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Community Identification/Clustering

⚫ Groups of nodes that are densely connected 
amongst themselves while being sparsely
connected to the rest of the network

Each component 
is a communityA densely-knit  

community 

Definition of a community 
can be subjective.



Might not be easy to see through ...



Computational Metods

⚫ Agglomerative

– make an empty graph (N nodes, 0 edges)

– add edges into empty graph maximizing 
something in original network

⚫ Divisive

– cut edges in prescribed order until 
communities separate

⚫ Spectral

– split graph based on 
eigenvalues/eigenvectors of Graph Laplacian



Network communities 



Similarity Measures

⚫ Choosing (dis)similarity measures – a critical step 
in community finding/clustering

⚫ Recall that the goal is to group together “similar”
data – but what does this mean?

⚫ No single answer – it depends on what we want to 
find or emphasize in the data; this is one reason 
why clustering is an “art”

⚫ The similarity measure is often more important than 
the clustering algorithm used – don’t overlook this 
choice!



Similarity based clustering 



Similarity matrix



Hierarchical clustering 



Agglomerative Method

⚫ Start with every data point in a separate cluster

⚫ Keep merging the most similar pairs of data 
points/clusters until we have one big cluster left

⚫ This is called a bottom-up or agglomerative
method



Hierarchical clustering 



Hierarchical clustering 



Hierarchical clustering 



Hierarchical clustering 



Hierarchical clustering 



Community Detection Algorithm

Divisive Method (Newman-Girvan Algo)

Calculate the edge betweenness for all edges in the 
network.

Remove the edge with the highest betweenness.

Recalculate betweennesses for all edges affected by the 
removal.

Repeat until no edges remain.



Divisive Method

Edge betweenness

betweenness(e
ij
) = number of times e

ij
appears in all shortest paths

High betweenness edges are more 
“central”

Community Detection Algorithm



Betweenness Centrality

⚫ Tries to determine how important is a node in a 

network

⚫Degree of a node doesn’t only determine its 

importance in the network – do you agree???

⚫ The node can be on a bridge centrally between 

two regions of the network!!



Betweenness Centrality

⚫Centrality of v: Ratio: the number of shortest paths 

that pass through v Vs total number of shortest 

paths from node s to node t.

v



In Execution

0 cuts 100 cuts

500 cuts120 cuts
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Community Detection

Illustration of community detection using dendrogram 
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Modularity

Modularity maximization



How good is a community

⚫ Communities are dense compared to random 
case

⚫ Measured in terms of modularity

⚫ Total number of in-community edges –
expected number of edges if there is no 
community structure



Modularity
Modularity measures the group interactions compared with the 

expected random connections in the group 

In a network with m edges, for two nodes with degree di and dj , 

expected random connections between them are

The interaction utility in a group:

Modularity
Expected Number of 

edges between 6 and 9 
is 

5*3/(2*17) = 15/34 

25

Bounds between [-0.5: +1] 

Apriori communities

NULL model



Edge betweenness

betweenness(e
ij
) = number of times e

ij
appears in all shortest paths

High betweenness edges are more 
“central”

Community Detection Algorithm



Betweenness Centrality

⚫Centrality of v: Ratio: the number of shortest paths 

that pass through v Vs total number of shortest 

paths from node s to node t.

v



• Finding shortest path between node pairs

• n nodes and m edges

• Floyd–Warshall algorithm – O(n3)

• Case 1: Only one shortest path between any 
node pair

• BFS tree shows those paths

Computing edge betweenness

• Compute shortest path between (s,d) using BFS (O(m))
Repeat for all pairs  O(mn2)  



Breadth first search

Construct BFS tree



Computing edge betweenness

Use this tree to calculate the contribution 
of each edge to betweenness 

Step 1: Find the leaves => No shortest paths to
other nodes pass through them.

Assign score 1 to each such leave edge

Step 2: Starting from farthest edges, walk upwards

Assign score v to each edge
1+ (sum of the scores on the neighboring edges 
immediately below it) 

Result score v for each edge: 
Betweenness counts of the paths from source S

Repeat this process for all S node and sum up 
the scores for each edge

Results full betweenness score for shortest 
paths of all pairs 

Case 1: Only one shortest path between any 
node pair

X

YZ

v=1

v=2
v=4

v=2

v=1



The breadth-first search and the process of working 
up through the tree both take worst-case time O(m) 

there are n vertices total, so the entire calculation 
takes time O(mn) as claimed.

Computing edge betweenness



Computing edge betweenness
Case 2: Multiple shortest paths between any 
node pair

Key idea: If there are three shortest paths between (a,b) passing through  
an edge e, each will contribute 1/3 to edge betweenness of e

First perform the BFS on source S 
and obtain the graph

The weight on a vertex i represents the 
number of distinct paths from S to i 



S

w_i

w_j

i

j

w_j different paths ----- contributes to (i,j) = 1/w_j

Calculation of edge weight (i,j)

S to i : w_i different paths

Paths: S to j via i, results w_i different paths

So contribution of (i,j)=w_i/w_j

Computing edge betweenness

fraction of shortest paths from j through i to s 



Computing edge betweenness

(1+ sum of the scores on the neighboring edges 
immediately below it)*w_i/w_j

(1+2/3)*1/2=5/6

(1+1+1/3)*11+



Computing edge betweenness



Kernighan and Lin heuristic

“An Efficient Heuristic Procedure for Partitioning 
Graphs” B. W. Kernighan and S. Lin, The Bell 
System Technical Journal, 49(2):291-307, 1970



Idea of KL Algorithm

Start with any initial partition X and Y.

A pass or iteration means exchanging each vertex A  X 
with each vertex B  Y exactly once:

1. For i := 1 to n do

From the unlocked (unexchanged) vertices,

choose a pair (A,B) s.t. gain(A,B) is largest.

Exchange A and B. Lock A and B.

Let gi = gain(A,B).

2. Find the k s.t. G=g1+...+gk is maximized.

3. Switch the first k pairs.

Repeat the pass until there is no improvement (G=0).

The gain function = (number of edges that lie within the two groups) – ( the number of 
edges that lie between them)



Kernighan-Lin Algorithm (1)

Given:
Initial weighted graph G with

V(G) = { a, b, c, d, e, f } 
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Start with any partition of 
V(G) into X and Y, say 

X = { a, c, e }  
Y = { b, d, f }



KL algorithm (2a)

cut-size = 3+1+2+4+6 = 16

Ga = Ea – Ia = – 3  (= 3 – 4 – 2) 
Gc = Ec – Ic =    0  (= 1 + 2 + 4 – 4 – 3) 
Ge = Ee – Ie = + 1  (= 6 – 2 – 3) 
Gb = Eb – Ib = + 2  (= 3 + 1 –2) 
Gd = Ed – Id = – 1  (= 2 – 2 – 1) 
Gf = Ef – If = + 9  (= 4 + 6 – 1) 

Compute the gain values of moving node 
x to the others set:

Gx = Ex - Ix

Ex = cost of edges connecting node x 
with the other group (exter)
Ix = cost of edges connecting node x 
within its own group (intra)
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X = { a, c, e }  
Y = { b, d, f }



KL algorithm (2b)

Ga = Ea – Ia = – 3  (= 3 – 4 – 2) 
Gb = Eb – Ib = + 2  (= 3 + 1 – 2) 
gab = Ga + Gb – 2cab = – 7 (=  – 3 + 2 – 2.3) 

Cost saving when exchanging a and b is 
essentially Ga + Gb

However, the cost saving 3 of the direct 
edge was counted twice. But this edge 
still connects the two groups

Hence, the real “gain” (i.e. cost saving) 
of this exchange is  gab = Ga + Gb - 2cab
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X = { a, c, e }  
Y = { b, d, f }



KL algorithm (3)
Ga = –3   Gb = +2 
Gc =   0  Gd = –1
Ge = +1   Gf = +9

gab = Ga + Gb – 2wab = –3 + 2 – 23 = –7 
gad = Ga + Gd – 2wad = –3 – 1 – 20 = –4 
gaf = Ga + Gf – 2waf  = –3 + 9 – 20 = +6 
gcb = Gc + Gb – 2wcb = 0 + 2 – 21   =   0 
gcd = Gc + Gd – 2wcd = 0 – 1 – 22   = –5 
gcf = Gc + Gf – 2wcf   = 0 + 9 – 24   = +1 
geb = Ge + Gb – 2web = +1 + 2 – 20 = +3 
ged = Ge + Gd – 2wed = +1 – 1 – 20 =   0 
gef = Ge + Gf – 2wef   = +1 + 9 – 26 = –2 

Compute all the gains

a

c

b

d

e f

3

1

2

4

3 4

6

2

1

2

cut-size = 16

Pair with 
maximum gain



KL algorithm (4)
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cut-size = 16 – 6 = 10
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cut-size = 16

Exchange nodes a
and f

gaf = Ga + Gf – 2caf  = –3 + 9 – 20 = +6 

Then lock up 
nodes a and f



KL algorithm (5)
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cut-size = 10
Update the G-values of unlocked nodes

Ga = –3   Gb = +2 
Gc =   0  Gd = –1
Ge = +1   Gf = +9

G’c = Gc + 2cca – 2ccf = 0 + 2(4 – 4) = 0 
G’e = Ge + 2cea – 2cef = 1 + 2(2 – 6) = –7 
G’b = Gb + 2cbf – 2cba= 2 + 2(0 – 3) = –4
G’d = Gd + 2cdf – 2cda = –1 + 2(1 – 0) = 1

X’ = { c, e }  
Y’ = { b, d }



KL algorithm (6)
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cut-size = 10

G’c =   0  G’b = –4
G’e = –7 G’d = +1X’ = { c, e }  

Y’ = { b, d }

Compute the gains

g’cb = G’c + G’b – 2ccb = 0 – 4 – 21   = –6 
g’cd = G’c + G’d – 2ccd = 0 + 1 – 22   = –3 
g’eb = G’e + G’b – 2ceb = –7 – 4 – 20 = –11 
g’ed = G’e + G’d – 2ced = –7 + 1 – 20 = –6 

Pair with maximum gain 
(can also be neative)



KL algorithm (7)
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cut-size = 10

Exchange nodes c
and d

Then lock up 
nodes c and d
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cut-size = 10 – (–3) = 13

g’cd = G’c + G’d – 2ccd  = 0 + 1 – 22   = –3 



KL algorithm (8)

cut-size = 13
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g”eb = G”e + G”b – 2ceb  = –1 – 2 – 20   = –3 

G’c =   0  G’b = –4
G’e = –7 G’d = +1

X” = { e }  
Y” = { b }

Update the G-values of unlocked nodes

G”e = G’e + 2ced – 2cec = –7 + 2(0 – 3) = –1 
G”b = G’b + 2cbd – 2cbc= –4 + 2(2 – 1) = –2

Compute the gains
Pair with max. gain 

is (e, b)



KL algorithm (9)

Summary of the Gains…

g = +6

g + g’ = +6 – 3 = +3

g + g’ + g” = +6 – 3 – 3 = 0

Maximum Gain = g = +6

Exchange only nodes a and f.  

End of 1 pass.

❑Consider this as initial state 

❑Repeat the Kernighan-Lin.



Idea of KL Algorithm

Start with any initial partition X and Y.

A pass or iteration means exchanging each vertex A  X 
with each vertex B  Y exactly once:

1. For i := 1 to n do

From the unlocked (unexchanged) vertices,

choose a pair (A,B) s.t. gain(A,B) is largest.

Exchange A and B. Lock A and B.

Let gi = gain(A,B).

2. Find the k s.t. G=g1+...+gk is maximized.

3. Switch the first k pairs.

Repeat the pass until there is no improvement (G=0).



Louvain algorithm 
Start with the weighted network of N nodes 

Introduce “pass”-----phase 1 and phase 2

Modularity gain Q=Q(t)-Q(t-1) 

No positive gain, 
i stays in its original community

1. One node may be considered multiple times
2. Stops when local maxima is attained (no 

individual move can improve the Q) 



Louvain algorithm 

Building a new network

Links between nodes in same community leads to self loop

Once we complete the phase 2, reapply the phase 1 on the new graph

Pass2, Pass 3……until maximum Q is attained  

Number of meta communities deceases at each pass ..

Most of the computing time is used in phase 1 



Communities of communities are built during the process
Height of the hierarchy is determined by the number of passes

Louvain algorithm 



Louvain algorithm 



Fast and high modularity obtained Fast 

Louvain algorithm 



Belgian phone call network 
2.6M customers, weighted links --- total phone calls during 6 months

Six levels 
Top level-------261 communities (>100 
customers, >75% of total population) 

Homogeneity of a community is measured 
by the fraction of people speaking in 
dominant language 

Most of the communities are monolingual 

36 communities of size>10000
Except one,  all these communities have 
>85% speaking in one language



Sub communities are closely connected to
each other 
They also composed of heterogeneous groups

Crucial for integration of the country 

Presence of German and English

66% German is one community

French people more densely connected 

Different social behavior 

French Dutch 



Code is available 



Overlapping communities 



Overlapping communities 



Overlapping communities 



Clique percolation

• Our community definition is based on the 
observation that a typical member in a community 
is linked to many other members, but not 
necessarily to all other nodes in the community

• In other words, a community can be interpreted as 
a union of smaller complete (fully connected) 
subgraphs that share nodes.

• such complete subgraphs are called k-cliques, where k 
refers to the number of nodes in the subgraph



k-clique template rolling

k-clique template: A k-clique template can be thought 
of as an object that is isomorphic to a complete 
graph of k nodes. 

Such a template can be placed onto any k-clique of 
the network, and rolled to an adjacent k-clique by 
relocating one of its nodes and keeping its other k-1 
nodes fixed. 

Thus, the k-clique-communities of a graph are all 
those subgraphs that can be fully explored by rolling 
a k-clique template in them but cannot be left by this 
template.



K-clique community 



Special cases

The k-clique-communities of a network at k = 2 
are equivalent to the connected components

v

K=3

K=2
Series of shared nodes

Series of shared edges



• k-clique chain: the union of a sequence of 
adjacent k-cliques

• k-clique connectedness: two k-cliques are k-
clique-connected if they are parts of a k-clique 
chain. 

• k-clique-communities are equivalent to the k-
clique connected components of the network.

K-clique community 



k-clique template rolling

k-clique template: A k-clique template can be thought 
of as an object that is isomorphic to a complete 
graph of k nodes. 

Such a template can be placed onto any k-clique of 
the network, and rolled to an adjacent k-clique by 
relocating one of its nodes and keeping its other k-1 
nodes fixed. 

Thus, the k-clique-communities of a graph are all 
those subgraphs that can be fully explored by rolling 
a k-clique template in them but cannot be left by this 
template.



K-clique percolation 

first extracts all complete subgraphs of the network that 

are not parts of larger complete subgraphs

In this symmetric matrix each row (and column) represents a clique 

the matrix elements are equal to the number of common nodes between the 

corresponding two cliques 

(Note that the intersection of two cliques is always a complete subgraph.)

Diagonal entries are equal to the size of the clique. 

cliques

Overlapping nodes 

between cliques



These components can be found by erasing (i) every off-
diagonal entry smaller than k-1 and (ii) every diagonal 
element smaller than k in the matrix, 

Replacing the remaining elements by 1

Carrying out a component analysis of this matrix

The k-clique-communities for a given value of k are 
equivalent to 

such connected clique components in which the 
neighbouring cliques are linked to each other by at 
least k-1 common nodes.

K-clique percolation 



K-clique percolation



Mixing pattern



Mixing pattern



Assortative mixing

The amount of assortative mixing in a network can be characterized by measuring
how much of the weight in the mixing matrix falls on the diagonal, and how much
off it.

Let us define eij to be the fraction of all edges in a network that join a vertex of type 
i to a vertex of type j.

Ends of an edge always attach to one man and one woman, we also specify which index
corresponds to which type of end, which makes e asymmetric



Friendship network

ai

bi



where ai and bi are the fraction of each type of end of an edge that is attached to
vertices of type i

Assortative mixing



Assortativity leads to community 
formation

Degree distribution p(k)

Model

Graph

Apply community detection algo



Type i
Type j

Type k

pk(i)

pk(j)

pk(k)

z(i)

z(j)

z(k)



Type i
Type j

Type k

z(i)

z(j)

z(k)

e(i,j)
m(i)

m(j)

m(k)

Compute m(i), m(j) etc



Type i
Type j

Type k

z(i)

z(j)

z(k)

e(i,j)
m(i)

m(j)

m(k)



Type i

z(i)

m(i)




