Data Flow Analysis



Data Flow Analysis

@ These are techniques that [derive information

flow of data plong program execution paths

about the

@ An execution path (or path) from point p; to point p, is a
sequence of points py, pa, ..., pp such that for each

i=1,2,....,.n—1, either

© p; is the point immediately preceding a statement and p;.1
is the point immediately following that same statement, or
@ p; is the end of some block and p;.1 is the beginning of a

successor block
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Data Flow Analysis

Different execution paths of the program

if read()<=0 gotohB 4

|

b =a
ca = 243
goto B 5

B,

Not entering the loop at all, the shortest complete
execution path consists of the program points (1,

2, 3,4,9).

The next shortest path executes one iteration of
the loop and consists of the points

(17 2’ 3’ 4 ’576)778’374’9)'

Flow of data value
* For example, the first time program point (5) is
executed, the value of ais 1 due to definition d1.
* We say that d1 reaches point (5) in the first
iteration.

In subsequent iterations, d3 reaches point (5) and
the value of ais 243.



Data Flow Analysis

(1) B,

(2) l

(3)
if read()<=0 gotohB 4

(4) l

5) B,

:b=a
©) ?3:&-243

goto B 5

() B,

To help users debug their programs, we may wish to find out what are

all the values a variable may have at a program point, and| where these

values may be defined. For instance, we may summarize all the program

states at point (5) by saying that the value of a is one of {1,243}| and

that it may be defined by one of {d;,ds;}. The definitions that may reach

a program point along some path are known as

reaching definitions.




DFA Steps

e Al|data-flow value|for a‘ program point|represents an

abstraction of the set of all possible| program states|that
can be observed for that point

@ [he set of all possible data-flow values is the| domain for

the application under consideration

o Example: for the [reaching definitio in
of data-flow values is the set of all|subsets of definitions|in

the program
e A particular data-flow value is a set of definitions

@ IN[s] and OUT|s]: data-flow values before and after each
statement s May extend for blocks

@ [he data-flow problem is to find a solution to a set of
constraints on /N|[s] and OUT [s], for all statements s




+ We denote the data-flow values before and after each
statement s by IN[S] and OUT[S], respectively.

* The data-flow problem is to find a solution to a set of constraints
on the IN[S]'S and OUT[S]'S, for all statements s.

* There are two sets of constraints:

# (@) “Transfer functions” (based on the semantics of the
statements)

+ (b) Flow of control functions.



(a) Transfer Functions

+ The data-flow values before and after a statement are
constrained by the TF (semantics of the statement) p()
b=a

. . i+1
* For example, suppose data-flow analysis involves (1)

determining the value of variables at points.

* If variable a has value v before executing statement b = a,
then both a and b will have the value v after the statement.

* This relationship between the data-flow values before and
after the assignment statement is known as a transfer
function.



(a) Transfer Functions

* Transfer functions come in two flavors: information may
propagate forward along execution paths,

# Or it may flow backwards up the execution paths.

* In a forward-flow problem, the transfer function fs of a
statement s,

« (i) takes the data-flow value before the statement and
+« (ii) produces a new data-flow value after the statement



(a) Transfer Functions

usually denote f;, takes the data-flow value before the statement and produces
a new data-flow value after the statement. That isl

ouT[s] = fs(IN[s]).

Conversely, in a backward-flow problem, the transfer function f, for statement
g converts a data-flow value after the statement to a new data-flow value before

the statement. That is,

IN[s] = fs(OUT[s]).



(b) Control-Flow Constraints

The second set of constraints on data-flow values is derived from thd flow of
control. Within a basic block, control flow is simple. If a block B consists of
statements 8y, 82,..., 8, in that order, then the control-flow value out of s; is
the same as the control-flow value into s;,1. That is,

IN[8i+1] = OUT[s;], forall i=1,2,... ,;n— L

* However, control-flow edges between basic blocks create more complex
constraints between the last statement of one basic block and the first statement
of the following block.

* For example, if we wish to collect all the definitions that may reach a program
point,

* Then the set of definitions reaching the leader statement of a basic block is the

* union of the definitions after the last statements of each of the predecessor
blocks.



(b) Control-Flow Constraints

Suppose block B consists of statements s,... ,8,, in that order. If ; is the
first statement of basic block B, then IN[B] = IN[s,], Similarly, if s, is the last
statement of basic block B, then OUT[B] = OUT([s,,]. The transfer function of
a basic block B, which we denote fg, can be derived by composing the transfer
functions of the statements in the block. That is, let f;, be the transfer function
of statement s;. Then fgp = f; o...0 f;, o f5,. The relationship between the
beginning and end of the block is

ouT[B] = fs(IN[B]). IN

OouT

OUT[B2]
OUT(B3]

IN[B4]



DFA Steps

e Al|data-flow value|for a‘ program point|represents an

abstraction of the set of all possible| program states|that
can be observed for that point

@ [he set of all possible data-flow values is the| domain for

the application under consideration

o Example: for the [reaching definitio in
of data-flow values is the set of all|subsets of definitions|in

the program
e A particular data-flow value is a set of definitions

@ IN[s] and OUT|s]: data-flow values before and after each
statement s May extend for blocks

@ [he data-flow problem is to find a solution to a set of
constraints on /N|[s] and OUT [s], for all statements s




Reaching Definitions (RD) Problem

»A definition d reaches|a point p, if there is a path from

the point immediately following d to p, such that d is not
killed along that path

- d1: a=6 definition

Point p - y=a



Reaching Definitions (RD) Problem

kill a definition|of a variable a, if between two points
along the path, there is an assignment to a

@ A definition d reaches a point p, if there is a path from
the point immediately following d to p, such that d is not
killed along that path

- d1: a=6 Kills the definition



2[2211;1:1 alt2] =15
a[ta] - 13 NN a[pq] = 3
goto B goto B,

if (debug) print ...

ﬂﬂhl’lg = FALSE = copy propagation

. Drop this code segment
. Constant folding



RD Problem

e GEN[B] = |5et of all definitions inside B|that are “visible"
immediately after the block - downwards exposed
definitions

o If a variable [x has two or more defintions |in a basic block,
then only thellast definition abf x is downwards exposed; all
others are not visible outside the block

@ KILL[B] = |union of the definitions in all the basic blocks
of the flow graph, that are killed by individual statements
in B

o If a variable x has a definition d; in a basic block, then d;
kills all the definitions of the variable x in the program,

except d;




RD Analysis: GEN and KILL

In other blocks:

dl:a=f+1
d5:b = a+4 d2:b=a+7
d6: f = e+c A
d3:c=b+d B
d7: e = b+d il
d8: d = a+b déa=d+o
d9: a = c+f
d10: c=eta

Set of all definitions = {d1,d2,d3,d4,d5,d6,d7,d8,d9,10}
GEN[B] = {d2,d3,d4}

Kills(d9, ds, d10, d1)



RD Analysis: DF Equations

Control flow Egs

B1 B2 B3
Transfer Eqs

OUT[B2]

OuT[B1] OUT[B3] IN[B4] {p.q.Z}

IN[B4] l

Reaching definition at

the entry of block B4 Es QFIEEFE?] B4 k“{'g"’r]
Reaching definition at
IN[B4] = ouT[B1] U ouT[B2] U OUT[B3] the exit of block B4
OUT[B4] {a.b.p.q}
IN[B] = U OUT(P]

P is a pradacassor of B

ouT[B] — GEN[B]| J (IN[B] - KILL[B)) OUT[B4] = gen[B4] U (IN[B4] - kill[B4])



RD Problem

@ The data-flow equations (constraints)

IN[B] = g OUTIP]

P is a predecessor of B
OUT|[B] = GEN|B] U (IN[B] — KILL|B])
IN[B] = ¢, for all B (initialization only)

@ If some definitions reach B;| (entry), then IN[B] is
initialized to that set

@ [Forward flow DFA D|r-::b|em (since OUT[B] is expressed in
terms of IN[B]), confluence operator is U

e Direction of flow does not imply traversing the basic blocks
in a particular order

e The final result does not depend on the order of traversal
of the basic blocks



RD algorithm

1) OUT[ENTRY] = 0;
2) for (each basic block B other than ENTRY) OUT[B] = 0
3) while (changes to any OUT occur)

4) for (each basic block B other than ENTRY) {

5) IN[B] = UP a predecessor of B OUT[P};

6) OUT[B] = genp U (IN[B] — killg);

Block B | out[B]° | IN[B]' | out[B]' | IN[B]*> | ouT[B]?
By 000 0000 | 000 0000 | 111 0000 | 000 0000 | 111 0000
By 000 0000 | 111 0000 | 001 1100 | 111 0111 | 001 1110
By 000 0000 | 001 1100 | 000 1110 | 001 1110 | 000 1110
By 000 0000 | 001 1110 | 001 0111 | 001 1110 | 001 0111
EXIT 000 0000 | 001 0111 | 001 0111 | 001 0111 | 001 0111




ENTRY
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gmgl ={dp dp d3}
kﬂfBl ={£f4, dS' dﬁ, d,}

geny =(dy &)
kill, = d dy d)
gen% ={¢%}

‘Hﬂﬂj ={d,}
genp, ={d}

kff!34 ={d, d,}



RD: Bit vector representation

Final dataflow value sets
entry shown in bit vector format

417 2y | GENIB1I= (1]1]1]ofoJo]0]
B1 d2212=n KiLL[B1]= [O[OTO[1[1[1[1]
= IN[B1]= [0[0[0[0[0[0[0]
d%:a:=ul | ouT[R1]= [A[4]1[0[0]0[0]

d1/d2d3|d4|d5/d6/d7

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7} |d4:]:=i+1
IN[B2]={d1,d2,d3,d5,d6,d7} |d%:] = ])-1

QUT[B2]={d3,d4,d5,d6}

GEN[B3]={d6} |g6:a:=u2 B3

KILL[B2]={d3}
IN[B3]={d3,d4,d5,d6} \l
OUT[B3]={d4,d5,d6}
GEN[B4]={d7} |d7: i == a+] | B4
KILL[B4]={d1,d4}
IN[B4]={d3,d4,d5,d6}

OUT[B4]={d3,d%,d6,d7} exit

Adapted from the
“‘Dragon Book™,
AW, 1986




RD Analysis: An example

Pass 1

B1

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7}
IN[BZ]=®
OUT[B2]={d4,d5}

GEN[B3]={d6} [ge: a := uz | B3

KILL[B3]={d3}
IN[B3]=0 \
QUT[B3]={d6}

GEN[B4]={dT7}
KILL[B4]={d1,d4}
IN[B4]=0
OUT[B4]={dT7}

dd: i = i+1
d5: j :=j-1

d7: i := a+j

exit

GEN[B1]={d1,d2,d3)}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=®, OUT[B1]={d1,d2,d3}

B4
IN|B]

OUT|B

Adapted from the
“Dragon Book”,

A-\W, 1986

U QUT[P]
P is a predecessor of B

GEN[B]|_J (IN[B] — KILL[B])



RD algorithm

1) OUT[ENTRY] = 0;
2) for (each basic block B other than ENTRY) OUT[B] = 0
3) while (changes to any OUT occur)

4) for (each basic block B other than ENTRY) {

5) IN[B] = UP a predecessor of B O.UT[P];

6) OUT[B] = geng U (IN[B] — killg);

Block B | out[B]° | IN[B]' | out[B]' | IN[B]*> | ouT[B]?
By 000 0000 | 000 0000 | 111 0000 | 000 0000 | 111 0000
By 000 0000 | 111 0000 | 001 1100 | 111 0111 | 001 1110
By 000 0000 | 001 1100 | 000 1110 | 001 1110 | 000 1110
By 000 0000 | 001 1110 | 001 0111 | 001 1110 | 001 0111
EXIT 000 0000 | 001 0111 | 001 0111 | 001 0111 | 001 0111




RD Analysis: An example

Pass 2

GEN[B1]={d1,d2,d3}

KILL[B1]={d4,d5,d6,d7}

IN[B1]=0, OUT[B1]={d1,d2,d3}

=u2 B3

\

entry
B1
d1:i:=m-1
d2:j:=n
d3d:a:=ul
B2
d4:i=1+1
d5:j:==j1

d7:1i:= a+j

exit

GEN[B1]={d1,d2,d3} -
KILL[B1]={d4,d5,d6,d7}

IN[B1]=®, OUT[B1]={d1,d2,d3}

B4
INB] = U ouTlP]
P is a pradecessor of B
ouT(B] = GEN[B]| J (IN[B] - KILL[E])



RD algorithm

1) OUT[ENTRY] = 0;
2) for (each basic block B other than ENTRY) OUT[B] = 0
3) while (changes to any OUT occur)

4) for (each basic block B other than ENTRY) {
5) IN[B] = UP a predecessor of B OUT[P};
6) OUT[B] = genp U (IN[B] — killp);
} Next iteration
L 4 L 4
Block B | out[B]° | IN[B]' | out[B]' | IN[B]*> | ouT[B]?
By 000 0000 | 000 0000 | 111 0000 | 000 0000 | 111 0000
By 000 0000 | 111 0000 | 001 1100 | 111 0111 | 001 1110
By 000 0000 | 001 1100 | 000 1110 | 001 1110 | 000 1110
By 000 0000 | 001 1110 | 001 0111 | 001 1110 | 001 0111
EXIT 000 0000 | 001 0111 | 001 0111 | 001 0111 | 001 0111




RD Analysis: An example

Pass 2

B1

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7}
IN[B2]=0

ﬂUT[BZ]={d4y

d6: a:=uz| B3

GEN[B4]={d7}
KILL[B4]={d1,d4}
IN[B4]=P
OUT[B4]={d 7}
(from pass 1)

entry

d1:i:=m-1
d2:j:=n
d3:a:=ul

d4: i =i+l
ds: j :=j-1

\

d7:i = a+j

exit

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=®, QUT[B1]={d1,d2,d3}

B4

GEN[B2]={d4,d5} -
KILL[B2]={d1,d2,d7}
IN[B2]={d1,d2,d3,d7}

OUT[B2]={d3,d4,d5)

INB) = U ouT(P]
P iz a predecessor of B

OuUT(B] = GENE](J (IN[B] - KILL[E])



RD Analysis: An example

Pass 2 entry
d1:i:=m-1
B1 |d2: ji=n
d3: a:=ul
GEN[B3]={d6) e
KILL[B3]={d3} dd: i:=i+1
IN[B3]=® d3:j:=j-1

OUT[B3]={d6} /

GEN[B3]={d6} [ge: a = uz

KILL[B3]={d3}
IN[B3]={d3,d4,d5} \
QUT[B3]={d4,d5,d6}

B3

d7:i = a+j

exit

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=®, OUT[B1]={d1,d2,d3}

GEN[B2]={d4,d5}
KILL[B2]={d1,d2,d7}
IN[B2]={d1,d2,d3,d7}

OUT[B2]={d3,d4,d5}

B4

NB) = U ouT(P]
P iz a pradecessor of B

OUT(B] = GEN[B]| J (IN[B] - KILL[E))




RD Analysis: An example

Pass 2

B1

GEN[B2]={d4,d5)
KILL[B2]={d1,d2,d7}
IN[B2]={d1,d2,d3,dT}
OUT[B2]={d3,d4,d5)}

GEN[B3]={d6)}
KILL[B3]={d3)

d6: a :=u2| B3

IN[B3]={d3,d4,d5) \
OUT[B3]={d4,d5,d6)

GEN[B4]={d7}
KILL[B4]={d1,d4}
IN[B4]=0
OUT[B4]={dT}

entry

d1:i:=m-1
d2: j:=n

d3:a:=ul

d4: i = i+1
d5: j :=j-1

d7:1:= a+]

exit

GEN[B1]={d1,d2,d3}
KILL[B1]={d4,d5,d6,d7}
IN[B1]=®, OUT[B1]={d1,d2,d3)

GEN[B4]={dT}
KILL[B4]={d1,d4}
IN[B4]={d3,d4,d5,d6)
UT[B4]={d3,d5,d6,d7}

N[B) = U  ourp

P iz a predecessor of B
ouT[8] = GEN[B]| ] (IN[B] - KILL[E])

B4




RD Analysis: An example

Final entry

d1: i :=m-1 | GEN[B1]={d1,d2,d3}
B1 |d2:j:=n KILL[B1]={d4,d5,d6,dT7}
d3: a .=ul IN[B1]='¢|', UUT[E1]={d1,d2,d3}

GEN[B2]={d4,d5} :
KILL[B2]={d1,d2,d7} |d4:i:
IN[B2]={d1,d2,d3,d5,d6,d7} [d3:]:

OUT[B2]={d3,d4,d5,d6} Adapted from the
“Dragon Book”,
GEN[B3]={d6} [g6: a:=uz| B3 A-W, 1986
KILL[B3]={d3}
IN[B3]={d3,d4,d5,d6} \
OUT[B3]={d4,d5,.d6}
GEN[B4]={dT} Ll
KILL[B4]={d1,d4} IN|B] = U OuT|P]
IN[B4]={d3,d4,d5,d6) = P is a predecessar of B
OUT[B4]={d3,d5,d6,d7} OUT|B] = GEN[B]| ] (IN[B] — KILL[B])



RD algorithm

1) OUT[ENTRY] = 0;
2) for (each basic block B other than ENTRY) OUT[B] = 0
3) while (changes to any OUT occur)

4) for (each basic block B other than ENTRY) {

5) IN[B] = UP a predecessor of B OUT[P};

6) OUT[B] = genp U (IN[B] — killg);

Block B | out[B]° | IN[B]' | out[B]' | IN[B]*> | ouT[B]?
By 000 0000 | 000 0000 | 111 0000 | 000 0000 | 111 0000
By 000 0000 | 111 0000 | 001 1100 | 111 0111 | 001 1110
By 000 0000 | 001 1100 | 000 1110 | 001 1110 | 000 1110
By 000 0000 | 001 1110 | 001 0111 | 001 1110 | 001 0111
EXIT 000 0000 | 001 0111 | 001 0111 | 001 0111 | 001 0111




