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In February 2012, Kobe Bryant, the American basketball star, joined Chi-
nese microblogging site Sina Weibo. Within a few hours, more than 100,000
followers joined his page, anxiously waiting for his first microblogging post
on the site. The media considered the tremendous number of followers
Kobe Bryant received as an indication of his popularity in China. In this
case, the number of followers measured Bryant’s popularity among Chi-
nese social media users. In social media, we often face similar tasks in
which measuring different structural properties of a social media network
can help us better understand individuals embedded in it. Correspond-
ing measures need to be designed for these tasks. This chapter discusses
measures for social media networks.

When mining social media, a graph representation is often used. This
graph shows friendships or user interactions in a social media network.
Given this graph, some of the questions we aim to answer are as follows:

• Who are the central figures (influential individuals) in the network?

• What interaction patterns are common in friends?

• Who are the like-minded users and how can we find these similar
individuals?

To answer these and similar questions, one first needs to define mea-
sures for quantifying centrality, level of interactions, and similarity, among
other qualities. These measures take as input a graph representation of a
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social interaction, such as friendships (adjacency matrix), from which the
measure value is computed.

To answer our first question about finding central figures, we define
measures for centrality. By using these measures, we can identify various
types of central nodes in a network. To answer the other two questions,
we define corresponding measures that can quantify interaction patterns
and help find like-minded users. We discuss centrality next.

3.1 Centrality

Centrality defines how important a node is within a network.

3.1.1 Degree Centrality

In real-world interactions, we often consider people with many connec-
tions to be important. Degree centrality transfers the same idea into a
measure. The degree centrality measure ranks nodes with more connec-
tions higher in terms of centrality. The degree centrality Cd for node vi in
an undirected graph is

Cd(vi) = di, (3.1)

where di is the degree (number of adjacent edges) of node vi. In directed
graphs, we can either use the in-degree, the out-degree, or the combination
as the degree centrality value:

Cd(vi) = din
i (prestige), (3.2)

Cd(vi) = dout
i (gregariousness), (3.3)

Cd(vi) = din
i + dout

i . (3.4)

When using in-degrees, degree centrality measures how popular a node
is and its value shows prominence or prestige. When using out-degrees, itProminence or

Prestige measures the gregariousness of a node. When we combine in-degrees and
out-degrees, we are basically ignoring edge directions. In fact, when edge
directions are removed, Equation 3.4 is equivalent to Equation 3.1, which
measures degree centrality for undirected graphs.

The degree centrality measure does not allow for centrality values to
be compared across networks (e.g., Facebook and Twitter). To overcome
this problem, we can normalize the degree centrality values.
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Figure 3.1: Degree Centrality Example.

Normalizing Degree Centrality

Simple normalization methods include normalizing by the maximum pos-
sible degree,

Cnorm
d (vi) =

di

n − 1
, (3.5)

where n is the number of nodes. We can also normalize by the maximum
degree,

Cmax
d (vi) =

di

max j d j
. (3.6)

Finally, we can normalize by the degree sum,

Csum
d (vi) =

di∑
j d j

=
di

2|E|
=

di

2m
. (3.7)

Example 3.1. Figure 3.1 shows a sample graph. In this graph, degree centrality
for node v1 is Cd(v1) = d1 = 8, and for all others, it is Cd(v j) = d j = 1, j , 1.

3.1.2 Eigenvector Centrality

In degree centrality, we consider nodes with more connections to be more
important. However, in real-world scenarios, having more friends does
not by itself guarantee that someone is important: having more important
friends provides a stronger signal.
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Eigenvector centrality tries to generalize degree centrality by incorporat-
ing the importance of the neighbors (or incoming neighbors in directed
graphs). It is defined for both directed and undirected graphs. To keep
track of neighbors, we can use the adjacency matrix A of a graph. Let ce(vi)
denote the eigenvector centrality of node vi. We want the centrality of vi to
be a function of its neighbors’ centralities. We posit that it is proportional
to the summation of their centralities,

ce(vi) =
1
λ

n∑
j=1

A j,ice(v j), (3.8)

where λ is some fixed constant. Assuming Ce = (Ce(v1),Ce(v2), . . . ,Ce(vn))T

is the centrality vectors for all nodes, we can rewrite Equation 3.8 as

λCe = ATCe. (3.9)

This basically means that Ce is an eigenvector of adjacency matrix AT

(or A in undirected networks, since A = AT) and λ is the corresponding
eigenvalue. A matrix can have many eigenvalues and, in turn, many corre-
sponding eigenvectors. Hence, this raises the question: which eigenvalue–
eigenvector pair should we select? We often prefer centrality values to
be positive for convenient comparison of centrality values across nodes.
Thus, we can choose an eigenvalue such that the eigenvector components
are positive.1 This brings us to the Perron-Frobenius theorem.Perron-Frobenius

Theorem
Theorem 3.1 (Perron-Frobenius Theorem). Let A ∈ Rn×n represent the adja-
cency matrix for a [strongly] connected graph or A : Ai, j > 0 (i.e. a positive n
by n matrix). There exists a positive real number (Perron-Frobenius eigenvalue)
λmax, such that λmax is an eigenvalue of A and any other eigenvalue of A is
strictly smaller than λmax. Furthermore, there exists a corresponding eigenvector
v = (v1, v2, . . . , vn) of A with eigenvalue λmax such that ∀vi > 0.

Therefore, to have positive centrality values, we can compute the eigen-
values of A and then select the largest eigenvalue. The corresponding
eigenvector is Ce. Based on the Perron-Frobenius theorem, all the com-
ponents of Ce will be positive, and this vector corresponds to eigenvector
centralities for the graph.

1This constraint is optional and can be lifted based on the context.
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Figure 3.2: Eigenvector Centrality Example.

Example 3.2. For the graph shown in Figure 3.2(a), the adjacency matrix is

A =

 0 1 0
1 0 1
0 1 0

 . (3.10)

Based on Equation 3.9, we need to solve λCe = ACe, or

(A − λI)Ce = 0. (3.11)

Assuming Ce = [u1 u2 u3]T, 0 − λ 1 0
1 0 − λ 1
0 1 0 − λ


 u1

u2

u3

 =

 0
0
0

 . (3.12)

Since Ce , [0 0 0]T, the characteristic equation is

det(A − λI) =

∣∣∣∣∣∣∣∣
0 − λ 1 0

1 0 − λ 1
0 1 0 − λ

∣∣∣∣∣∣∣∣ = 0, (3.13)

or equivalently,

(−λ)(λ2
− 1) − 1(−λ) = 2λ − λ3 = λ(2 − λ2) = 0. (3.14)

So the eigenvalues are (−
√

2, 0,+
√

2). We select the largest eigenvalue:
√

2.
We compute the corresponding eigenvector:

0 −
√

2 1 0
1 0 −

√
2 1

0 1 0 −
√

2


 u1

u2

u3

 =

 0
0
0

 . (3.15)
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Assuming Ce vector has norm 1, its solution is

Ce =

 u1

u2

u3

 =


1/2
√

2/2
1/2

 , (3.16)

which denotes that node v2 is the most central node and nodes v1 and v3 have equal
centrality values.

Example 3.3. For the graph shown in Figure 3.2(b), the adjacency matrix is as
follows:

A =


0 1 0 1 0
1 0 1 1 1
0 1 0 1 0
1 1 1 0 0
0 1 0 0 0

 . (3.17)

The eigenvalues of A are (−1.74,−1.27, 0.00,+0.33,+2.68). For eigenvector
centrality, the largest eigenvalue is selected: 2.68. The corresponding eigenvector
is the eigenvector centrality vector and is

Ce =


0.4119
0.5825
0.4119
0.5237
0.2169

 . (3.18)

Based on eigenvector centrality, node v2 is the most central node.

3.1.3 Katz Centrality

A major problem with eigenvector centrality arises when it considers di-
rected graphs (see Problem 1 in the Exercises). Centrality is only passed
on when we have (outgoing) edges, and in special cases such as when a
node is in a directed acyclic graph, centrality becomes zero, even though
the node can have many edges connected to it. In this case, the problem
can be rectified by adding a bias term to the centrality value. The bias term
β is added to the centrality values for all nodes no matter how they are
situated in the network (i.e., irrespective of the network topology). The
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Figure 3.3: Katz Centrality Example.

resulting centrality measure is called the Katz centrality and is formulated
as

CKatz(vi) = α
n∑

j=1

A j,iCKatz(v j) + β. (3.19)

The first term is similar to eigenvector centrality, and its effect is con-
trolled by constant α. The second term β, is the bias term that avoids zero
centrality values. We can rewrite Equation 3.19 in a vector form,

CKatz = αATCKatz + β1, (3.20)

where 1 is a vector of all 1’s. Taking the first term to the left hand side and
factoring CKatz,

CKatz = β(I − αAT)−1
· 1. (3.21)

Since we are inverting a matrix here, not all α values are acceptable.
When α = 0, the eigenvector centrality part is removed, and all nodes get
the same centrality value β. However, once α gets larger, the effect of β
is reduced, and when det(I − αAT) = 0, the matrix I − αAT becomes non-
invertible and the centrality values diverge. The det(I−αAT) first becomes Divergence in

Centrality
Computation

0 when α = 1/λ, where λ is the largest eigenvalue2 of AT. In practice,
α < 1/λ is selected so that centralities are computed correctly.

Example 3.4. For the graph shown in Figure 3.3, the adjacency matrix is as

2When det(I − αAT) = 0, it can be rearranged as det(AT
− α−1I) = 0, which is basically

the characteristic equation. This equation first becomes zero when the largest eigenvalue
equals α−1, or equivalently α = 1/λ.
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follows:

A =


0 1 1 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0
0 1 1 0 0

 = AT. (3.22)

The eigenvalues of A are (−1.68,−1.0,−1.0,+0.35,+3.32). The largest eigen-
value of A is λ = 3.32. We assume α = 0.25 < 1/λ and β = 0.2. Then, Katz
centralities are

CKatz = β(I − αAT)−1
· 1 =


1.14
1.31
1.31
1.14
0.85

 . (3.23)

Thus, nodes v2, and v3 have the highest Katz centralities.

3.1.4 PageRank

Similar to eigenvector centrality, Katz centrality encounters some chal-
lenges. A challenge that happens in directed graphs is that, once a node
becomes an authority (high centrality), it passes all its centrality along all
of its out-links. This is less desirable, because not everyone known by
a well known person is well known. To mitigate this problem, one can
divide the value of passed centrality by the number of outgoing links (out-
degree) from that node such that each connected neighbor gets a fraction
of the source node’s centrality:

Cp(vi) = α
n∑

j=1

A j,i
Cp(v j)
dout

j

+ β. (3.24)

This equation is only defined when dout
j is nonzero. Thus, assuming

that all nodes have positive out-degrees (dout
j > 0)3, Equation 3.24 can be

reformulated in matrix format,

Cp = αATD−1Cp + β1, (3.25)
3When dout

j = 0, we know that since the out-degree is zero, ∀i,A j,i = 0. This makes the

term inside the summation 0
0 . We can fix this problem by setting dout

j = 1 since the node
will not contribute any centrality to any other nodes.
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Figure 3.4: PageRank Example.

which we can reorganize,

Cp = β(I − αATD−1)−1
· 1, (3.26)

where D = diag(dout
1 , dout

2 , . . . , dout
n ) is a diagonal matrix of degrees. The

centrality measure is known as the PageRank centrality measure and is
used by the Google search engine as a measure for ordering webpages. PageRank and Google

Web SearchWebpages and their links represent an enormous web-graph. PageRank
defines a centrality measure for the nodes (webpages) in this web-graph.
When a user queries Google, webpages that match the query and have
higher PageRank values are shown first. Similar to Katz centrality, in
practice, α < 1

λ is selected, where λ is the largest eigenvalue of ATD−1.
In undirected graphs, the largest eigenvalue of ATD−1 is λ = 1; therefore,
α < 1.

Example 3.5. For the graph shown in Figure 3.4, the adjacency matrix is as
follows,

A =


0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
1 1 1 0 0

 . (3.27)

We assume α = 0.95 < 1 and β = 0.1. Then, PageRank values are

Cp = β(I − αATD−1)−1
· 1 =


2.14
2.13
2.14
1.45
2.13

 . (3.28)
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Hence, nodes v1 and v3 have the highest PageRank values.

3.1.5 Betweenness Centrality

Another way of looking at centrality is by considering how important
nodes are in connecting other nodes. One approach, for a node vi, is
to compute the number of shortest paths between other nodes that pass
through vi,

Cb(vi) =
∑

s,t,vi

σst(vi)
σst

, (3.29)

where σst is the number of shortest paths from node s to t (also known
as information pathways), and σst(vi) is the number of shortest paths from s
to t that pass through vi. In other words, we are measuring how central
vi’s role is in connecting any pair of nodes s and t. This measure is called
betweenness centrality.

Betweenness centrality needs to be normalized to be comparable across
networks. To normalize betweenness centrality, one needs to compute the
maximum value it takes. Betweenness centrality takes its maximum value
when node vi is on all shortest paths from s to t for any pair (s, t); that is,
∀ (s, t), s , t , vi,

σst(vi)
σst

= 1. For instance, in Figure 3.1, node v1 is on the
shortest path between all other pairs of nodes. Thus, the maximum value
is

Cb(vi) =
∑

s,t,vi

σst(vi)
σst

=
∑

s,t,vi

1 = 2
(
n − 1

2

)
= (n − 1)(n − 2). (3.30)

The betweenness can be divided by its maximum value to obtain the
normalized betweenness,

Cnorm
b (vi) =

Cb(vi)

2
(n−1

2

) . (3.31)

Computing Betweenness

In betweenness centrality (Equation 3.29), we compute shortest paths be-
tween all pairs of nodes to compute the betweenness value. If an algorithm
such as Dijkstra’s is employed, it needs to be run for all nodes, because
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Figure 3.5: Betweenness Centrality Example.

Dijkstra’s algorithm will compute shortest paths from a single node to all
other nodes. So, to compute all-pairs shortest paths, Dijkstra’s algorithm
needs to be run |V| − 1 times (with the exception of the node for which
centrality is being computed). More effective algorithms such as the Bran-
des’ algorithm [45] have been designed. Interested readers can refer to the
bibliographic notes for further references.

Example 3.6. For Figure 3.1, the (normalized) betweenness centrality of node v1

is

Cb(v1) = 2
(
8
2

)
, (3.32)

Cnorm
b (v1) = 1. (3.33)

Since all the paths that go through any pair (s, t), s , t , v1 pass through node
v1, the centrality is 2

(8
2

)
. Similarly, the betweenness centrality for any other node

in this graph is 0.

Example 3.7. Figure 3.5 depicts a sample graph. In this graph, the betweenness
centrality for node v1 is 0, since no shortest path passes through it. For other
nodes, we have

Cb(v2) = 2 × ( (1/1)︸︷︷︸
s=v1,t=v3

+ (1/1)︸︷︷︸
s=v1,t=v4

+ (2/2)︸︷︷︸
s=v1,t=v5

+ (1/2)︸︷︷︸
s=v3,t=v4

+ 0︸︷︷︸
s=v3,t=v5

+ 0︸︷︷︸
s=v4,t=v5

)

= 2 × 3.5 = 7, (3.34)
Cb(v3) = 2 × ( 0︸︷︷︸

s=v1,t=v2

+ 0︸︷︷︸
s=v1,t=v4

+ (1/2)︸︷︷︸
s=v1,t=v5

+ 0︸︷︷︸
s=v2,t=v4

+ (1/2)︸︷︷︸
s=v2,t=v5

+ 0︸︷︷︸
s=v4,t=v5

)

= 2 × 1.0 = 2, (3.35)
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Cb(v4) = Cb(v3) = 2 × 1.0 = 2, (3.36)
Cb(v5) = 2 × ( 0︸︷︷︸

s=v1,t=v2

+ 0︸︷︷︸
s=v1,t=v3

+ 0︸︷︷︸
s=v1,t=v4

+ 0︸︷︷︸
s=v2,t=v3

+ 0︸︷︷︸
s=v2,t=v4

+ (1/2)︸︷︷︸
s=v3,t=v4

)

= 2 × 0.5 = 1, (3.37)

where centralities are multiplied by 2 because in an undirected graph
∑

s,t,vi

σst(vi)
σst

=

2
∑

s,t,vi,s<t
σst(vi)
σst

.

3.1.6 Closeness Centrality

In closeness centrality, the intuition is that the more central nodes are, the
more quickly they can reach other nodes. Formally, these nodes should
have a smaller average shortest path length to other nodes. Closeness
centrality is defined as

Cc(vi) =
1
l̄vi

, (3.38)

where l̄vi = 1
n−1

∑
v j,vi

li, j is node vi’s average shortest path length to other
nodes. The smaller the average shortest path length, the higher the cen-
trality for the node.

Example 3.8. For nodes in Figure 3.5, the closeness centralities are as follows:

Cc(v1) = 1 / ( (1 + 2 + 2 + 3)/4 ) = 0.5, (3.39)
Cc(v2) = 1 / ( (1 + 1 + 1 + 2)/4 ) = 0.8, (3.40)

Cc(v3) = Cb(v4) = 1 / ( (1 + 1 + 2 + 2)/4 ) = 0.66, (3.41)
Cc(v5) = 1 / ( (1 + 1 + 2 + 3)/4 ) = 0.57. (3.42)

Hence, node v2 has the highest closeness centrality.

The centrality measures discussed thus far have different views on what
a central node is. Thus, a central node for one measure may be deemed
unimportant by other measures.

Example 3.9. Consider the graph in Figure 3.6. For this graph, we compute the
top three central nodes based on degree, eigenvector, Katz, PageRank, betweenness,
and closeness centrality methods. These nodes are listed in Table 3.1.

As shown in the table, there is a high degree of similarity between most central
nodes for the first four measures, which utilize eigenvectors or degrees: degree
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Figure 3.6: Example for All Centrality Measures.

Table 3.1: A Comparison between Centrality Methods
First Node Second Node Third Node

Degree Centrality v3 or v6 v6 or v3 v ∈ {v4, v5, v7, v8, v9}

Eigenvector Centrality v6 v3 v4 or v5

Katz Centrality: α = β = 0.3 v6 v3 v4 or v5

PageRank: α = β = 0.3 v3 v6 v2

Betweenness Centrality v6 v7 v3

Closeness Centrality v6 v3 or v7 v7 or v3

centrality, eigenvector centrality, Katz centrality, and PageRank. Betweenness
centrality also generates similar results to closeness centrality because both use
the shortest paths to find most central nodes.

3.1.7 Group Centrality

All centrality measures defined so far measure centrality for a single node.
These measures can be generalized for a group of nodes. In this section,
we discuss how degree centrality, closeness centrality, and betweenness
centrality can be generalized for a group of nodes. Let S denote the set of
nodes to be measured for centrality. Let V − S denote the set of nodes not
in the group.

Group Degree Centrality

Group degree centrality is defined as the number of nodes from outside
the group that are connected to group members. Formally,

Cgroup
d (S) = |{vi ∈ V − S|vi is connected to v j ∈ S}|. (3.43)
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Similar to degree centrality, we can define connections in terms of out-
degrees or in-degrees in directed graphs. We can also normalize this value.
In the best case, group members are connected to all other nonmembers.
Thus, the maximum value of Cgroup

d (S) is |V − S|. So dividing group degree
centrality value by |V − S| normalizes it.

Group Betweenness Centrality

Similar to betweeness centrality, we can define group betweenness central-
ity as

Cgroup
b (S) =

∑
s,t,s<S,t<S

σst(S)
σst

, (3.44)

where σst(S) denotes the number of shortest paths between s and t that
pass through members of S. In the best case, all shortest paths between s
and t pass through members of S, and therefore, the maximum value for
Cgroup

b (S) is 2
(
|V−S|

2

)
. Similar to betweenness centrality, we can normalize

group betweenness centrality by dividing it by the maximum value.

Group Closeness Centrality

Closeness centrality for groups can be defined as

Cgroup
c (S) =

1
l̄group
S

, (3.45)

where l̄group
S = 1

|V−S|

∑
v j<S lS,v j and lS,v j is the length of the shortest path

between a group S and a nonmember v j ∈ V − S. This length can be
defined in multiple ways. One approach is to find the closest member in S
to v j:

lS,v j = min
vi∈S

lvi,v j . (3.46)

One can also use the maximum distance or the average distance to
compute this value.

Example 3.10. Consider the graph in Figure 3.7. Let S = {v2, v3}. Group degree
centrality for S is

Cgroup
d (S) = 3, (3.47)
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Figure 3.7: Group Centrality Example.

since members of the group are connected to all other three members in V − S =
{v1, v4, v5}. The normalized value is 1, since 3/|V − S| = 1. Group betweenness
centrality is 6, since for 2

(3
2

)
shortest paths between any two members of V−S, the

path has to pass through members of S. The normalized group betweenness is 1,
since 6/(2

(
|V−S|

2

)
) = 1. Finally, group closeness centrality – assuming the distance

from nonmembers to members of S is computed using the minimum function – is
also 1, since any member of V − S is connected to a member of S directly.

3.2 Transitivity and Reciprocity

Often we need to observe a specific behavior in a social media network.
One such behavior is linking behavior. Linking behavior determines how
links (edges) are formed in a social graph. In this section, we discuss
two well-known measures, transitivity and reciprocity, for analyzing this
behavior. Both measures are commonly used in directed networks, and
transitivity can also be applied to undirected networks.

3.2.1 Transitivity

In transitivity, we analyze the linking behavior to determine whether it
demonstrates a transitive behavior. In mathematics, for a transitive relation
R, aRb ∧ bRc → aRc. The transitive linking behavior can be described as
follows.
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Figure 3.8: Transitive Linking.

Transitive Linking

Let v1, v2, v3 denote three nodes. When edges (v1, v2) and (v2, v3) are formed,
if (v3, v1) is also formed, then we have observed a transitive linking behavior
(transitivity). This is shown in Figure 3.8.

In a less formal setting,

Transitivity is when a friend of my friend is my friend.

As shown in the definition, a transitive behavior needs at least three
edges. These three edges, along with the participating nodes, create a
triangle. Higher transitivity in a graph results in a denser graph, which
in turn is closer to a complete graph. Thus, we can determine how close
graphs are to the complete graph by measuring transitivity. This can be
performed by measuring the [global] clustering coefficient and local clustering
coefficient. The former is computed for the network, whereas the latter is
computed for a node.

Clustering Coefficient

The clustering coefficient analyzes transitivity in an undirected graph.
Since transitivity is observed when triangles are formed, we can measure
it by counting paths of length 2 (edges (v1, v2) and (v2, v3)) and checking
whether the third edge (v3, v1) exists (i.e., the path is closed). Thus, clus-
tering coefficient C is defined as

C =
|Closed Paths of Length 2|
|Paths of Length 2|

. (3.48)
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Alternatively, we can count triangles

C =
(Number of Triangles) × 6
|Paths of Length 2|

. (3.49)

Since every triangle has six closed paths of length 2, we can rewrite
Equation 3.49 as

C =
(Number of Triangles) × 3

Number of Connected Triples of Nodes
. (3.50)

In this equation, a triple is an ordered set of three nodes, connected by
two (i.e., open triple) or three (closed triple) edges. Two triples are different
when

• their nodes are different, or

• their nodes are the same, but the triples are missing different edges.

For example, triples viv jvk and v jvkvi are different, since the first triple
is missing edge e(vk, vi) and the second triple is missing edge e(vi, v j), even
though they have the same members. Following the same argument,
triples viv jvk and vkv jvi are the same, because both are missing edge e(vk, vi)
and have the same members. Since triangles have three edges, one edge
can be missed in each triple; therefore, three different triples can be formed
from one triangle. The number of triangles are therefore multiplied by
a factor of 3 in the numerator of Equation 3.50. Note that the clustering
coefficient is computed for the whole network.

Example 3.11. For the graph in Figure 3.9, the clustering coefficient is

C =
(Number of Triangles) × 3

Number of Connected Triples of Nodes

=
2 × 3

2 × 3 + 2︸︷︷︸
v2v1v4,v2v3v4

= 0.75. (3.51)

The clustering coefficient can also be computed locally. The following
subsection discusses how it can be computed for a single node.
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Figure 3.9: A Global Clustering Coefficient Example.

Local Clustering Coefficient

The local clustering coefficient measures transitivity at the node level.
Commonly used for undirected graphs, it estimates how strongly neigh-
bors of a node v (nodes adjacent to v) are themselves connected. The
coefficient is defined as

C(vi) =
Number of Pairs of Neighbors of vi That Are Connected

Number of Pairs of Neighbors of vi
. (3.52)

In an undirected graph, the denominator can be rewritten as
(di

2

)
=

di(di − 1)/2, since there are di neighbors for node vi.

Example 3.12. Figure 3.10 shows how the local clustering coefficient changes for

Figure 3.10: Change in Local Clustering Coefficient for Different Graphs.
Thin lines depict connections to neighbors. Solid lines indicate connected
neighbors, and dashed lines are the missing connections among neighbors.

90



Figure 3.11: A Graph with Reciprocal Edges.

node v1. Thin lines depict v1’s connections to its neighbors. Dashed lines denote
possible connections among neighbors, and solid lines denote current connections
among neighbors. Note that when none of the neighbors are connected, the local
clustering coefficient is zero, and when all the neighbors are connected, it becomes
maximum, C(vi) = 1.

3.2.2 Reciprocity

Reciprocity is a simplified version of transitivity, because it considers closed
loops of length 2, which can only happen in directed graphs. Formally, if
node v is connected to node u, u by connecting to v exhibits reciprocity. On
microblogging site Tumblr, for example, these nodes are known as “mutual
followers.” Informally, reciprocity is

If you become my friend, I’ll be yours.

Figure 3.11 shows an example where two nodes (v1 and v2) in the graph
demonstrate reciprocal behavior.

Reciprocity counts the number of reciprocal pairs in the graph. Any
directed graph can have a maximum of |E|/2 pairs. This happens when
all edges are reciprocal. Thus, this value can be used as a normalization
factor. Reciprocity can be computed using the adjacency matrix A:

R =

∑
i, j,i< j Ai, jA j,i

|E|/2
,
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=
2
|E|

∑
i, j,i< j

Ai, jA j,i,

=
2
|E|
×

1
2

Tr(A2),

=
1
|E|

Tr(A2),

=
1
m

Tr(A2), (3.53)

where Tr(A) = A1,1 +A2,2 + · · ·+An,n =
∑n

i=1 Ai,i and m is the number of edges
in the network. Note that the maximum value for

∑
i, j Ai, jA j,i is m when all

directed edges are reciprocated.

Example 3.13. For the graph shown in Figure 3.11, the adjacency matrix is

A =

 0 1 1
1 0 0
0 1 0

 . (3.54)

Its reciprocity is

R =
1
m

Tr(A2) =
1
4

Tr


 1 1 0

0 1 1
1 0 0


 =

2
4

=
1
2
. (3.55)

3.3 Balance and Status

A signed graph can represent the relationships of nodes in a social network,
such as friends or foes. For example, a positive edge from node v1 to v2

denotes that v1 considers v2 as a friend and a negative edge denotes that
v1 assumes v2 is an enemy. Similarly, we can utilize signed graphs to
represent the social status of individuals. A positive edge connecting node
v1 to v2 can also denote that v1 considers v2’s status higher than its own
in the society. Both cases represent interactions that individuals exhibit
about their relationships. In real-world scenarios, we expect some level
of consistency with respect to these interactions. For instance, it is more
plausible for a friend of one’s friend to be a friend than to be an enemy.
In signed graphs, this consistency translates to observing triads with three
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positive edges (i.e., all friends) more frequently than ones with two positive
edges and one negative edge (i.e., a friend’s friend is an enemy). Assume
we observe a signed graph that represents friends/foes or social status.
Can we measure the consistency of attitudes that individual have toward
one another?

To measure consistency in an individual’s attitude, one needs to utilize
theories from social sciences to define what is a consistent attitude. In this
section, we discuss two theories, social balance and social status, that can
help determine consistency in observed signed networks. Social balance
theory is used when edges represent friends/foes, and social status theory
is employed when they represent status.

Social Balance Theory

This theory, also known as structural balance theory, discusses consistency Structural Balance
Theoryin friend/foe relationships among individuals. Informally, social balance

theory says friend/foe relationships are consistent when

The friend of my friend is my friend,
The friend of my enemy is my enemy,
The enemy of my enemy is my friend,
The enemy of my friend is my enemy.

We demonstrate a graph representation of social balance theory in Fig-
ure 3.12. In this figure, positive edges demonstrate friendships and neg-
ative ones demonstrate enemies. Triangles that are consistent based on
this theory are denoted as balanced and triangles that are inconsistent as
unbalanced. Let wi j denote the value of the edge between nodes vi and v j. Balanced and

Unbalanced
Triangles

Then, for a triangle of nodes vi, v j, and vk, it is consistent based on social
balance theory; that is, it is balanced if and only if

wi jw jkwki ≥ 0. (3.56)

This is assuming that, for positive edges, wi j = 1, and for negative
edges, wi j = −1. We observe that, for all balanced triangles in Figure
3.12, the value wi jw jkwki is positive, and for all unbalanced triangles, it is
negative. Social balance can also be generalized to subgraphs other than
triangles. In general, for any cycle, if the product of edge values becomes
positive, then the cycle is socially balanced.
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Figure 3.12: Sample Graphs for Social Balance Theory. In balanced trian-
gles, there are an even number of negative edges.

Social Status Theory

Social status theory measures how consistent individuals are in assigning
status to their neighbors. It can be summarized as follows:

If X has a higher status than Y and Y has a higher status than Z, then
X should have a higher status than Z.

We show this theory using two graphs in Figure 3.13. In this figure,
nodes represent individuals. Positive and negative signs show higher or
lower status depending on the arrow direction. A directed positive edge
from node X to node Y shows that Y has a higher status than X, and a
negative one shows the reverse. In the figure on the left, v2 has a higher
status than v1 and v3 has a higher status than v2, so based on status theory,
v3 should have a higher status than v1; however, we see that v1 has a
higher status in our configuration.4 Based on social status theory, this is
implausible, and thus this configuration is unbalanced. The graph on the
right shows a balanced configuration with respect to social status theory.

4Here, we start from v1 and follow the edges. One can start from a different node, and
the result should remain the same.
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Figure 3.13: Sample Graphs for Social Status Theory. The left-hand graph
is an unbalanced configuration, and the right-hand graph is a balanced
configuration.

In the example provided in Figure 3.13, social status is defined for the
most general example: a set of three connected nodes (a triad). However,
social status can be generalized to other graphs. For instance, in a cycle of
n nodes, where n − 1 consecutive edges are positive and the last edge is
negative, social status theory considers the cycle balanced.

Note that the identical configuration can be considered balanced by
social balance theory and unbalanced based on social status theory (see
Exercises).

3.4 Similarity

In this section, we review measures used to compute similarity between
two nodes in a network. In social media, these nodes can represent indi-
viduals in a friendship network or products that are related. The similarity
between these connected individuals can be computed either based on
the network in which they are embedded (i.e., network similarity) or based
on the similarity of the content they generate (i.e., content similarity). We
discuss content similarity in Chapter 5. In this section, we demonstrate
ways to compute similarity between two nodes using network informa-
tion regarding the nodes and edges connecting them. When using network
information, the similarity between two nodes can be computed by mea-
suring their structural equivalence or their regular equivalence.
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3.4.1 Structural Equivalence

To compute structural equivalence, we look at the neighborhood shared by
two nodes; the size of this neighborhood defines how similar two nodes
are. For instance, two brothers have in common sisters, mother, father,
grandparents, and so on. This shows that they are similar, whereas two
random male or female individuals do not have much in common and are
not similar.

The similarity measures detailed in this section are based on the over-
lap between the neighborhoods of the nodes. Let N(vi) and N(v j) be the
neighbors of nodes vi and v j, respectively. In this case, a measure of node
similarity can be defined as follows:

σ(vi, v j) = |N(vi) ∩N(v j)|. (3.57)

For large networks, this value can increase rapidly, because nodes may
share many neighbors. Generally, similarity is attributed to a value that is
bounded and is usually in the range [0, 1]. Various normalization proce-
dures can take place such as the Jaccard similarity or the cosine similarity:Jaccard Similarity and

Cosine Similarity

σJaccard(vi, v j) =
|N(vi) ∩N(v j)|
|N(vi) ∪N(v j)|

, (3.58)

σCosine(vi, v j) =
|N(vi) ∩N(v j)|√
|N(vi)||N(v j)|

. (3.59)

In general, the definition of neighborhood N(vi) excludes the node itself
(vi). This leads to problems with the aforementioned similarities because
nodes that are connected and do not share a neighbor will be assigned zero
similarity. This can be rectified by assuming nodes to be included in their
neighborhoods.

Example 3.14. Consider the graph in Figure 3.14. The similarity values between
nodes v2 and v5 are

σJaccard(v2, v5) =
|{v1, v3, v4} ∩ {v3, v6}|

|{v1, v3, v4, v6}|
= 0.25, (3.60)

σCosine(v2, v5) =
|{v1, v3, v4} ∩ {v3, v6}|
√
|{v1, v3, v4}||{v3, v6}|

= 0.40. (3.61)
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Figure 3.14: Sample Graph for Computing Similarity.

A more interesting way of measuring the similarity between vi and v j

is to compare σ(vi, v j) with the expected value of σ(vi, v j) when nodes pick
their neighbors at random. The more distant these two values are, the
more significant the similarity observed between vi and v j (σ(vi, v j)) is. For
nodes vi and v j with degrees di and d j, this expectation is

did j

n , where n is
the number of nodes. This is because there is a di

n chance of becoming vi’s

neighbor and, since v j selects d j neighbors, the expected overlap is
did j

n . We
can rewrite σ(vi, v j) as

σ(vi, v j) = |N(vi) ∩N(v j)| =
∑

k

Ai,kA j,k. (3.62)

Hence, a similarity measure can be defined by subtracting the random
expectation

did j

n from Equation 3.62:

σsignificance(vi, v j) =
∑

k

Ai,kA j,k −
did j

n

=
∑

k

Ai,kA j,k − n
1
n

∑
k

Ai,k
1
n

∑
k

A j,k

=
∑

k

Ai,kA j,k − nĀiĀ j

=
∑

k

(Ai,kA j,k − ĀiĀ j)

=
∑

k

(Ai,kA j,k − ĀiĀ j − ĀiĀ j + ĀiĀ j)

=
∑

k

(Ai,kA j,k − Ai,kĀ j − ĀiA j,k + ĀiĀ j)
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=
∑

k

(Ai,k − Āi)(A j,k − Ā j), (3.63)

where Āi = 1
n

∑
k Ai,k. The term

∑
k(Ai,k − Āi)(A j,k − Ā j) is basically the

covariance between Ai and A j. The covariance can be normalized by the
multiplication of variances,

σpearson(vi, v j) =
σsignificance(vi, v j)√∑

k(Ai,k − Āi)2
√∑

k(A j,k − Ā j)2

=

∑
k(Ai,k − Āi)(A j,k − Ā j),√∑

k(Ai,k − Āi)2
√∑

k(A j,k − Ā j)2
, (3.64)

which is called the Pearson correlation coefficient. Its value, unlike the otherPearson Correlation
two measures, is in the range [−1, 1]. A positive correlation value denotes
that when vi befriends an individual vk, v j is also likely to befriend vk.
A negative value denotes the opposite (i.e., when vi befriends vk, it is
unlikely for v j to befriend vk). A zero value denotes that there is no linear
relationship between the befriending behavior of vi and v j.

3.4.2 Regular Equivalence

In regular equivalence, unlike structural equivalence, we do not look at
the neighborhoods shared between individuals, but at how neighborhoods
themselves are similar. For instance, athletes are similar not because they
know each other in person, but because they know similar individuals,
such as coaches, trainers, and other players. The same argument holds for
any other profession or industry in which individuals might not know each
other in person, but are in contact with very similar individuals. Regular
equivalence assesses similarity by comparing the similarity of neighbors
and not by their overlap.

One way of formalizing this is to consider nodes vi and v j similar when
they have many similar neighbors vk and vl. This concept is shown in
Figure 3.15(a). Formally,

σregular(vi, v j) = α
∑

k,l

Ai,kA j,lσregular(vk, vl). (3.65)
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Figure 3.15: Regular Equivalence. Solid lines denote edges, and dashed
lines denote similarities between nodes. In regular equivalence, similar-
ity between nodes vi and v j is replaced by similarity between (a) their
neighbors vk and vl or between (b) neighbor vk and node v j.

Unfortunately, this formulation is self-referential because solving for i
and j requires solving for k and l, solving for k and l requires solving for
their neighbors, and so on. So, we relax this formulation and assume that
node vi is similar to node v j when v j is similar to vi’s neighbors vk. This is
shown in Figure 3.15(b). Formally,

σregular(vi, v j) = α
∑

k

Ai,kσregular(vk, v j). (3.66)

In vector format, we have

σregular = αAσregular. (3.67)

A node is highly similar to itself. To make sure that our formula-
tion guarantees this, we can add an identity matrix to this vector format.
Adding an identity matrix will add 1 to all diagonal entries, which repre-
sent self-similarities σregular(vi, vi):

σregular = αAσregular + I. (3.68)

By rearranging, we get

σregular = (I − αA)−1, (3.69)

which we can use to find the regular equivalence similarity.
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Note the similarity between Equation 3.69 and that of Katz centrality
(Equation 3.21). As with Katz centrality, we must be careful how we choose
α for convergence. A common practice is to select an α such that α < 1/λ,
where λ is the largest eigenvalue of A.

Example 3.15. For the graph depicted in Figure 3.14, the adjacency matrix is

A =


0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 1 0
0 1 0 0 0 1
0 0 0 1 1 0

 . (3.70)

The largest eigenvalue of A is 2.43. We set α = 0.4 < 1/2.43, and we compute
(I − 0.4A)−1, which is the similarity matrix,

σregular = (I − 0.4A)−1 =



1.43 0.73 0.73 0.26 0.26 0.16
0.73 1.63 0.80 0.56 0.32 0.26
0.73 0.80 1.63 0.32 0.56 0.26
0.26 0.56 0.32 1.31 0.23 0.46
0.26 0.32 0.56 0.23 1.31 0.46
0.16 0.26 0.26 0.46 0.46 1.27


. (3.71)

Any row or column of this matrix shows the similarity of a node to other nodes.
We can see that node v1 is the most similar (other than itself) to nodes v2 and v3.
Furthermore, nodes v2 and v3 have the highest similarity in this graph.
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3.5 Summary

In this chapter, we discussed measures for a social media network. Cen-
trality measures attempt to find the most central node within a graph.
Degree centrality assumes that the node with the maximum degree is the
most central individual. In directed graphs, prestige and gregariousness
are variants of degree centrality. Eigenvector centrality generalizes degree
centrality and considers individuals who know many important nodes
as central. Based on the Perron-Frobenius theorem, eigenvector central-
ity is determined by computing the eigenvector of the adjacency matrix.
Katz centrality solves some of the problems with eigenvector centrality
in directed graphs by adding a bias term. PageRank centrality defines
a normalized version of Katz centrality. The Google search engine uses
PageRank as a measure to rank webpages. Betweenness centrality assumes
that central nodes act as hubs connecting other nodes, and closeness cen-
trality implements the intuition that central nodes are close to all other
nodes. Node centrality measures can be generalized to a group of nodes
using group degree centrality, group betweenness centrality, and group
closeness centrality.

Linking between nodes (e.g., befriending in social media) is the most
commonly observed phenomenon in social media. Linking behavior is
analyzed in terms of its transitivity and its reciprocity. Transitivity is
“when a friend of my friend is my friend.” The transitivity of linking
behavior is analyzed by means of the clustering coefficient. The global
clustering coefficient analyzes transitivity within a network, and the local
clustering coefficient performs that for a node. Transitivity is commonly
considered for closed triads of edges. For loops of length 2, the problem is
simplified and is called reciprocity. In other words, reciprocity is when “if
you become my friend, I’ll be yours.”

To analyze if relationships are consistent in social media, we used var-
ious social theories to validate outcomes. Social balance and social status
are two such theories.

Finally, we analyzed node similarity measures. In structural equiva-
lence, two nodes are considered similar when they share neighborhoods.
We discussed cosine similarity and Jaccard similarity in structural equiva-
lence. In regular equivalence, nodes are similar when their neighborhoods
are similar.
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3.6 Bibliographic Notes

General reviews of different measures in graphs, networks, the web, and
social media can be found in [212, 304, 270, 120, 294].

A more detailed description of the PageRank algorithm can be found in
[224, 174]. In practice, to compute the PageRank values, the power iteration
method is used. Given a matrix A, this method produces an eigenvalue λ
and an eigenvector v of A. In the case of PageRank, eigenvalue λ is set to 1.
The iterative algorithm starts with an initial eigenvector v0 and then, vk+1

is computed from vk as follows,

vk+1 = Avk. (3.72)

The iterative process is continued until vk ≈ vk+1 (i.e., convergence occurs).
Other similar techniques to PageRank for computing influential nodes in
a webgraph, such as the HITS [150] algorithm, can be found in [51, 153].
Unlike PageRank, the HITS algorithm5 considers two types of nodes: au-
thority nodes and hub nodes. An authority is a webpage that has many in-
links. A hub is a page with many out-links. Authority pages have in-links
from many hubs. In other words, hubs represent webpages that contain
many useful links to authorities and authorities are influential nodes in the
webgraph. HITS employs an iterative approach to compute authority and
hub scores for all nodes in the graph. Nodes with high authority scores are
classified as authorities and nodes with high hub scores as hubs. Webpage
with high authority scores or hub scores can be recommended to users in
a web search engine.

Betweenness algorithms can be improved using all-pair shortest paths
algorithms [293] or algorithms optimized for computing betweenness, such
as the Brandes’ algorithm discussed in [45, 278].

A review of node similarity and normalization procedures is provided
in [166]. Jaccard similarity was introduced in [133] and cosine similarity is
introduced by Salton and McGill [244].

REGE [302, 303] and CATREGE [264] are well-known algorithms for
computing regular equivalence.

5HITS stands for hypertext-induced topic search.
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3.7 Exercises

Centrality

1. Come up with an example of a directed connected graph in which
eigenvector centrality becomes zero for some nodes. Describe when
this happens.

2. Does β have any effect on the order of centralities? In other words, if
for one value of β the centrality value of node vi is greater than that of
v j, is it possible to change β in a way such that v j’s centrality becomes
larger than that of vi’s?

3. In PageRank, what α values can we select to guarantee that centrality
values are calculated correctly (i.e., values do not diverge)?

4. Calculate PageRank values for this graph when

• α = 1, β = 0

• α = 0.85, β = 1

• α = 0, β = 1

Discuss the effects of different values of α and β for this particular
problem.

5. Consider a full n-tree. This is a tree in which every node other than
the leaves has n children. Calculate the betweenness centrality for
the root node, internal nodes, and leaves.
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6. Show an example where the eigenvector centrality of all nodes in the
graph is the same while betweenness centrality gives different values
for different nodes.

Transitivity and Reciprocity

7. In a directed graph G(V,E),

• Let p be the probability that any node vi is connected to any node
v j. What is the expected reciprocity of this graph?

• Let m and n be the number of edges and number of nodes,
respectively. What is the maximum reciprocity? What is the
minimum?

8. Given all graphs {G(V,E)|s.t., |E| = m, |V| = n},

(a) When m = 15 and n = 10, find a graph with a minimum average
clustering coefficient (one is enough).

(b) Can you come up with an algorithm to find such a graph for any
m and n?

Balance and Status

9. Find all conflicting directed triad configurations for social balance
and social status. A conflicting configuration is an assignment of
positive/negative edge signs for which one theory considers the triad
balanced and the other considers it unbalanced.

Similarity

10. In Figure 3.6,

• Compute node similarity using Jaccard and cosine similarity for
nodes v5 and v4.

• Find the most similar node to v7 using regular equivalence.
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