
Community detection

Network communities

Network communities

Community Identification/Clustering

⚫ Groups of nodes that are densely connected
amongst themselves while being sparsely
connected to the rest of the network

Each component
is a communityA densely-knit

community

Definition of a community
can be subjective.

Might not be easy to see through ...

Computational Metods

⚫ Agglomerative

– make an empty graph (N nodes, 0 edges)

– add edges into empty graph maximizing
something in original network

⚫ Divisive

– cut edges in prescribed order until
communities separate

⚫ Spectral

– split graph based on
eigenvalues/eigenvectors of Graph Laplacian

Network communities

Similarity Measures

⚫ Choosing (dis)similarity measures – a critical step
in community finding/clustering

⚫ Recall that the goal is to group together “similar”
data – but what does this mean?

⚫ No single answer – it depends on what we want to
find or emphasize in the data; this is one reason
why clustering is an “art”

⚫ The similarity measure is often more important than
the clustering algorithm used – don’t overlook this
choice!

Similarity based clustering

Similarity matrix

Hierarchical clustering

Agglomerative Method

⚫ Start with every data point in a separate cluster

⚫ Keep merging the most similar pairs of data
points/clusters until we have one big cluster left

⚫ This is called a bottom-up or agglomerative
method

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Community Detection Algorithm

Divisive Method (Newman-Girvan Algo)

Calculate the edge betweenness for all edges in the
network.

Remove the edge with the highest betweenness.

Recalculate betweennesses for all edges affected by the
removal.

Repeat until no edges remain.

Divisive Method

Edge betweenness

betweenness(e
ij
) = number of times e

ij
appears in all shortest paths

High betweenness edges are more
“central”

Community Detection Algorithm

Betweenness Centrality

⚫ Tries to determine how important is a node in a

network

⚫Degree of a node doesn’t only determine its

importance in the network – do you agree???

⚫ The node can be on a bridge centrally between

two regions of the network!!

Betweenness Centrality

⚫Centrality of v: Ratio: the number of shortest paths

that pass through v Vs total number of shortest

paths from node s to node t.

v

In Execution

0 cuts 100 cuts

500 cuts120 cuts

31 2 4 5 6

Community Detection

Illustration of community detection using dendrogram

0.3

0.41

0.35

Modularity

Modularity maximization

How good is a community

⚫ Communities are dense compared to random
case

⚫ Measured in terms of modularity

⚫ Total number of in-community edges –
expected number of edges if there is no
community structure

Modularity
Modularity measures the group interactions compared with the

expected random connections in the group

In a network with m edges, for two nodes with degree di and dj ,

expected random connections between them are

The interaction utility in a group:

Modularity
Expected Number of

edges between 6 and 9
is

5*3/(2*17) = 15/34

25

Bounds between [-0.5: +1]

Apriori communities

NULL model

Edge betweenness

betweenness(e
ij
) = number of times e

ij
appears in all shortest paths

High betweenness edges are more
“central”

Community Detection Algorithm

Betweenness Centrality

⚫Centrality of v: Ratio: the number of shortest paths

that pass through v Vs total number of shortest

paths from node s to node t.

v

• Finding shortest path between node pairs

• n nodes and m edges

• Floyd–Warshall algorithm – O(n3)

• Case 1: Only one shortest path between any
node pair

• BFS tree shows those paths

Computing edge betweenness

• Compute shortest path between (s,d) using BFS (O(m))
Repeat for all pairs O(mn2)

Breadth first search

Construct BFS tree

Computing edge betweenness

Use this tree to calculate the contribution
of each edge to betweenness

Step 1: Find the leaves => No shortest paths to
other nodes pass through them.

Assign score 1 to each such leave edge

Step 2: Starting from farthest edges, walk upwards

Assign score v to each edge
1+ (sum of the scores on the neighboring edges
immediately below it)

Result score v for each edge:
Betweenness counts of the paths from source S

Repeat this process for all S node and sum up
the scores for each edge

Results full betweenness score for shortest
paths of all pairs

Case 1: Only one shortest path between any
node pair

X

YZ

v=1

v=2
v=4

v=2

v=1

The breadth-first search and the process of working
up through the tree both take worst-case time O(m)

there are n vertices total, so the entire calculation
takes time O(mn) as claimed.

Computing edge betweenness

Computing edge betweenness
Case 2: Multiple shortest paths between any
node pair

Key idea: If there are three shortest paths between (a,b) passing through
an edge e, each will contribute 1/3 to edge betweenness of e

First perform the BFS on source S
and obtain the graph

The weight on a vertex i represents the
number of distinct paths from S to i

S

w_i

w_j

i

j

w_j different paths ----- contributes to (i,j) = 1/w_j

Calculation of edge weight (i,j)

S to i : w_i different paths

Paths: S to j via i, results w_i different paths

So contribution of (i,j)=w_i/w_j

Computing edge betweenness

fraction of shortest paths from j through i to s

Computing edge betweenness

(1+ sum of the scores on the neighboring edges
immediately below it)*w_i/w_j

(1+2/3)*1/2=5/6

(1+1+1/3)*11+

Computing edge betweenness

Kernighan and Lin heuristic

“An Efficient Heuristic Procedure for Partitioning
Graphs” B. W. Kernighan and S. Lin, The Bell
System Technical Journal, 49(2):291-307, 1970

Idea of KL Algorithm

Start with any initial partition X and Y.

A pass or iteration means exchanging each vertex A  X
with each vertex B  Y exactly once:

1. For i := 1 to n do

From the unlocked (unexchanged) vertices,

choose a pair (A,B) s.t. gain(A,B) is largest.

Exchange A and B. Lock A and B.

Let gi = gain(A,B).

2. Find the k s.t. G=g1+...+gk is maximized.

3. Switch the first k pairs.

Repeat the pass until there is no improvement (G=0).

The gain function = (number of edges that lie within the two groups) – (the number of
edges that lie between them)

Kernighan-Lin Algorithm (1)

Given:
Initial weighted graph G with

V(G) = { a, b, c, d, e, f }

a

c

b

d

e f

3

1

2

4

3 4

6

2

1

2

Start with any partition of
V(G) into X and Y, say

X = { a, c, e }
Y = { b, d, f }

KL algorithm (2a)

cut-size = 3+1+2+4+6 = 16

Ga = Ea – Ia = – 3 (= 3 – 4 – 2)
Gc = Ec – Ic = 0 (= 1 + 2 + 4 – 4 – 3)
Ge = Ee – Ie = + 1 (= 6 – 2 – 3)
Gb = Eb – Ib = + 2 (= 3 + 1 –2)
Gd = Ed – Id = – 1 (= 2 – 2 – 1)
Gf = Ef – If = + 9 (= 4 + 6 – 1)

Compute the gain values of moving node
x to the others set:

Gx = Ex - Ix

Ex = cost of edges connecting node x
with the other group (exter)
Ix = cost of edges connecting node x
within its own group (intra)

a

c

b

d

e f

3

1

2

4

3 4

6

2

1

2

X = { a, c, e }
Y = { b, d, f }

KL algorithm (2b)

Ga = Ea – Ia = – 3 (= 3 – 4 – 2)
Gb = Eb – Ib = + 2 (= 3 + 1 – 2)
gab = Ga + Gb – 2cab = – 7 (= – 3 + 2 – 2.3)

Cost saving when exchanging a and b is
essentially Ga + Gb

However, the cost saving 3 of the direct
edge was counted twice. But this edge
still connects the two groups

Hence, the real “gain” (i.e. cost saving)
of this exchange is gab = Ga + Gb - 2cab

a

c

b

d

e f

3

1

2

4

3 4

6

2

1

2

X = { a, c, e }
Y = { b, d, f }

KL algorithm (3)
Ga = –3 Gb = +2
Gc = 0 Gd = –1
Ge = +1 Gf = +9

gab = Ga + Gb – 2wab = –3 + 2 – 23 = –7
gad = Ga + Gd – 2wad = –3 – 1 – 20 = –4
gaf = Ga + Gf – 2waf = –3 + 9 – 20 = +6
gcb = Gc + Gb – 2wcb = 0 + 2 – 21 = 0
gcd = Gc + Gd – 2wcd = 0 – 1 – 22 = –5
gcf = Gc + Gf – 2wcf = 0 + 9 – 24 = +1
geb = Ge + Gb – 2web = +1 + 2 – 20 = +3
ged = Ge + Gd – 2wed = +1 – 1 – 20 = 0
gef = Ge + Gf – 2wef = +1 + 9 – 26 = –2

Compute all the gains

a

c

b

d

e f

3

1

2

4

3 4

6

2

1

2

cut-size = 16

Pair with
maximum gain

KL algorithm (4)

a

c

b

d

e

f

3

1

2

4

3 4
6

21

2

cut-size = 16 – 6 = 10

a

c

b

d

e f

3

1

2

4

3 4

6

2

1

2

cut-size = 16

Exchange nodes a
and f

gaf = Ga + Gf – 2caf = –3 + 9 – 20 = +6

Then lock up
nodes a and f

KL algorithm (5)

a

c

b

d

e

f

3

1

2

4

3 4
6

21

2

cut-size = 10
Update the G-values of unlocked nodes

Ga = –3 Gb = +2
Gc = 0 Gd = –1
Ge = +1 Gf = +9

G’c = Gc + 2cca – 2ccf = 0 + 2(4 – 4) = 0
G’e = Ge + 2cea – 2cef = 1 + 2(2 – 6) = –7
G’b = Gb + 2cbf – 2cba= 2 + 2(0 – 3) = –4
G’d = Gd + 2cdf – 2cda = –1 + 2(1 – 0) = 1

X’ = { c, e }
Y’ = { b, d }

KL algorithm (6)

a

c

b

d

e

f

3

1

2

4

3 4
6

21

2

cut-size = 10

G’c = 0 G’b = –4
G’e = –7 G’d = +1X’ = { c, e }

Y’ = { b, d }

Compute the gains

g’cb = G’c + G’b – 2ccb = 0 – 4 – 21 = –6
g’cd = G’c + G’d – 2ccd = 0 + 1 – 22 = –3
g’eb = G’e + G’b – 2ceb = –7 – 4 – 20 = –11
g’ed = G’e + G’d – 2ced = –7 + 1 – 20 = –6

Pair with maximum gain
(can also be neative)

KL algorithm (7)

a

c

b

d

e

f

3

1

2

4

3 4
6

21

2

cut-size = 10

Exchange nodes c
and d

Then lock up
nodes c and d

a

d

b

c

e

f

3
1

2

4

3 4
6

2
1

2

cut-size = 10 – (–3) = 13

g’cd = G’c + G’d – 2ccd = 0 + 1 – 22 = –3

KL algorithm (8)

cut-size = 13

a

d

b

c

e

f

3
1

2

4

3 4
6

2
1

2

g”eb = G”e + G”b – 2ceb = –1 – 2 – 20 = –3

G’c = 0 G’b = –4
G’e = –7 G’d = +1

X” = { e }
Y” = { b }

Update the G-values of unlocked nodes

G”e = G’e + 2ced – 2cec = –7 + 2(0 – 3) = –1
G”b = G’b + 2cbd – 2cbc= –4 + 2(2 – 1) = –2

Compute the gains
Pair with max. gain

is (e, b)

KL algorithm (9)

Summary of the Gains…

g = +6

g + g’ = +6 – 3 = +3

g + g’ + g” = +6 – 3 – 3 = 0

Maximum Gain = g = +6

Exchange only nodes a and f.

End of 1 pass.

❑Consider this as initial state

❑Repeat the Kernighan-Lin.

Idea of KL Algorithm

Start with any initial partition X and Y.

A pass or iteration means exchanging each vertex A  X
with each vertex B  Y exactly once:

1. For i := 1 to n do

From the unlocked (unexchanged) vertices,

choose a pair (A,B) s.t. gain(A,B) is largest.

Exchange A and B. Lock A and B.

Let gi = gain(A,B).

2. Find the k s.t. G=g1+...+gk is maximized.

3. Switch the first k pairs.

Repeat the pass until there is no improvement (G=0).

Louvain algorithm
Start with the weighted network of N nodes

Introduce “pass”-----phase 1 and phase 2

Modularity gain Q=Q(t)-Q(t-1)

No positive gain,
i stays in its original community

1. One node may be considered multiple times
2. Stops when local maxima is attained (no

individual move can improve the Q)

Louvain algorithm

Building a new network

Links between nodes in same community leads to self loop

Once we complete the phase 2, reapply the phase 1 on the new graph

Pass2, Pass 3……until maximum Q is attained

Number of meta communities deceases at each pass ..

Most of the computing time is used in phase 1

Communities of communities are built during the process
Height of the hierarchy is determined by the number of passes

Louvain algorithm

Louvain algorithm

Fast and high modularity obtained Fast

Louvain algorithm

Belgian phone call network
2.6M customers, weighted links --- total phone calls during 6 months

Six levels
Top level-------261 communities (>100
customers, >75% of total population)

Homogeneity of a community is measured
by the fraction of people speaking in
dominant language

Most of the communities are monolingual

36 communities of size>10000
Except one, all these communities have
>85% speaking in one language

Sub communities are closely connected to
each other
They also composed of heterogeneous groups

Crucial for integration of the country

Presence of German and English

66% German is one community

French people more densely connected

Different social behavior

French Dutch

Code is available

Overlapping communities

Overlapping communities

Overlapping communities

Clique percolation

• Our community definition is based on the
observation that a typical member in a community
is linked to many other members, but not
necessarily to all other nodes in the community

• In other words, a community can be interpreted as
a union of smaller complete (fully connected)
subgraphs that share nodes.

• such complete subgraphs are called k-cliques, where k
refers to the number of nodes in the subgraph

k-clique template rolling

k-clique template: A k-clique template can be thought
of as an object that is isomorphic to a complete
graph of k nodes.

Such a template can be placed onto any k-clique of
the network, and rolled to an adjacent k-clique by
relocating one of its nodes and keeping its other k-1
nodes fixed.

Thus, the k-clique-communities of a graph are all
those subgraphs that can be fully explored by rolling
a k-clique template in them but cannot be left by this
template.

K-clique community

Special cases

The k-clique-communities of a network at k = 2
are equivalent to the connected components

v

K=3

K=2
Series of shared nodes

Series of shared edges

• k-clique chain: the union of a sequence of
adjacent k-cliques

• k-clique connectedness: two k-cliques are k-
clique-connected if they are parts of a k-clique
chain.

• k-clique-communities are equivalent to the k-
clique connected components of the network.

K-clique community

k-clique template rolling

k-clique template: A k-clique template can be thought
of as an object that is isomorphic to a complete
graph of k nodes.

Such a template can be placed onto any k-clique of
the network, and rolled to an adjacent k-clique by
relocating one of its nodes and keeping its other k-1
nodes fixed.

Thus, the k-clique-communities of a graph are all
those subgraphs that can be fully explored by rolling
a k-clique template in them but cannot be left by this
template.

K-clique percolation

first extracts all complete subgraphs of the network that

are not parts of larger complete subgraphs

In this symmetric matrix each row (and column) represents a clique

the matrix elements are equal to the number of common nodes between the

corresponding two cliques

(Note that the intersection of two cliques is always a complete subgraph.)

Diagonal entries are equal to the size of the clique.

cliques

Overlapping nodes

between cliques

These components can be found by erasing (i) every off-
diagonal entry smaller than k-1 and (ii) every diagonal
element smaller than k in the matrix,

Replacing the remaining elements by 1

Carrying out a component analysis of this matrix

The k-clique-communities for a given value of k are
equivalent to

such connected clique components in which the
neighbouring cliques are linked to each other by at
least k-1 common nodes.

K-clique percolation

K-clique percolation

Mixing pattern

Mixing pattern

Assortative mixing

The amount of assortative mixing in a network can be characterized by measuring
how much of the weight in the mixing matrix falls on the diagonal, and how much
off it.

Let us define eij to be the fraction of all edges in a network that join a vertex of type
i to a vertex of type j.

Ends of an edge always attach to one man and one woman, we also specify which index
corresponds to which type of end, which makes e asymmetric

Friendship network

ai

bi

where ai and bi are the fraction of each type of end of an edge that is attached to
vertices of type i

Assortative mixing

Assortativity leads to community
formation

Degree distribution p(k)

Model

Graph

Apply community detection algo

Type i
Type j

Type k

pk(i)

pk(j)

pk(k)

z(i)

z(j)

z(k)

Type i
Type j

Type k

z(i)

z(j)

z(k)

e(i,j)
m(i)

m(j)

m(k)

Compute m(i), m(j) etc

Type i
Type j

Type k

z(i)

z(j)

z(k)

e(i,j)
m(i)

m(j)

m(k)

Type i

z(i)

m(i)

