
Computer Science and Engineering Department
Indian Institute of Technology Kharagpur

Compilers Laboratory: CS39003
3rd Year CSE: 5th Semester

Assignment – 6: Target Code Generator for tinyC Marks: 100
Assign Date: October 17, 2023 Submit Date: 23:55, November 01, 2023

1 Preamble – tinyC

The Lexical Grammar (Assignment 3) and the Phase Structure Grammar (As-

signment 4) for tinyC have already been defined as subsets of the C language
specification from the International Standard ISO/IEC 9899:1999 (E). Finally,

three address code (TAC) structure and a further subset of tinyC has been spec-

ified (Assignment 5) for translating the input tinyC program to TAC quad array,
a supporting symbol table, and other auxiliary data structures.

In this assignment you will write a target code translator from the TAC quad
array (with the supporting symbol table, and other auxiliary data structures)
to the assembly language of x86-64. The translation is now machine-specific
and your generated assembly code would be translated with the gcc assembler
to produce the final executable codes for the tinyC program.

2 Scope of Target Translation

� For simplicity restrict tinyC further:

1. Skip shift and bit operators.

2. Support only void, int, float, and char types. Skip double type.

3. Support only one–dimensional arrays.

4. Support only void, int, float, char, void*, int*, float*, and char*
types for returns types of functions.

5. No type conversion to be supported.

� For I/O, provide a library (as created in Assignment 2) using in-line as-
sembly language program of x86-64 along with syscall for gcc assembler.:

– int printStr(char *) – prints a string of characters. The parame-
ter is terminated by ‘\0’. The return value is the number of characters
printed.

– int printInt(int n) – prints the integer value of n (no newline).
It returns the number of characters printed.

– int readInt(int *eP) – reads an integer (signed) and returns it.
The parameter is for error (ERR = 1, OK = 0). You may use ERR =

0, OK = 1, if you have used this convention in your assignment 2.
Your convention will be considered from your myl.h file.

– int printFlt(float n) – prints the floating value of n (no newline).
It returns the number of characters printed.

– int readFlt(float *eP) – reads a floating (signed) and returns it.
The parameter is for error (ERR = 1, OK = 0). You may use ERR =

0, OK = 1, if you have used this convention in your assignment 2.
Your convention will be considered from your myl.h file.

1



The header file myl.h of the library will be as follows:

#ifndef _MYL_H

#define _MYL_H

#define ERR 1

#define OK 0

int printStr(char *);

int printInt(int);

int readInt(int *eP); // Usual meaning as specified in Assignment #2

int printFlt(float);

int readFlt(float *eP); // Usual meaning as specified in Assignment #2

#endif

3 Design of the Translator

The steps for target code generation were outlined in Target Code Generation
lecture presentations. In this assignment, however, you do not need to deal with
any machine-independent or machine-specific optimization. Hence the transla-
tion comprises the following major steps only:

Memory Binding This deals with the design of the allocation schema of variables (including
parameters and constants) that associates each variable to the respective
address expression or register. This needs to handle the following:

� Handle local variables, parameters, and return value for a function.
These are automatic and reside in the Activation Record (AR) of the
function. Various design schema for AR are possible based on the
calling sequence protocol. A sample AR design could be as follows:

Offset Stack Item Responsibility

–ve Saved Registers Callee Saves & Restores
–ve Callee Local Data Callee defines and uses
0 Base Pointer of Caller Callee Saves & Restores

Return Address Saved by call, used by ret
+ve Return Value Callee writes, Caller reads
+ve Parameters Caller writes, Callee reads

Activation Record Structure with Management Protocol

– Offset’s in the AR are with respect to the Base Pointer of Callee.

– Return Value can alternatively be returned through a register
(like accumulator).

– The AR will be populated from the Symbol Table of the function.

– Symbol Tables of nested blocks will be flattened and its variables
allocated within the Symbol Table (and hence the AR) of the
function where there occur in. Necessary name mangling will
be performed to to take care of same lexical name for different
variables in different nested scopes.

� Handle global variables (note that local static variables are not al-

lowed in tinyC) as static and generate allocations in static area. This
will be populated from global symbol table (ST.gbl).

� Generate Constants from Table of Constants – handle string con-
stants as assembler symbols in DATA SEGMENT and integer con-
stants as parts of target code (TEXT SEGMENT)

� Register Allocations & Assignment: Create memory binding for vari-
ables in registers:

– After a load / store the variable on the activation record and the
register have identical values

– Registers can be used to store temporary computed values

– Register allocations are often used to pass int or pointer param-
eters

– Register allocations are often used to return int or pointer values

2



Code Translation This deals with the translation of 3–Address quad’s to x86-64 assembly
code. This needs to handle:

� Generation of Function Prologue – few lines of code at the beginning
of a function, which prepare the stack and registers for use within
the function.

� Generate Function Epilogue – appears at the end of the function, and
restores the stack and registers to the state they were in before the
function was called.

� Map 3–Address Code to Assembly – to translate the function body
do:

– Choose optimized assembly instructions for every expression, as-
signment and control quad.

– Use algebraic simplification & reduction of strength for choice of
assembly instructions from a quad.

– Use Machine Idioms (like inc for i++ or ++i in place of add
reg, 1).

Note: Refer to Target Code Generation lecture presentations for details.

Target Code Integrate all the above code into an Assembly File for gcc assembler.

4 The Assignment

1. Write a target code (x86-64) translator from the 3-Address quad’s gen-

erated from the flex and bison specifications of tinyC (with restrictions

as mentioned in Section 2). Assume that the input tinyC file is lexically,
syntactically, and semantically correct. Hence no error handling and / or
recovery is expected.

2. Prepare a Makefile to compile and test the project.

3. Prepare test input files ass6 roll test<number>.c to test the target code
translation and generate the translation output in ass6 roll <number>.asm.

4. Name your files as follows:

File Naming

Flex Specification ass6 roll.l
Bison Specification ass6 roll.y
Data Structures (Class Definitions) and
Global Function Prototypes

ass6 roll translator.h

Data Structures, Function Implementa-
tions and 3–Address Translator

ass6 roll translator.cxx

Target Translator and x86-64 Transla-
tor main()

ass6 roll target translator.cxx

Test Inputs ass6 roll test<number>.c
3–Address Test Outputs ass6 roll quads<number>.out
Test Outputs ass6 roll <number>.asm

5. Prepare a tar-archive with the name ass6 roll.tar containing all the files
and upload to Moodle.

3



5 Credits

Design of Memory Binding: 15 + 5 + 5 + 5 + 10 = 40
Handling of Activation Records
Handling of Nested Symbol Tables
Handling of Static Memory & Binding
Handling of Constants
Handling of Register Allocation & Assignment

Design of Code Translation: 5 + 5 + 10 = 20
Handling of Prologue
Handling of Epilogue
Handling of Function Body

Design of Target Code Management: 10
Integration of translated codes into an assembly file

Design of Test files and correctness of outputs: 10 + 10 = 20
Test at least 5 i/p files covering all rules
Shortcoming and / or bugs, if any, should be highlighted

Integrated interface of the tinyC Compiler: 10

4


