
10th January 2017

Formal Methods Laboratory,

Dept. of Computer Sci. & Engg

António Anastásio Bruto da Costa

Pallab Dasgupta

1INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

VLSID 2017

Generating AMS Behavioral Models with

Formal Guarantees on Feature Accuracy

AMS Behavioral Modeling is highly significant today

Speed of Digital-Analog simulation is dominated by speed of analog simulation

• Analog simulation remains way too expensive

• AMS Behavioral models are therefore widely used to accelerate simulation

However, a significant fraction of the bugs found in chips today are attributed to incorrect

behavior at the digital-analog interface

• Which means that we are not doing the modeling correctly

• … Or not accurate enough for the right behaviors

How should we build AMS behavioral models?

2

What are the primary concerns in behavioral modeling?

Abstraction versus accuracy

Accuracy

• Often accuracy requirements are demanded without specific reference to the end use of the

model

• A practical strategy is to make the models as light as possible, while preserving the accuracy

of those behaviors that are relevant for the end use of the model

• But how?

CHALLENGE

• Designing behavioral models that are accurate with respect to features of interest, where …

• Features are functional properties of the component being modeled

3

Proving Feature Accuracy of AMS BMs

Proving feature accuracy is not easy

• AMS models are developed in various languages, most of which are not amenable for formal

analysis

• AMS models are developed in various levels of abstraction. For low levels of abstraction

adequate simulation is infeasible.

If we take a leaf out of existing practice for designing control systems ,,,

• The control law is designed and modeled using (say) a combination of MATLAB and

Simulink/Stateflow

• The model is validated and proven to be correct

• The model is translated into the implementation that runs on the platform

• There are significant challenges in this last step, but not unsurmountable ones

4

Formal Model driven AMS Behavioral Modeling

Our proposal:

• Formal modeling of design intent

• Formal definition of Features

• Formal methods for proving feature accuracy

• Automatic translation of feature accurate formal model into behavioral models of various types

Formal Model
Feature Accuracy

Verification

Generation of
feature accurate
behavioral model

5

Proposed Work Flow

Modeling

Phase

Control

Strategy

+

Environment

FormalizationRequirements

Model

Parameter

Tuning

Formal

Analysis

Engine
Formalized

Attributes

start

Features

Model Library

Feature Library

Meets

Specs?
Designer Input

No

Feature-Accurate

BMOD Generator

Feature-Accurate

Simulatable

VAMS

Model

BMOD

Generation

(Feature Values)

Analysis Results

Yes

6

7

@+(M.Vout ≥ 0.1*Vs) @+(M.Vout ≥0.9*Vs)

Rise Time of a second order response

of a signal is the time taken for a signal

(Vout) to rise from 10% to 90% of its

rated value (Vs).

The Assertion: Rise Time should be less than 10ms

##[0:10e-3]

Quantitative measurement

over a behaviour of a system.

Assertion Boolean (True/False)



Features: Real valued functions computed over assertion matches

8

end

var t1, t2 ;

@+(M.Vout ≥ 0.1*Vs) @+(M.Vout ≥0.9*Vs)

|-> RiseTime = t2 - t1;

,t1= $time , t2= $time

Rise Time of a second order response

of a signal is the time taken for a signal

(Vout) to rise from 10% to 90% of its

rated value (Vs).

The Assertion: Rise Time should be less than 10ms

Quantitative measurement

over a behaviour of a system.

Assertion Boolean (True/False)

Feature Real Valued Quantity

feature RiseTime(Vs);

begin

##[0:$]

The Feature: What is the Rise Time of the circuit?

MinRise <= RiseTime <= MaxRise

Features: Real valued functions computed over assertion matches

Model Structure: The Hybrid Automaton
V:=0 ; I:=Iprechg

Vlow ≤ Vchg ≤ Vhigh

I := Ichg

V == Vfullrate

I ≤ IEOC

|V – Vterm| <𝜺

Pre-charge
 𝑽 = (Vfullrate -V)/𝝉𝟏

 𝑰 = 0

0 ≤ V ≤ Vfullrate

I= Iprechg

Constant-Current
 𝑽 = (Vterm -V)/𝝉𝟐

 𝑰 = 0

Vfullrate ≤ V ≤ Vterm

I = Ichg

Constant Voltage
 𝑽 = 0

 𝑰 = -I/𝝉𝟑
|V - Vterm|≤𝜺

I > IEOC

Maintenance
 𝑽 = -V/𝝉𝟒
 𝑰 = 0

Vrestart≤ V ≤ Vterm

I = 0

Hybrid Automaton

as a Simulatable model

c1, c2, c3, c4, c5, c6, c7, c8 represent points

at which mode switching occurs.

CC,
CC, CC, CC,

9

Feature Computation over Sequence Matches

Restoration time for a battery charger:

Time to restore charge in the

maintenance mode.

CC,
CC, CC, CC,

feature restorationTime();

begin

var t1,t2;

state==M && v==Vrestart , t1 = $time ##[0:$] state == CV && v==Vterm , t2 = $time

| restorationTime = t2-t1;

end

1
0

Formal Feature Measurement Strategy

The Model

(Hybrid Automaton)

Features

Feature

Range

Analysis

Tool

Instrumented

Hybrid Automaton
Formal

Reachability

Analysis

Engine

Feature Range
[fmin , fmax]

reachable states

Feature Computation
Reachability Analysis in

Hybrid Systems

PHAVer

Or

SpaceEx

GUARANTEED FEATURE RANGE CONTAINMENT

• All possible runs can be tested (No Test-benches prepared).

• Mathematical Proof that the feature range will always be contained within fmin and fmax.

1
1 A. A. B. da Costa, P. Dasgupta and G. Frehse, Formal feature analysis of hybrid automata, 2016 ACM/IEEE International

Conference on Formal Methods and Models for System Design (MEMOCODE), Kanpur, India, 2016, pp. 2-11.

Feature-Accurate Behavioral Model Generation

Model

Feature

Model Parameters

• Timing Parameters

• Time constants for each mode

• Switching Parameters

• Parameters for Mode Invariants
and Mode Dynamics

For example, for the battery charger model

• Vrestart, IEOC, Vterm, Ichg, Iprechg, etc.

Model

Parameter

Tuning

Formal

Analysis

Engine

Meets

Specs?
Designer Input

No

Feature-Accurate

BMOD Generator

Feature-Accurate

Simulatable

VAMS

Model

BMOD

Generation

(Feature Values)

Analysis Results

Yes

1
2

Behavioral Model Structure

General outline:

• Model parameters are
parameter real

• Continous parameters are
electrical variables

• Guards are Boolean expressions

over PORVs.

V:=0 ; I:=Iprechg

Vlow ≤ Vchg ≤ Vhigh

I := Ichg

V == Vfullrate

I ≤ IEOC

|V – Vterm| <𝜺

Pre-charge

 𝑽 = (Vfullrate -V)/𝝉𝟏
 𝑰 = 0

0 ≤ V ≤ Vfullrate

I= Iprechg

Constant-Current

 𝑽 = (Vterm -V)/𝝉𝟐
 𝑰 = 0

Vfullrate ≤ V ≤ Vterm

I = Ichg

Constant Voltage

 𝑽 = 0
 𝑰 = -I/𝝉𝟑

|V - Vterm|≤𝜺
I > IEOC

Maintenance

 𝑽 = -V/𝝉𝟒
 𝑰 = 0

Vrestart≤ V ≤ Vterm

I = 0
■ 2 Switch Case Blocks

●Block 1: Change of control (mode switching)

●Block 2: Specification of dynamics for each mode of operation.

■ Maintaining pin-equivalence for simulation

●Use of sense resistors to sense currents on input lines

●Use of VAMS voltage and current constructs to specify outputs.

1
3

Code Snippets

@(initial_step) begin

Vpre = 0;

t_PC = $abstime;

STATE = PRE_CHARGE;

VTG = 0;

ICURR = 0;

end

INITIAL SET

p2 = ((V(icurr) >= 0) && (V(vtg) >= 0)) ? 1 : 0;

p4 = ((V(vtg) >= Vfullrate)) ? 1 : 0;

p6 = ((V(vtg) - Vterm <= epsilon) &&

(V(vtg) - Vterm >= -epsilon)) ? 1 : 0;

p8 = ((V(icurr) <= IEOC)) ? 1 : 0;

p10 = ((V(vtg) <= Vrestart)) ? 1 : 0;

GUARD PROPOSITIONS

case(STATE)

OFF: begin

if(p2) begin

$display("Guard(OFF -> PRE_CHARGE)");

case(STATE)

OFF: begin

if(p2) begin

STATE = PRE_CHARGE;

t_PC=$abstime;

Vpre = VTG;

end

end

PRE_CHARGE: begin

if(p4) begin

t_CC=$abstime;

Vchg = VTG;

STATE = CC;

end

end

MODE SWITCHING CONTROL

1
4

Code Snippets

case(STATE)

…

PRE_CHARGE: begin

VTG = Vpre + (Vfullrate - Vpre + epsilon)*(1-exp(-($abstime-t_PC)/T1));

ICURR = Iprechg;

end

CC: begin

VTG = Vchg + (Vterm - Vchg + epsilon)*(1-exp(-($abstime-t_CC)/T2));

ICURR = Ichg

end

…

endcase

MODE DYNAMICS

1
5

Simulation Results

Verilog-AMS Model HA Model - SpaceEx

1
6

Summary of Work

Design validation necessitates the use of formal specification and evaluation of feature ranges.

• Formal verification of AMS designs as unstructured Behavioural Models still eludes the

verification community.

• Formal Specification of a circuit as a skeletal model is possible using the construct of a

Hybrid Automaton.

• The Feature Indented Assertion Language introduced by us in the past supports the

specification of features for AMS designs.

• Formal Feature evaluation is germane to Analog Design Validation, and is a fairly recent

development.

Feature-Accurate BMODs can be generated using Formal Methods.

• Formal Analysis techniques can be used to compute a conservative range for features of AMS

designs (such as rise time, overshoot, etc.)

• A feature-accurate formal model (golden model) can be automatically translated into an

equivalent simulatable model in VAMS for use in further verification tasks.

1
7

• A. A. B. da Costa, P. Dasgupta and G. Frehse, Formal feature analysis of hybrid automata, 2016 ACM/IEEE

International Conference on Formal Methods and Models for System Design (MEMOCODE), Kanpur, India, 2016, pp. 2-

11.

• A. Ain, A. A. B. da Costa, and P. Dasgupta, Feature indented assertions for analog and mixed-signal validation,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 11, pp. 1928–1941, Nov

2016.

• R. Alur, C.Courcoubetis,et al, The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3-34,

1995.

• G. Frehse et al. SpaceEx: Ecalable Verification of Hybrid Systems. In Compuer Aided Verification (CAV), 2011.

• A. Ain, D. Pal, P. Dasgupta, S. Mukhopadhyay, R. Mukhopadhyay, and J. Gough. Chassis: A platform for verifying

PMU integration using autogenerated behavioral models. ACM Transactions on Design Automation of Electronic

Systems, 16(3):33:1-33:30, June 2011.

• S. Mukherjee, A. Ain, S. K. Panda, R. Mukhopadhyay, and P. Dasgupta, A Formal Approach for Specification-driven

AMS Behavioral Model Generation, in Proc. of DATE, 2009.

• Analog Devices. Designers guide to Charging Li-Ion Batteries, http://seattlerobotics.org/encoder/200210/liion2.pdf,

March 1998

Key References

1
8

http://seattlerobotics.org/encoder/200210/liion2.pdf

1
9

Thank you for your attention

