
ABSTRACT

Factoring large composite integers is a fundamental computational problem in

number theory and has immense applications in many cryptographic protocols.

Modern integer-factoring algorithms consist of two stages: the sieving stage and the

linear-algebra stage. Efficient parallel implementationsof both these stages have

been reported in the literature. All these implementationsare based on multi-core

or distributed parallelization. In this thesis, we experimentally demonstrate that

SIMD instructions available in many modern processors can lead to additional

speedup in the computation of each core. We handle the sieving stage of the two

fastest known factoring algorithms: the number-field sievemethod (NFSM) and the

multiple-polynomial quadratic sieve method (MPQSM). We experiment with two

types of sieving: the line sieve and the lattice sieve. Although the sieving stage offers

many tantalizing possibilities of data parallelism, exploiting these possibilities to get

practical advantages is a challenging task. The major issueis to avoid packing and

unpacking overheads to and from SIMD registers as much as possible. In this work,

we suggest practical methods to effectively parallelize index calculations using SIMD

features provided by Intel’s SSE2 (Streaming SIMD Extensions) and AVX (Advanced

Vector Extensions) instructions on a Sandy Bridge platform.This experimental

improvement during index calculations is attributed to thefact that SIMD registers can

be reused in multiple iterations without repacking their contents in each iteration of

the sieving stage. We propose a way to reduce cache misses during index calculations.

Our experiments reveal that SIMD parallelization can speedup the sieving stage by

15–40%. Since AVX supports 256-bit operations only on floating-point data and

index calculations involve integer arithmetic, our implementations do not benefit from

256-bit SIMD registers. Indeed, we get similar speedup figures with SSE2 (128-bit

registers) and AVX (floating-point index calculations on 256-bit registers). The

recently released AVX2 features support data-parallel integer operations on 256-bit

registers. Our implementations, when ported to AVX2, are expected to increase the

speedup figures substantially. To the best of our knowledge,no similar SIMD-based

implementation of sieving seems to have been reported in theliterature.

Keywords: Integer Factorization, Sieving, Multiple-Polynomial Quadratic Sieve

Method, Number-Field Sieve Method, Lattice Sieve Method, Single Instruction

Multiple Data, Streaming SIMD Extensions, Advanced VectorExtensions.


	Abstract
	Abstract

