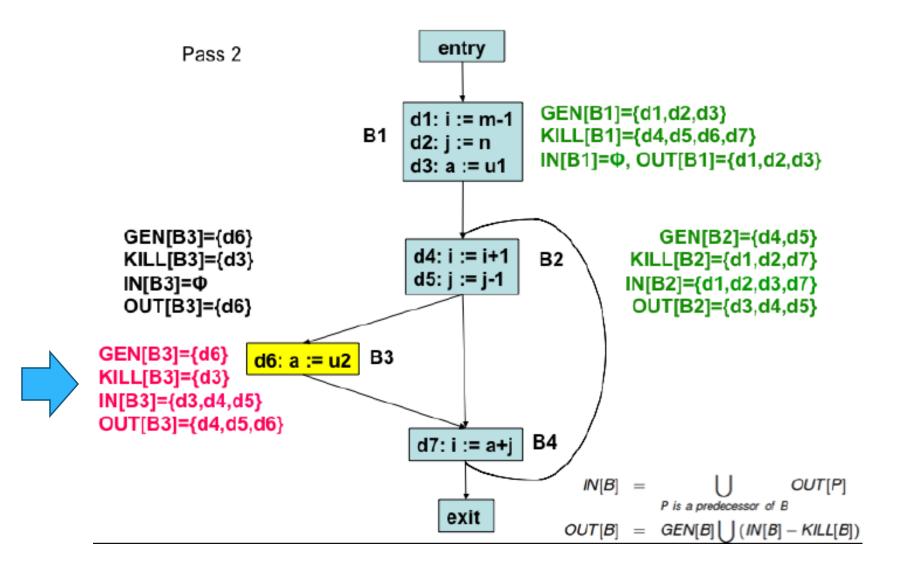


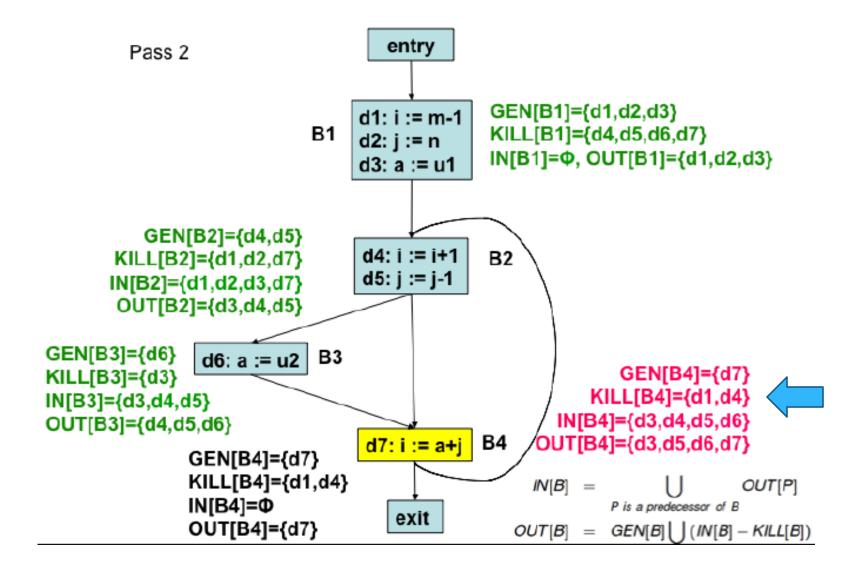
RD algorithm

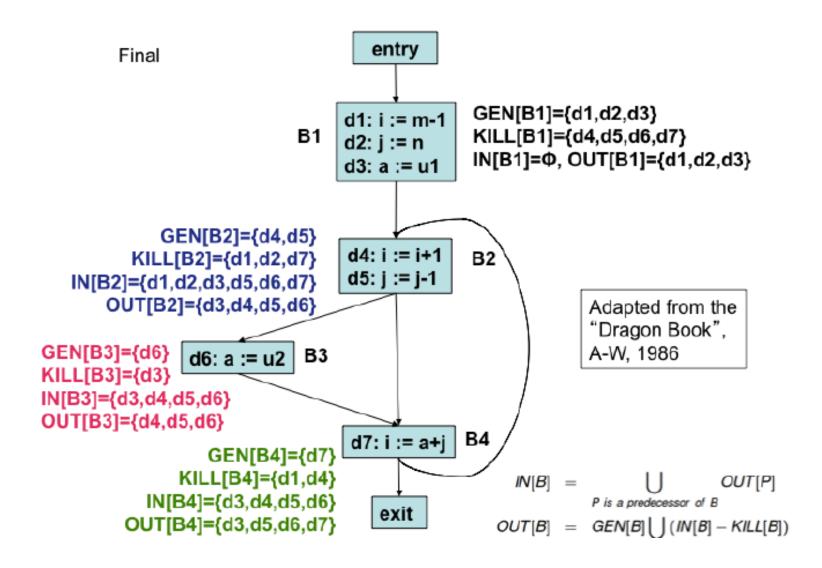
1) OUT[ENTRY] = \emptyset ; 2) for (each basic block *B* other than ENTRY) OUT[*B*] = \emptyset ; 3) while (changes to any OUT occur) 4) for (each basic block *B* other than ENTRY) { 5) IN[*B*] = $\bigcup_{P \text{ a predecessor of } B \text{ OUT}[P]$; 6) OUT[*B*] = $gen_B \cup (IN[B] - kill_B)$; } Next iteration

Block B	$OUT[B]^0$	$IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$
B_1	000 0000	000 0000	111 0000	000 0000	111 0000
B_2	000 0000	$111\ 0000$	001 1100	$111 \ 0111$	001 1110
B_3	000 0000	$001 \ 1100$	$000\ 1110$	$001\ 1110$	$000 \ 1110$
B_4	000 0000	$001 \ 1110$	$001 \ 0111$	001 1110	$001 \ 0111$
EXİT	000 0000	001 0111	$001 \ 0111$	$001 \ 0111$	$001 \ 0111$









RD algorithm

 $OUT[ENTRY] = \emptyset;$ 1)

}

6)

for (each basic block B other than ENTRY) $OUT[B] = \emptyset$; 2)while (changes to any OUT occur) 3) 4) 5)

for (each basic block B other than ENTRY) { $IN[B] = \bigcup_{P \text{ a predecessor of } B} OUT[P];$ $OUT[B] = gen_B \cup (IN[B] - kill_B);$

Block B	$OUT[B]^0$	$IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$
B_1	000 0000	000 0000	111 0000	000 0000	111 0000
B_2	000 0000	$111\ 0000$	001 1100	$111\ 0111$	001 1110
B_3	000 0000	$001 \ 1100$	$000\ 1110$	$001\ 1110$	000 1110
B_4	000 0000	$001 \ 1110$	001 0111	001 1110	$001 \ 0111$
EXİT	000 0000	001 0111	$001 \ 0111$	$001 \ 0111$	$001 \ 0111$