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AMS Behavioral Modeling is highly significant today

Speed of Digital-Analog simulation is dominated by speed of analog simulation

• Analog simulation remains way too expensive

• AMS Behavioral models are therefore widely used to accelerate simulation

However, a significant fraction of the bugs found in chips today are attributed to incorrect

behavior at the digital-analog interface

• Which means that we are not doing the modeling correctly

• … Or not accurate enough for the right behaviors

How should we build AMS behavioral models? 
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What are the primary concerns in behavioral modeling?

Abstraction versus accuracy

Accuracy

• Often accuracy requirements are demanded without specific reference to the end use of the 

model

• A practical strategy is to make the models as light as possible, while preserving the accuracy 

of those behaviors that are relevant for the end use of the model

• But how?

CHALLENGE

• Designing behavioral models that are accurate with respect to features of interest, where …

• Features are functional properties of the component being modeled
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Proving Feature Accuracy of AMS BMs

Proving feature accuracy is not easy

• AMS models are developed in various languages, most of which are not amenable for formal 

analysis

• AMS models are developed in various levels of abstraction. For low levels of abstraction 

adequate simulation is infeasible.

If we take a leaf out of existing practice for designing control systems ,,,

• The control law is designed and modeled using (say) a combination of MATLAB and 

Simulink/Stateflow

• The model is validated and proven to be correct

• The model is translated into the implementation that runs on the platform

• There are significant challenges in this last step, but not unsurmountable ones
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Formal Model driven AMS Behavioral Modeling

Our proposal:

• Formal modeling of design intent

• Formal definition of Features

• Formal methods for proving feature accuracy

• Automatic translation of feature accurate formal model into behavioral models of various types

Formal Model
Feature Accuracy 

Verification

Generation of 
feature accurate 
behavioral model
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Proposed Work Flow
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@+(M.Vout ≥ 0.1*Vs)                @+(M.Vout ≥0.9*Vs)                    

Rise Time of a second order response 

of a signal is the time taken for a signal 

(Vout) to rise from 10% to 90% of its 

rated value (Vs).

The Assertion: Rise Time should be less than 10ms

##[0:10e-3]

Quantitative measurement

over a behaviour of a system.

Assertion Boolean (True/False)



Features: Real valued functions computed over assertion matches
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end

var  t1, t2 ;

@+(M.Vout ≥ 0.1*Vs)                @+(M.Vout ≥0.9*Vs)                    

|-> RiseTime = t2 - t1; 

,t1= $time , t2= $time  

Rise Time of a second order response 

of a signal is the time taken for a signal 

(Vout) to rise from 10% to 90% of its 

rated value (Vs).

The Assertion: Rise Time should be less than 10ms

Quantitative measurement

over a behaviour of a system.

Assertion Boolean (True/False)

Feature Real Valued Quantity

feature RiseTime(Vs);

begin

##[0:$]

The Feature: What is the Rise Time of the circuit?

MinRise <= RiseTime <= MaxRise

Features: Real valued functions computed over assertion matches



Model Structure: The Hybrid Automaton
V:=0 ; I:=Iprechg

Vlow ≤ Vchg ≤ Vhigh

I := Ichg

V == Vfullrate

I ≤ IEOC

|V – Vterm| <𝜺

Pre-charge
 𝑽 = (Vfullrate -V)/𝝉𝟏

 𝑰 = 0

0 ≤ V ≤ Vfullrate

I= Iprechg

Constant-Current
 𝑽 = (Vterm -V)/𝝉𝟐

 𝑰 = 0

Vfullrate ≤ V ≤ Vterm

I = Ichg

Constant Voltage
 𝑽 = 0

 𝑰 = -I/𝝉𝟑
|V - Vterm|≤𝜺

I > IEOC

Maintenance
 𝑽 = -V/𝝉𝟒
 𝑰 = 0

Vrestart≤ V ≤ Vterm

I = 0

Hybrid Automaton 

as a Simulatable model

c1, c2, c3, c4, c5, c6, c7, c8 represent points

at which mode switching occurs.

CC,
CC, CC, CC,

9



Feature Computation over Sequence Matches

Restoration time for a battery charger:  

Time to restore charge in the 

maintenance mode.

CC,
CC, CC, CC,

feature restorationTime();

begin

var t1,t2;

state==M && v==Vrestart , t1 = $time ##[0:$] state == CV && v==Vterm , t2 = $time 

| restorationTime = t2-t1;

end

1
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Formal Feature Measurement Strategy

The Model

(Hybrid Automaton)

Features
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Range
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Tool

Instrumented
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Engine
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reachable states

Feature Computation
Reachability Analysis in 

Hybrid Systems

PHAVer

Or 

SpaceEx

GUARANTEED FEATURE RANGE CONTAINMENT

• All possible runs can be tested (No Test-benches prepared).

• Mathematical Proof that the feature range will always be contained within fmin and fmax.

1
1 A. A. B. da Costa, P. Dasgupta and G. Frehse, Formal feature analysis of hybrid automata, 2016 ACM/IEEE International

Conference on Formal Methods and Models for System Design (MEMOCODE), Kanpur, India, 2016, pp. 2-11.



Feature-Accurate Behavioral Model Generation

Model

Feature

Model Parameters

• Timing Parameters

• Time constants for each mode

• Switching Parameters 

• Parameters for Mode Invariants 
and Mode Dynamics

For example, for the battery charger model

• Vrestart, IEOC, Vterm, Ichg, Iprechg, etc.
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Behavioral Model Structure

General outline:

• Model parameters are 
parameter real

• Continous parameters are 
electrical variables

• Guards are Boolean expressions 

over PORVs.

V:=0 ; I:=Iprechg

Vlow ≤ Vchg ≤ Vhigh

I := Ichg

V == Vfullrate

I ≤ IEOC

|V – Vterm| <𝜺

Pre-charge

 𝑽 = (Vfullrate -V)/𝝉𝟏
 𝑰 = 0

0 ≤ V ≤ Vfullrate

I= Iprechg

Constant-Current

 𝑽 = (Vterm -V)/𝝉𝟐
 𝑰 = 0

Vfullrate ≤ V ≤ Vterm

I = Ichg

Constant Voltage

 𝑽 = 0
 𝑰 = -I/𝝉𝟑

|V - Vterm|≤𝜺
I > IEOC

Maintenance

 𝑽 = -V/𝝉𝟒
 𝑰 = 0

Vrestart≤ V ≤ Vterm

I = 0
■ 2 Switch Case Blocks

●Block 1: Change of control (mode switching)

●Block 2: Specification of dynamics for each mode of operation.

■ Maintaining pin-equivalence for simulation

●Use of sense resistors to sense currents on input lines

●Use of VAMS voltage and current constructs to specify outputs.
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Code Snippets

@(initial_step) begin

Vpre = 0;

t_PC = $abstime;

STATE = PRE_CHARGE;

VTG = 0;

ICURR = 0;

end

INITIAL SET

p2 = ( ( V(icurr) >= 0  ) && ( V(vtg) >= 0  )) ? 1 : 0;

p4 = ( ( V(vtg) >= Vfullrate )) ? 1 : 0;

p6 = ( ( V(vtg) - Vterm <= epsilon  ) && 

( V(vtg) - Vterm >= -epsilon  )) ? 1 : 0;

p8 = ( ( V(icurr) <= IEOC  )) ? 1 : 0;

p10 = ( ( V(vtg) <= Vrestart )) ? 1 : 0;

GUARD PROPOSITIONS

case(STATE)

OFF: begin

if(p2) begin

$display("Guard(OFF -> PRE_CHARGE)");

case(STATE)

OFF: begin

if(p2) begin

STATE = PRE_CHARGE;

t_PC=$abstime;

Vpre = VTG;

end

end

PRE_CHARGE: begin

if(p4) begin

t_CC=$abstime;

Vchg = VTG;

STATE = CC;

end

end

MODE SWITCHING CONTROL

1
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Code Snippets

case(STATE)

…

PRE_CHARGE: begin

VTG = Vpre + (Vfullrate - Vpre + epsilon)*(1-exp(-($abstime-t_PC)/T1));

ICURR = Iprechg;

end

CC: begin

VTG = Vchg + (Vterm - Vchg + epsilon)*(1-exp(-($abstime-t_CC)/T2));

ICURR = Ichg

end

…

endcase

MODE DYNAMICS

1
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Simulation Results

Verilog-AMS Model HA Model - SpaceEx

1
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Summary of Work

Design validation necessitates the use of formal specification and evaluation of feature ranges. 

• Formal verification of AMS designs as unstructured Behavioural Models still eludes the 

verification community.

• Formal Specification of a circuit as a skeletal model is possible using the construct of a 

Hybrid Automaton.

• The Feature Indented Assertion Language introduced by us in the past supports the 

specification of features for AMS designs.

• Formal Feature evaluation is germane to Analog Design Validation, and is a fairly recent 

development. 

Feature-Accurate BMODs can be generated using Formal Methods.

• Formal Analysis techniques can be used to compute a conservative range for features of AMS 

designs (such as rise time, overshoot, etc.)

• A feature-accurate formal model (golden model) can be automatically translated into an 

equivalent simulatable model in VAMS for use in further verification tasks.

1
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Thank you for your attention


