Growth models



How do Power law DDs arise?

One Possible Answer: The Barabasi-Albert Model of Preferential
Attachment (Rich gets Richer)

GROWTH :
Starting with a small number of nodes (n,) at every
timestep we add a new node with m (<=n,) edges
(connected to the nodes already present in the
system). K

(2) PREFERENTIAL ATTACHMENT : TI(K.) = ——

i
The probability 1 that a new node will be connected 2 J- k.
to node i depends on the connectivity k; of that node
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Time evolution of degree

Scale-Free Model




Time evolution of degree
(Preferential attachment)

Continues time, mean field approximation:

ki(t + o0t) = ki(t) + mll(k;)ot

dki(t) B ki mk;
e mll(kj) = mzf K amt
dki(t)  ki(t)
dt 2t
initial conditions:  k;(i) = m t=i. k=m
Ki(8) dk; Edt
[, %=l =

Solution:

ki(t) = m (i)m
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Time evolution of degree
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Random attachment

Continues time approximation (M(k;) = ﬁ ~ %)
ki(t + o0t) = ki(t) + mll(k;)ot
m _
J{{;(I + 517) — k;‘(t) + ?ﬂt

Differential equation:

with initial conditions: ki(t =1i)=m

Solution:
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Time evolution of degree

Scale-Free Model




Time evolution of degree (random)
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Snapshot

_ " = =50
& W =100
W =200 ‘\
= Fix the timestep
= = At time 200, degree of a node that joins at i= 100
=
8 t=200

0 50 100 150 200 '

Degree of a node at t, which joined at time |

r
k;(r):m(l—l—log (T)) m =20, t = 50,100,200, i <t



Preferential attachment

Time evolution of a node degree

Find all the nodes at time t, f(-[t) . (t) 1/2
whose degree is <= k (say 40) ASVE

Nodes with k;(t) < k:

| =50
= =100
m =200

0 20 40 60 8 100 120

. m?
| = Fr
Fraction of nodes with k;(t) < k (CDF):
n+t—i ng+t—m’t/k? m?
— : < — — ~] — —
F(k) = P(ki(t) < k) —— P 1 2
Distribution function:
2
Pk) = L F(ky = 2" Power law

dk k3
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Fix the timestep

ki)

At time 200, degree of a node that joins at i= 100
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Random attachment

Find all nodes that at time t has degree less than k, ki(t) < k7
(for example k;(t) < 40)

ki(t) = (th%)gk
all) < Ao
E- < Ek;m
/
T remT_jr

Fraction of nodes with degrees k;(t) < k (CDF):

np+t—1 ng +t—te m m—k
F(k) = P(ki(t) < k) = —" — — ~1—em
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Degree distribution
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Preferential attachment




Discrete time solution
Rate equation



How do Power law DDs arise?

One Possible Answer: The Barabasi-Albert Model of Preferential
Attachment (Rich gets Richer)

GROWTH :
Starting with a small number of nodes (m,) at every
timestep we add a new node with m (<=m,) edges
(connected to the nodes already present in the
system).

k.
(2) PREFERENTIAL ATTACHMENT : TI(k.) = ——

The probability 1 that a new node will be connected 2 j K.
to node i depends on the connectivity k; of that node
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Preferential attachment

The probability that a new edge attaches to a vertex

of degree k—the equivalent of Eq. (58])—is
kpi kpi
- =, 65
dopkpr  2m (65)

Now the mean number of vertices of degree k that gain
an edge when a single new vertex with m edges is added
is m x kpr/2m = %Fﬂpk: independent of m. The num-



Barabasi-Albert Model

= Joining of a node results
= shift in the k degree nodes to (k+1)
= shift in the (k-1) degree nodes to k

Number of
nodes of
@ degree k @
Number of nodes
Number of ) —>
: fd k+1
nodes of influx outflux O Cc9ree

degree (k-1)



Barabasi-Albert Model

ber np, of vertices with degree k thus decreases by this
same amount, since the vertices that get new edges be-
come vertices of degree k£ + 1. The number of vertices
of degree k also increases because of influx from vertices
previously of degree &k — 1 that have also just acquired
a new edge, except for vertices of degree m, which have
an influx of exactly 1. If we denote by pj ., the value of
pr. when the graph has n vertices, then the net change in
np per vertex added is

Rate Equation or Master equation:
Discrete time framework



{” T 1)Pk._n+1 — NPkn = %{‘2 — 1)191:—1,11 - %kﬁk,n: {ﬁﬁj

for k > m, or

(’-"1 T I}Pm,n—l—l — NPmn = 1 — %"_’”Pm,n: {:ET)

for kK = m, and there are no vertices with k& < m.

Looking for stationary solutions pj n41 = pr.n = pr as
before, the equations equivalent to Eq. (61)) for the model
are

o = { %{Fh — )pe_1 — %kp;g for k > m, (68)
1 — %-mpm for k = m.

Rearranging for p; once again, we find p,,, = 2/(m + 2)
and pr = pr—1(k —1)/(k +2), or [123, 249]

(k= 1)(k—-2)...m _ 2m(m+1)
PP+ 2)k+1). . m+3)"" " k+2)(k+ k"




Barabasi-Albert Model

=)
In the limit of large k£ this gives a power law degree
distribution pg ~ k3, with only the single fixed expo-
nent a = 3. A more rigorous derivation of this result has
been given by Bollobés et al. [65].




Price’s model

Directed graph
Citation network

Consider a directed graph of n vertices, such as a ci-
tation network. Let pi be the fraction of vertices in the
network with in-degree k, so that ) , pr = 1. New ver-
tices are continually added to the network, though not
necessarily at a constant rate. Each added vertex has a
certain out-degree—the number of papers that it cites—
and this out-degree is fixed permanently at the creation
of the vertex. The out-degree may vary from one vertex



In the simplest form of ecumulative advantage process
the probability of attachment of one of our new edges to
an old vertex—i.e., the probability that a newly appear-
ing paper cites a previous paper—is simply proportional
to the in-degree k& of the old vertex. This however imme-
diately gives us a problem, since each vertex starts with
in-degree zero, and hence would forever have zero proba-
bility of gaining new edges. To circumvent this problem,
Price suggests that the probability of attachment to a
vertex should be proportional to & + ky, where kp is a
constant. Although he discusses the case of general kg,
all his mathematical developments are for ky = 1, which
he justifies for the citation network by saying that one
can consider the initial publication of a paper to be its
first citation (of itself by itself). Thus the probability of
a new citation is proportional to k& + 1.

The probability that a new edge attaches to any of the
vertices with degree £ is thus

(k+Vpe  _ (k+Dpi

> plk 4+ 1)pg m+ 1 (58)




Rate equations

The mean number of new citations per vertex added is
simply m., and hence the mean number of new citations to
vertices with current in-degree k is (k + 1)ppm/(m + 1).

Tt
{ﬂ T ]-:]pk._n—l—l — NPg.n = [kp.l:—l.n - (k T ]-:]pk.,n} m——l—l"
(59)
for k > 1. or
T
(n+1)pont1 —npon=1— Pon —— 7> (60)

for &k = 0.



B { kpr—1 — (k+ 1)pr|m/(m+1) for k > 1,
PE=11- pom/(m + 1) for k = 0.
(61)
Rearranging, we find pp = (m +1)/(2m + 1) and pp =

pr—1k/(k+2+1/m) or (z— 1)y — 1)
B(miy}= 01
k(k—1)...1 (z+y-1)

(k+2+1/m)...3+1/m) "
= (14+1/m)B(k+1,24+1/m), (62)
where B(a,b) = I'(a)l'(b)/T'(a + b) is Legendre’s beta-

function, which goes asymptotically as a7 for large a
and fixed b, and hence

p ~ k—(2FL/m), (63)

In other words, in the limit of large n, the degree distri-
bution has a power-law tail with exponent o =2+ 1/m.

PrE =



