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Abstract—In current practice a formal analysis of hybrid
system models is assertion-based. The work presented here is
based on features that look beyond functional correctness towards
a quantitative evaluation of behavioural attributes. A feature
defines a real-valued evaluation function over a specific set
of traces. This article describes an improved method for the
interpretation of features over hybrid automata models. It further
demonstrates how Satisfiability Modulo Theory (SMT) solvers
can be used for extracting behavioural traces corresponding to
corner cases of a feature. Results are demonstrated on examples
from the control and circuit domains.

Index Terms—Hybrid Automata, Sequence Expressions, Fea-
tures, Model Checking

I. INTRODUCTION

The theory of Hybrid Automata (HA) has been extensively
studied in the context of designing provably safe designs of
embedded hybrid systems [1], [2], [3]. The formal safety
analysis of hybrid systems is becoming increasingly significant
with wider proliferation of automated control in circuits and
systems.

An important component of any formal verification frame-
work is the mechanism for formally specifying the design
intent. In the discrete domain, formalisms based on tempo-
ral logic have been widely adopted with the use of stan-
dard assertion languages, such as SystemVerilog Assertions
(SVA) [4] and Property Specification Language (PSL) [5].
Analog Mixed-Signal (AMS) extensions of assertions have
been explored as well [6], [7], [8] and provide constructs
for assertions over real-valued attributes. Assertion based
verification of HA has also been studied [9], while tools
such as SpaceEx [10] have been used to analyze timed and
hybrid models of embedded control systems using reachability
analysis and model checking. However, assertions in these
languages, in and of themselves limit the information carried
by their Boolean outcome. Our experience is that designers
want to understand what the design is doing and how it
behaves, not just the success/fail scenarios. This is naturally
expressed as a quantitative real-valued measure.

Existing literature on quantitative specifications [7], [11],
[12] is assertion based, and uses metrics, with positive values
indicating truth, negative values indicating violations, and
robustness being described as the distance of the quantity
from zero. Some metrics (such as in [13]) are associated
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with uncertainty. Assertion-based languages are designed to be
flexible with respect to the assertions written but their quan-
titative interpretations are restricted. On the other hand, the
language of features, Feature Indented Assertions (FIA) [14],
is designed to be flexible on the definition of the quantity, with
the set of assertions that can be expressed limited to those that
are sequences of predicates and events.

Many properties used in practice concerning system at-
tributes can be intuitively expressed as features. Related work
exists in learning parameters of Signal Temporal Logic (STL)
properties, such as [15], wherein the authors propose learning
tight bounds on parameters of STL properties from system
traces. The approach can indeed be used to learn those
features that can be expressed as parameters in STL properties.
However, note that expressing a feature to be learned as an
STL property can require the use of additional parameters,
thus making the analysis more expensive.

STL property based analysis is implemented in MATLAB
toolboxes such as Breach [16] and S-Taliro [17]. These can
be used for parameter synthesis, robustness monitoring and
parameter sensitivity analysis. The work presented in this
manuscript is largely influenced by the semiconductor industry
which finds expressing properties tedious in temporal logic
based languages. As a result, for digital designs, the IEEE
1800-2012 Standard SVA language is widely used across
the industry for expressing assertions for the validation and
verification of digital circuits. FIA is developed over the
fabric of SVA, which in practice enables the more intuitive
expression of real-valued quantities over system traces.

To understand features, consider the settling time of a DC-
DC Buck Regulator, defined as the time taken for the output
voltage x1 to settle to below V r + ε for two successive
openings of the capacitor switch; V r is the rated voltage
for the regulator. Booleanizing the notion of settling of x1

within 100 clock cycles in SVA, using propositional variables
x1_GE_Vr ≡ (x1>=Vr+E), and swOpen to mean the capacitor
switch is open, yields the following sequence:
x1_GT_Vr ##[0:100] first_match(@(posedge swOpen)&&

!x1_GE_Vr ##[0:$] @(posedge swOpen) && !x1_GE_Vr)

The expression represents the regulator’s behaviour of
settling, that is the first time when the regulator’s voltage
output x1 is found to be less than Vr+E for two consecutive
openings of the buck regulator capacitor switch, specified as
two successive capacitor switch open events, after having risen
above Vr+E. The semantics of the assertion depends on a
clock and all sequence delays are in terms of this clock. A
change of clock requires re-writing the assertion with delays
consistent with the revised clock, thereby inviting human error.
Additionally, this form of expression requires Booleanization
and is non-intuitive.
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The verification of a buck converter model against an
expression like the one above would yield a Boolean outcome.
However, the feature settling time is a real valued artifact. In
FIA this is expressed by overlaying the computation of settling
time over a sequence expressing the behaviour of settling.
This is done using the power of local variables to store state
variable values as the sequence matches, shown below in
Example 1. FIA was introduced in [14], wherein features
were used to analyze systems in a simulation environment.
The formal expression of features is based on the syntactic
fabric of assertions, but the definition of assertions is overlayed
with real valued functions that are computed over matches
of underlying logical expressions. This enables the formal
expression of definitions of standard features like rise time,
peak overshoot and settling time, and other design specific
features.
Example 1. Settling Time: The local variable st is assigned
in the antecedent and is used to define the feature value
settlingTime in the consequent.
feature settlingTime(Vr,E);
begin

var st;
(x1>=Vr+E) ##[0:$]

@+(state==Open) && (x1<=Vr+E), st=$time
##[0:$] @+(state==Open) && (x1<=Vr+E)

|-> settlingTime = st;
end

The feature in Example 1 has two parameters Vr and E that
are used later in the contained sequence expression. st is an
uninterpreted local variable of the feature that is assigned the
real time at the first opening of the switch after x1>=Vr+E,
but when x1<=Vr+E. The variable settlingTime has the same
name as the feature, and is assigned the value of the local
variable when the entire sequence matches. In the sequence
expression of the feature, the notable differences with SVA
are the following:

1) Predicates over real valued signals (PORVs) [7], such
as (x1>=Vr+E), are allowed. PORVs can be over real
variables or over the special variable state which refers
to the name of the mode of operation of the buck regulator
automaton.

2) @+ is used to denote the positive crossing of PORVs. For a
predicate involving variable state, this indicates that the
state is entered. Similarly @- may be used for negative
crossings of PORVs.

3) All intervals of the form ##[a:b] are treated as real time
intervals, as opposed to intervals countable in terms of
the number of clock cycles in SVA semantics. This avoids
rewriting the property if the clock cycle changes.

The repertoire of work presented in this article is rooted in
the use of features for the verification and analysis of hybrid
systems and consists of the following:

1) A methodology to compute an over-approximation of the
range of feature values for all possible runs of the system.

2) A methodology for finding the extremal values of the
feature range through successive refinement using SMT.

Methodology 2 makes its first appearance in this article.
Methodology 1 was first reported in [18], where a technique
for manually transforming models was outlined, but only for

very specific types of features. A more general technique was
later reported in [19], [20] with its integration into simulation
flows in [21]. Here, at the heart of Methodology 1, we present
an improved computation of the product automaton of [19].
The product in [19] implements conservative semantics for
the feature’s sequence expression, yielding a feature range
that ignores some matches of the sequence-expression, and
also includes matches with broader semantics than intended.
The semantics of the keyword first_match used in the SVA
sequence-expression enforces predictability in the match, by
ensuring that only the earliest observation of the contained
sub-sequence is matched. In this article, we extend the more
general product described in [19] with first match region
semantics described in Section III-B. In a feature, a combi-
nation of first-match and non-first-match semantics may be
used (as in SVA). However, in this article, for simplicity
we assume that all features are evaluated with first-match
region semantics. In the past, Methodology 1 was primarily
used with reachset computation tools like SpaceEx [10] to
compute feature ranges. However, this is not always the best
solution because in our experience the results tend to be
conservative. In practice, we find that tighter feature ranges
can be computed using SMT tools, at the price of longer run-
times, and possibly choking if the unfolding is too large. In
summary, we propose two technologies, one which is faster
but coarser, and another which is slower but more precise. We
present various case studies on hybrid systems from the circuit
and control domains.

II. PRELIMINARIES

Given a system defined as a HA H, and a feature F ,
the objective is to find the range of valuations of F over
all possible runs of H. This section presents the requisite
definitions of HA, and feature semantics over runs of a HA.

A. Hybrid Automata

A hybrid automaton is defined as follows:
Definition 1. Hybrid Automaton
A hybrid automaton [1] is a collection H = (Q, X, Lab, Init,
Dom, Edg, Act), where:
• Q is the set of discrete states also known as locations;
X is a finite set of real-valued variables. A valuation
is a function ν : X → R. Let V(X) denote the set of
valuations over X; Lab is a finite set of synchronization
labels; Init ⊆ Q×V(X) is a set of initial states; Dom(l)
: Q→ 2V(X) is a domain. Dom(l) ⊆ Rn is function that
assigns a set of continuous states to each discrete state
l ∈ Q.

• Edg is a set of edges, also called transitions. Each edge
e = (p, a, µ, r) consists of a source location p ∈ Q, a
target location r ∈ Q, a synchronization label a ∈ Lab,
and a transition relation µ ⊆ V(X)×V(X). A transition e
is enabled in state (p, ν) if for some valuation ν′ ∈ V(X),
(ν, ν′) ∈ µ. We require that for each location p ∈ Q,
there be a stutter transition of the form (p, κ, µIDX

, p),
µIDX

= {(ν, ν)|ν ∈ V(X)}.
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• Act is a function that assigns to each location a (possibly
infinite) set of activities, where each activity f : R≥0 →
V(X) represents an evolution of the variables over time.
The set of activities is usually defined implicitly as the
set of solutions to a system of differential equations or
inclusions. We denote the expression associated with the
time derivative of a variable x ∈ X in location p ∈ Q as
flowxp .

A state of H is given as (p, ν) ∈ Q× V(X). �
For valuation ν, we use ν↓U as the projection of ν on

the set of variables U ⊆ X . For variable u, ν↓u is the
value of variable u ∈ X in state ν. Similarly for a set of
valuations R, R↓U and R↓u are respectively the projection of
R on the variable set U , and variable u respectively. For an
edge e = (p, a, µ, r), e ∈ Edg, G(µ) = {ν|(ν, ν′) ∈ µ}.
G(µ) is commonly known as the transition guard and is
often represented as a set of predicates over variables in
X . Similarly R(µ, ν) = {ν′|(ν, ν′) ∈ µ}, is known as the
reset relation, and most often appears as a function, i.e.
R(µ, ν) = ν′, (ν, ν′) ∈ µ. When a system consists of multiple
interacting components, we assume that a parallel composition
of automata is available prior to applying the algorithms
presented in this article. The methods discussed in this article
are applied on linear hybrid systems that have monotonically
increasing or decreasing variable dynamics in each location.
Non-linear systems can be approximated as piece-wise affine
models using techniques such as hybridization [22]. Further-
more, a location with non-monotonic variable dynamics can
be transformed into an equivalent model with location-wise
monotonic variable dynamics. The constraint of monotonicity
is used in the article to accommodate existing tools (which use
may, non-urgent, semantics on transitions). With tools that use
urgent semantics, this restriction can be lifted.
Definition 2. Run of the hybrid system H

A run of the hybrid system H, is a finite or infinite sequence
ρ : σ0 7→t0

f0
σ1 7→t1

f1
σ2 7→t2

f2
· · ·

of states σi = (li, νi), non-negative reals ti ∈ R+, and
activities fi of location li, such that for all i ≥ 0,

1) fi(0) = νi,
2) For all 0 ≤ θ ≤ ti, fi(θ) ∈ Dom(li),
3) There exists an edge (li, a, µ, li+1) such that

(fi(ti), νi+1) ∈ µ and νi+1 ∈ Dom(li+1). �
The HA model for a two location DC-DC Buck Regula-

tor [23], in Figure 1, presents analysis complexities due to its
high location switching frequency, yet is simple enough to help
explain the notion of feature analysis. It has two variables, the
voltage across the load (x1) and the load current (x2). The
dynamics in each mode of operation may be found in [23].
The notation u′ in a reset relation on an edge is the value of
u after the transition is taken. This model is used as a running
example in this article along with the feature Settling Time

described in Example 1.

B. Feature Semantics for Hybrid Automata

This section presents the semantics of features which are
an improved version of [19]. We introduce stricter first-match
semantics for feature matches in Section III-B, while a more

Open

0 ≤ τ ≤ (1−D)T

τ ≥ (1−D)T
ẋi = Aox+Bo

τ := 0

Closed

0 ≤ τ ≤ DT
ẋi = Acx+Bc

τ ≥ DT
τ := 0

Fig. 1: HA model of a DC-DC Buck Regulator [23].

general semantic for feature-matches is presented here. The
language for expressing features, FIA, uses Predicates Over
Real Variables (PORVs)[7]. A feature is formally defined
using the following syntax,

feature Fname (Lp);
begin

var L;
S |-> Fname = F ;

end

where Fname is the feature name, Lp and L are respectively
the list of parameters and the list of local variables used in the
body of the feature. Fname is a special variable representing
the value of the feature assigned to it in the expression F . S
is a sequence expression of the form,

s1 ## τ1 s2 ## τ2 ... ## τn−1 sn
and F is a linear function over L which assigns the feature

value. τi represents a time interval, also referred to as a delay
operator, and is of the form [a : b], where a, b ∈ R+, a ≤ b,
and additionally b can be the symbol $, representing infinity.

Sub-expressions s1, s2, ..., sn are each of the form
"D ∧ E , A", where D is a Boolean expression of PORVs in
disjunctive normal form, E is an optional event and A is an
optional list of comma-separated local variable assignments.
For sub-expression si, we use Cond(si) ≡ Di ∧ Ei to
represent a Boolean expression of PORVs and an event, and
Ai = [A1

i , A
2
i , ..., A

k
i ] is a list of k local variable assignments

in si. The feature expression S |-> F is interpreted as the
computation of F whenever there is a match of sequence
expression S. We use the notation Sji , 1 ≤ i ≤ j ≤ n to
denote the sub-sequence expression si ## τi ... ## τj−1 sj .

Given run ρ of H, the following definitions indicate what
it means for a feature to match ρ.
Definition 3. Event Match: An event E ≡ @+(P ) matches
in a run ρ : σ0 7→t0

f0
· · · 7→ti−1

fi−1
σi 7→ti

fi
· · · at index i iff

i > 0, ti−1 > 0, ∀θ∈[0:ti−1)(li−1, fi−1(θ)) 2 P
∧
σi � P .

We define @−(P ) ≡ @+(¬P ) and @(P ) ≡ @+(P ) ∨
@−(P ).

We use the notation σi �ρ E to denote the fact that the
event E matches in the run ρ at index i. �

To extend predicates to be evaluated over locations of the
HA, for state σ = (l, ν), a predicate P can also take the form,
state == l, where state is a special variable denoting the
location label.
Definition 4. The notation σ �ρ s, where s is treated as
Cond(s) and σ = (l, f(t)), is extended to conjunctions
and disjunctions of PORVs and events recursively, as defined
below. Note that s does not have any delay operators.
• σ �ρ P iff P is a PORV and P is true for signal valuation
f(t), or P ≡ (state == l).

• σ �ρ C, where C = P1 ∧P2 ∧ ...∧Pn, Pi is a PORV iff
∀ni=1 σ � Pi.
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• σ �ρ D, where D = C1∨C2∨...∨Cn, Ci is a conjunction
of PORVs iff ∃ni=1 σ � Ci.

• σ �ρ D ∧ E, where D = C1 ∨ C2 ∨ ... ∨ Cn, Ci is
a conjunction of PORVs and E is an optional event, iff
σ �ρ D ∧ σ �ρ E.

For hybrid system H and sub-expression s, we say that l � s if
for some σ = (l, ν), σ �ρ s. For sub-expression sj = Dj∧Ej ,
Cji is the ith conjunct term in Dj . Υj

i is the state context for
Cji , i.e. Υj

i = l iff (state == l) is a PORV in Cji . Similarly
Υj is the state context of event Ej in sj .1 �

Definition 5. Match M of Sequence Expression S: A run
ρ : σ0 7→t0

f0
σ1 7→t1

f1
σ2 7→t2

f2
· · · has a match M =

〈i1, . . . , in〉 of the sequence expression S = s1 ## τ1 s2 ##

τ2 ... ## τn−1 sn, n ≥ 1 if ∀n−1j=1 ij ≤ ij+1 and the following
conditions hold:
• σi1 �ρ s1,
• σi2 �ρ s2 and ti1 + ...+ ti2−1 ∈ τ1,
• and so on ... until,
• σin �ρ sn and tin−1

+ ...+ tin−1 ∈ τn ,
Local variables associated with sj are assigned values from
variable valuations in state σij . Note that there can be multiple
matches of S in ρ, and multiple runs of H that match S. Each
match M defines a feature value, denoted Eval(M, ρ,F),
computed as the value of feature expression F over values of
the local variables assigned during match M in run ρ. �

Definition 6. Feature Range of a Hybrid Automaton: Given
a feature sequence expression S and a feature computation
function F , that computes the value of Fname, the feature
range [Fmin,Fmax] of a hybrid automaton H is computed as
follows:
• Fmin = min{ Eval(M, ρ,F) | ρ is a run in H and M

is a match of S in ρ }
• Fmax = max{ Eval(M, ρ,F) | ρ is a run in H andM

is a match of S in ρ }
Note that max and min are computed over all matches in all
runs ρ of H . �

III. METHOD-1: FEATURE TRANSFORMATIONS

The problem of feature analysis can be formally defined as
follows: Given a HA H = (Q,X,Lab, Init,Dom,Edg,Act)
and a feature F , we wish to compute Fmin and Fmax over
all runs ρ of H.

The methodology consists of the three steps shown in
Figure 2. Compared to [19], the Feature Automaton definition
is re-written to better capture the feature intent of Section II-B,
and in Section III-B we present an improved construction of
the product automaton.

A. Feature Automaton Construction

The feature automaton is a monitor automaton which is
similar to a HA, but allows guards to be written with predicates
over location labels and events. Additionally, unlike the HA in
Definition 1, a feature automaton also has an accept location.

1We assume for simplicity that a conjunct in a sub-expression of the
sequence does not have any contradictory ‘state’ constraints.

Feature

Construction
Automaton

Product

Construction
Automaton

Feature Evaluation
via

MF

HF
Fmax

Fmin

F H

Flowpipe Analysis

Fig. 2: Methodology-1: Feature Transformations.

Given a HA H = (QH , XH , LabH , InitH , DomH , EdgH ,
ActH), a feature F with local variable set L = {l0, l1, ..., lm},
sequence expression S = s1 ## τ1 s2 ## τ2 ... ## τn−1 sn
and feature computation expression F that assigns the feature
value to Fname, we construct the feature automaton as follows:
Definition 7. Feature Automaton: A Feature Automaton for
HA H is a collection MF = (Q,Z,X, V,C,E, Init, qF ),
where:
• Q = {q1, q2, ..., qn+1, qF} ∪ Z is the set of feature

locations. Intuitively, location qi is reached when the
sequence expression has matched upto si−1 and it awaits
the match of si within the time interval τi−1. qF is the
accept location;

• Z = {qi,j | |Ai| > 1, 1 ≤ i ≤ n, 1 ≤ j ≤ |Ai| − 1} ∪
{qn+1, qF} is a set of pause locations where time does
not progress. If a subexpression has multiple assignment
statements, then a sequence of pause locations are added
corresponding to all but the first assignment, to capture
the order in which these assignments are made. Pause
locations qi,j are added if |Ai| > 1. State qi,j is reached
when the jth assignment of si has been executed;

• X = XH ; V is the set of feature variables, V = L ∪
{Fname}; C = {t, lt} is a set of timers where t measures
cumulative time along a match, and lt is a location timer,
measuring time spent in every location. All timers are
initially 0;

• We augment the assignment list Ai for sub-expression si
with the assignment lt:=0 for the location timer lt.

• An event of the form @∗(x ∼ a) is associated with
PORVs as follows:
– @+(x ≥ a) is associated with (x == a)

∧
flowxq > 0

– @−(x ≤ a) is associated with (x == a)
∧
flowxq < 0

• E ⊆ Q × V(QH ∪X ∪ V ∪ C) × Q is the set of edges
defined by the following rules:
– ∀1≤i≤n(|Ai| = 1)→ (qi, µi, qi+1) ∈ E
– ∀1≤i≤n(|Ai| > 1)→ (qi, µi, qi,1) ∈ E ∧ ∀1≤j<|Ai|−1

(qi,j , µi,j , qi,j+1) ∈ E∧(qi,|Ai−1|, µi,|Ai−1|, qi+1) ∈ E.
– ∀1≤i<n µi = (Cond(si)∧(lt ∈ τi)∧A1

i∧{lt′ == 0});
µn = (Cond(sn) ∧A1

n)
– ∀1≤i<n ∀1≤j≤|Ai|−1 µi,j = true ∧Aj+1

i

– (qn+1, µF , qF ) ∈ E, where µF = {F ′name == F}
– For relation µ, ω denotes the projection of the relation
µ onto V(X ∪ V ∪ C)× V(X ∪ V ∪ C).

• Init = {q1} × [0]|V ∪C is the set of initial states.
A state of MF is given as (q, ν) ∈ Q× V(X ∪ V ∪ C). �

For feature Settling Time of Example 1, the FA is shown
in Figure 3. The FA has two timer variables, t for measuring
time along the entire run, and lt for measuring the time spent
in each location of the FA, indicative of delays separating
subexpressions in the feature sequence expression. Each lo-
cation of the FA represents the match of some feature sub-
expression. qi represents that the temporal sequence of events
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q1
ṫ = 1

t == 0∧
l̇t = 1

lt == 0

lt := 0

x1 ≥ Vr + E
q2

ṫ = 1
l̇t = 1

x1 ≤ Vr + E
@+(state == Open)∧ q3

ṫ = 1
l̇t = 1

x1 ≤ Vr + E∧
@+(state == Open)

lt := 0q4
ṫ = 1
l̇t = 1

qF true

settleT ime := st

lt := 0, st := t

Fig. 3: Feature Automaton for feature Settling Time.

and PORVs leading up to (but not including) the ith sub-
expression has been observed. The transition between qi and
qi+1 is guarded by the Boolean expression of PORVs and
events corresponding to the ith sub-expression; the associated
set of assignments to local variables are computed along this
transition. Progressing along transitions between locations of
the automaton corresponds to matching each sub-expression.
When the nth sub-expression matches, the entire sequence
expression has matched and the automaton transitions to state
qn+1. At qn+1, all local variables hold values assigned to
them along the match, and the feature is computed along the
unguarded transition from qn+1 to qF , the accept location of
the automaton.
Definition 8. Acceptance of run ρ of H by MF : Run
ρ : σ0 7→t0

f0
σ1 7→t1

f1
σ2 7→t2

f2
· · · of H is accepted by feature

automaton MF for feature F with sequence expression s1 ##

τ1 s2 ## τ2 ... ## τn−1 sn iff ∃ σi1 , σi2 , ..., σin , such that
ij ≤ ij+1, where, σi1 � s1;
• σi2 � s2

∧
(lt =

∑i2−1
k=i1

tk) ∈ τ1; . . .
• σin � sn

∧
(lt =

∑in−1
k=in−1

tk) ∈ τn−1 �

Theorem 1. Given a feature, F in FIA, for HA H, the feature
automaton MF = (Q,Z,X, V,C,E, qF ) for F correctly
captures the following feature semantics:

A If a run ρ of H yields a match M, then the run ρ
is accepted by feature automaton MF with the same
valuation as Eval(M, ρ,F).

B If a run ρ of H is accepted by MF with valuation γ, then
ρ has a match M, such that Eval(M, ρ,F) = γ.

Proof. We prove the theorem in two parts as follows:
Part A: Let ρ : σ0 7→t0

f0
· · · 7→ti1−1

fi1−1
σi1 7→

ti1
fi1
· · · 7→ti2−1

fi2−1

σi2 7→
ti2
fi2
· · · be a run of H that matches the sequence

expression S = s1 ##τ1 s2 ## τ2 ... ##τn−1 sn, with
match M = 〈i1, . . . , in〉. Let MF be the feature automaton
constructed for feature F .

The initial location of MF is q1. In the prefix σ0 7→t0
f0

· · · 7→ti1−1

fi1−1
σi1 of ρ, σi1 �ρ s1 and G(µ1) = s1, hence

the state q2 is reachable in the feature automaton with state
σi1 of ρ, with associated assignments to local variable made
along the transition. For configuration 〈qj , σij 〉 reachable in
MF , 〈qj+1, σij+1

〉 is reachable for all 1 ≤ j ≤ n. Given
that 〈qj , σij 〉 is reachable, (qj , µj , qj+1) is an edge in MF ,
and M is a match, we have σij �ρ sj and G(µj) ≡ sj
∧ (tij−1 + ... + tij−1) ∈ τj , 〈qj+1, σij 〉 is reachable, via
one or more transitions through pause states. Now, since
σij 7→

tij
fij
· · · 7→tij+1−1

fij+1−1
σij+1 , configuration 〈qj+1, σij+1〉 is

also reachable. Inductively, when configuration 〈qn, σin〉 is
reached, 〈qn+1, σin〉 is also reachable. Since G(µn+1) = true,
〈qF , σin〉 is reachable. Along each transition, resets corre-

P1 P1

P2 P2

Signal x

Signal y

Time

r1

r2

r4

r5r3

P2

∆2 ∆1

Fig. 4: An illustration of first-match region semantics.

sponding to local variable assignments appropriately update
the values of the local variables which form part of the feature
automaton state. The feature expression is computed on the
transition to location qF .

Part B: The run ρ of H is accepted by MF . Therefore,
∃ σi1 , σi2 , ..., σin in ρ such that ij ≤ ij+1 and σi1 �ρ s1,
σi2 �ρ s2 ∧ ti1 + ... + ti2−1 ∈ τ1, and so on ... until,
σin �ρ sn ∧ tin−1

+ ... + tin−1 ∈ τn. The feature valuation
computed over state σin , on acceptance, is γ. By Defini-
tion 5, M = 〈i1, i2, ..., in〉 is a match of F with valuation
Eval(M, ρ,F) = γ in the feature range of Definition 6.

B. Product Automaton Construction

The product construction of the HA H and the FA MF

yields a special type of automaton. In the classical prod-
uct construction, non-determinism present in the component
automata carries over to the product. The more traditional
product construction, defined in [19], is conservative and
reports unintentional matches, while at times missing matches
that were otherwise intended. It is thus not complete. In
this article a non-standard product is defined that has clearer
semantics for matches than that described in earlier work. To
accomplish this, we introduce first-match region semantics.

We explain this with an example. Consider the designer’s
intention to specify the pattern, "P1 is true and thereafter P2
is true", and measure the time delay between the two. This
translates to the sequence-expression “P1,t1:=$time ##[0:$]

P2,t2:=$time”, where P1 and P2 are PORVs over analog
signals x and y respectively, and the feature computation is
(t2-t1). The truth intervals of the PORVs are shown as r1,
r2, r3, r4 and r5 in Figure 4. With the semantics of [19], the
maximum feature value would be ∆1 (matching points in r1
with points in r5). But the intent is to match points where P2 is
true immediately subsequent to points where P1 is true, giving
a maximum feature value of ∆2. This cannot be captured by
the semantics of [19]. First match region semantics matches r1
only with r2, giving a maximum feature value of ∆2. Region
r4 matches with r5. Region r3 doesn’t contribute to any match.
Definition 9. First-match Region Semantics

Given a sequence expression, S=s1##τ1 s2##τ2...##
τn−1 sn, and M = {〈11,12,. . . ,1n〉,〈21, 22,. . . , 2n〉 . . .}, the
set of all matches of S in run ρ : σ0 7→t0

f0
σ1 7→t1

f1
σ2 7→t2

f2
· · ·

of the hybrid systemH, 〈i1, i2, . . . , in〉 ∈M follows first match
region semantics iff:
∀nj=2∃θl∈[0,Tij

] ∃θr∈[Tij
,∞)

(∀t<θl〈i1, . . . , k〉 is not a match for Sj1, Tk = t) and
(∀θl≤t′≤θr 〈i1, . . . , k′〉 is a match for Sj1, Tk′ = t′).

where, Tm = Σm−1z=0 tz . �
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The product definition presented here ensures that only runs
following first match semantics reach the final location in MF .
The exclusion of other runs that would have matched in a
traditional product is intentional, and imposed to accurately
embody first match semantics for feature computation in
FIA in the generated product. Additionally, the FA doesn’t
follow the traditional structure of an observer automaton for
verification. These reasons taken together motivate the need for
a non-standard product construction. We denote the valuation
of variables in the state σ in a run ρ as η(σ), and the valuation
of the variable v in the state σ as η(σ[v]).
Definition 10. Level Sequenced Hybrid Automaton (LSHA)
- MF ./ H : The product of feature automaton MF =
(QS ,Z,XH ,V,C,E, InitS , qF ) and HA H = (QH , XH ,
LabH , InitH , DomH , EdgH , ActH), is defined as the HA
HF = (QF , XF , LabF , InitF , DomF , EdgF , ActF ) where,
• QF = QH ∪ {qF} ∪ {Z ×QH};
• XF = XH ∪ V ∪ C ∪ {level};
• LabF = LabH , is the set of synchronization labels;
• InitF = InitH × InitS × {level == 0};
• DomF (l) = DomH(l)× R|V ∪C|+1 if l ∈ QH ,

= R|XF | if l ∈ {Z ×QH} ∪ {qF}
• EdgF ⊆ QF×LabF×µV(XF )×V(XF )×QF is defined by

the following rules, where l ∈ QH and qi, qi′ ∈ QS/Z,
µH and µi are the transition relations µH ⊆ V(XH) ×
V(XH) and µi ⊆ V(QH ∪ XH ∪ V ∪ C) × V(QH ∪
XH ∪ V ∪ C), with ωi as defined in Definition 7. The
relation l � µi, to be read µi is applicable in l, is true iff
∃Ci

j∈siΥ
i
j == l; and for edge e = (l, a, µH , l

′), e � µi
iff for si = Di ∧ Ei either Ei ≡ @−(state == l) or
Ei ≡ @+(state == l′). :

l
a

↪−−→
µH

l′

l
a

↪−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µH×µID{V∪C}×{(level==0)∧(level′:=level)}

l′
(13.1)

l
a

↪−−→
µH

l′
∧

qi ↪−→
µi

qi′
∧

l 2 µi

l
a

↪−−−−−−−−−−−−−−−−−−−−−−−−−→
µH×(µID{level}∪V∪C∩{level==i−1})

l′
(13.2)

qi ↪−→
µi

qi′
∧

l � µi

l ↪−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µIDXH

×ωi×{(level==i−1)∧(level′:=i)}
l

(13.3)

qi ↪−→
µi

qi,1
∧

(l � µi ∨ e � µi)
∧

qi,1 ∈ Z
l ↪−−−−−−−−−−−−−−−−−−−−−−−−−−−→
µIDXH

×ωi×{(level==i−1)∧(level′:=i)}
(qi,1, l)

(13.4)

qi,j ↪−−→
µi,j

qi,j+1

∧
qi,j , qi,j+1 ∈ Z

(qi,j , l) ↪−−−−−−−−−−−−−−→
µIDXH∪{level}×ωi,j

(qi,j+1, l)
(13.5)

qi,j
µi,j
↪−−→ qi′

∧
qi,j ∈ Z

∧
qi′ /∈ Z

∧
e 2 µi

(qi,j , l) ↪−−−−−−−−−−−−−−→
µIDXH∪{level}×ωi,j

l
(13.6)

qi,j
µi,j
↪−−→ qi′

∧
qi,j ∈ Z

∧
qi′ /∈ Z

∧
e � µi

(qi,j , l) ↪−−−−−−−−−−−−−−→
µIDXH∪{level}×ωi,j

l′
(13.7)

l

in out

G(µi)

in To next

in

G(µi)

level

l |= G(µi)

At level == i− 1

qi
µi−֒→ q′i

lµi

out

G(µi) ∧ µH

µi has no events
over location labels

G(µi)

lµ̂i

µH

G(µi)

level ==
i− 1

level ==
i− 1

Fig. 5: Splitting for location l ∈ QH when l � G(µi), in and
out represent incoming and outgoing transitions of qH .

Open

0 ≤ τ ≤ (1−D)T

G1
_xi = Aox+Bo

τ := 0
Closed

0 ≤ τ ≤ DT

_xi = Acx+BcG2

τ := 0

^x1 <= V r + ǫ

x1 >= V r + ǫ x1 >= V r + ǫ

qF true

_xi = 0

level := 1 level := 1

G1 ^ level == 1
τ := 0

G2 ^ level == 1
level := 2; τ := 0; st := ct

G1 ^ level == 2
τ := 0

level := 3; τ := 0

level == 2 ^G2 ^ x1 <= V r + ǫ

settleT := st
level == 3

level := 3; τ := 0

Fig. 6: LSHA for feature Settle Time. G1 and G2 are
transition guards between the locations as in Figure 1.

• The function ActF assigns a set of activities to each loca-
tion. The expression associated with the flow flowF

q
x :

R≥0 → Rn for each x ∈ XF in location l ∈ QF is
defined as follows:
flowF

l
x = 0 for each x ∈ XF if l ∈ Z ×QH ,

= 0 for each l ∈ QF if x ∈ V ,
= 1 for each l ∈ QF if x ∈ C,
= flowH

l
x if l ∈ QH

∧
x ∈ XH

In order to enforce first match semantics, for each qi ↪−→
µi

qi′
∧
qH � µi, qi, qi′ ∈ QS , i > 1, qH , q′H ∈ QH , at level

i−1, qH is replaced in QF according to the transformation in
Figure 5. Herein, qHi

is identical to qH and differs only in the
invariant as shown. G(µi) is the closure of the compliment of
conditions satisfying si. �

The behaviour asserted by the feature sequence-expression
is built into the product automaton called a level-sequenced
hybrid automaton (LSHA). In the LSHA, the level is a
syntactic structure derived from the sequence-expression. The
value of the variable level indicates how much of the se-
quence expression has matched. The variable level is set to i
when sub-expression i matches. Transitions from one level
to another assign an appropriate value to level indicative
of the subscript of the sub-expression matched, while also
executing assignments to local variables associated with the
match. Initially, when level is 0, corresponding to location
q1 of MF , the automaton waits for a match of s1. When s1
matches, level is non-deterministically incremented. Due to
first-match semantics, a constrained form of non-determinism
is applicable when level > 0. The non-determinism in the
control allows computation of a continuum of matches. When
the feature has matched (ending with the match of the last
sub-sequence), the feature is computed and control moves to
the final location of MF .
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The use of variable level in HF allows us to avoid the typi-
cal blow-up that results from the standard product construction
used in [19]. Given a HA with N locations and a feature F
with K sub-expressions, ignoring pause locations, the product
automaton in [19] has N × (K + 1) locations, while the one
here has atmost N × (1 + 2 × (K − 1)) locations. Note that
in [19] first-match semantics isn’t used. Also, the number of
locations in the LSHA here would reduce to N + K + 1
if sub-expressions contain events over location labels, and
further to N + 1 if restrictions on monotonicity are lifted.
We observe that, although the theoretical worst case bound
for the product defined here is worse than that of a traditional
product, in practice the use of leveling enables faster analysis
of features. For instance without the variable level the vanilla
product from [19] (where location copies are made for each
level) when analyzed by SpaceEx, under equivalent analysis
settings, takes 1m:30s and twice the memory with 7 locations
as opposed to the 20s with 3 locations and the variable level
for the Settle Time feature in Example 1. The LSHA for
Settle Time is shown in Figure 6.

C. Feature Evaluation

The product automaton is, by construction, a HA. We
compute all values of Fname reachable in location qF of
HF = MF ./ H. Using reachset computation tools on HF , a
projection of the entire reachset R in location qF on Fname
gives us an overapproximation of the reachable range of values
for Fname. A reachset computation tool may computes R in
various ways. In this article we use tool SpaceEx. The feature
range [Fmin,Fmax] is computed as follows:

Fmin = min
∀σ∈R

η(σ[Fname]);

Fmax = max
∀σ∈R

η(σ[Fname]);

where η(σ[Fname]) is the valuation of Fname in state σ.

IV. METHOD-2: FEATURE ANALYSIS OF CORNER CASES

Methodology-1 demonstrates how reachability analysis
tools are used to compute estimates on the range of feature val-
ues. However, these tools do not show how extremal values can
be reached. Additionally, due to over-approximation errors,
corners of the feature interval generated by these tools may
not be realizable. SMT solvers can generate reachability proofs
for a reachable goal state. For a feature, this means that a proof
of how feature value f̂ is realized is constructed in terms of
a concrete trace for which the evaluating the feature yields
f̂ . SMT solvers for reals [24] use decision procedures that
use overapproximation techniques. The analysis is bounded in
the values of SMT variables and in the number of discrete
automaton transitions (a hop bound). Hence the outcome is an
overapproximation of a bounded reachability question. If real-
istic and sufficiently large bounds are used, the boundedness
is acceptable, since for most realistic systems the domains of
variables in the HA model are bounded. To improve reliance
on the results obtained, bounds used must come from knowl-
edge of the design and results must be interpreted in terms
of these bounds. Due to overapproximations, the proof of
reachability for a goal in SMT could be fictitious, nevertheless

Feature dReach

Hybrid
Automaton

(H)

Feature
(F)

Feature Value

Search
Search

Loop

Update Goal

Reachable
(Trace) Not Reachablefmin fmax

Trace Trace
++

3

45 5

Transformation
2

Step

+
dReal

(SMT Solver)

1 1

Fig. 7: Outline of the Feature Value Search using SMT.

it provides insight to build simulations to verify the reported
scenario. In practice we find that overapproximations produced
by reachset computation tools like SpaceEx are larger than that
produced when using SMT solvers.

It is important to note that application of Methodology 1
in Section III reduces the problem of feature analysis to a
reachability question. The generality of the algorithm allows
it to be used with a variety of reachability analysis tools.
SMT solvers, by nature, are less inclined to perform flow-pipe
analysis (which generates an overapproximation of the state-
space) and more inclined towards finding a single run that
satisfies a goal constraint. This therefore becomes a challenge
when we relate the notion of identifying the interval of values
a feature can take for the HA, when using SMT solvers. We
answer the following questions:

1) How would a reachability question for computing the
feature interval be posed as an SMT solver goal?

2) Any such goal will only yield a single feature value, and
not a range. How would one then compute the extreme
feature values?

Once the range of feature values is identified using SMT, the
SMT solver can provide a satisfying trace, thereby solving the
input selection problem for analyzing corner cases for features.

A summary of the methodology used to compute the feature
range using SMT is shown in Figure 7. The feature to be
analyzed is expressed in FIA. The HA model along with the
feature is taken through the transformation step (Methodology-
1). The tuned model is an implicit representation of all legal
executions of the automaton, biased toward computing the
feature attribute.

The SMT question about feature value f is: Is there a
run of the automaton that results in feature value f? On
the other hand, the Feature Range Analysis must answer the
question: What is the range of feature attribute values for H?
To bridge this gap, we use a two part reduction described in
Sections IV-A and IV-B.

A. SMT based modelling of the Hybrid Automaton Dynamics

The HA, along with the various model constraints such as
locations, their dynamics and invariants, transitions between
locations and transition guards and resets, are modeled as
clauses in SMT. We use the translator dReach [25], which in
turn uses SMT solver dReal [24] for modeling and analyzing
hybrid behaviours over reals. dReal internally maintains the
coupling between HA variables during its computation steps
using these constraints. We now discuss the caveats of the
decision outcomes presented by dReach/dReal. dReal solves
the δ-decision problem, to decide if a given formula is false
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or δ-true (dually, whether it is true or δ-false). An SMT
formula is δ-true if it remains true under δ-bounded numerical
perturbations to atomic clauses in the formula [24]. For a
feature, this means that a feature goal is reachable under δ-
bounded numerical perturbations to the goal, and sentences
describing the system [25]. Since realistic hybrid systems
interact with the physical world, it is impossible to avoid
slight perturbations. Hence, this is a very useful result as
it gives feature values that are reachable under reasonable
choices for δ [24]. The δ-decision problem has been shown
to be decidable for first order sentences over bounded reals
with arbitrary Type 2 computable functions (real functions
that can be approximated numerically, such a polynomials,
trignometric functions, and Lipchitz-continuous ODEs). dReal
guarantees the result of unsatisfiability of a goal G over K
transitions (hops) with δ perturbations on sentences describing
the system.

The model is unrolled in terms of number of transitions,
upto the given bound K. For instance, if our goal were to reach
location qF in the location graph of Figure 6, a minimum of
five transitions would be required, resulting from an unrolling
of the model six times starting with location Closed, to reach
location qF , reachable only when level is 3, as shown below:
〈Closed, level = 0〉 → 〈Closed, level = 1〉 → 〈Open, level = 2〉
〈qF , level = 3〉 ← 〈Open, level = 3〉 ← 〈Closed, level = 2〉

The encoding of a HA as SMT clauses for dReal can be
found in Ref. [25].

B. Feature Range Exploration

To compute the extremal feature values and their corre-
sponding traces, search techniques are used to explore the
feasible set of feature values and progressively refine the cor-
ners of the feature range. SMT solvers take a goal statement,
and a hop bound as input and respond indicating whether
or not the goal is reachable. The feature range computed
on a hop-bounded SMT-based search is therefore an under-
approximation of what is obtained using an infinite trace
length. An increase in the bounds can result in a larger feature
range. A low value of the hop bound K can yield a severely
under-approximated feature range (ignoring feature values
reachable via transition paths longer than K). In Section V
we discuss a heuristic for choosing a value for K. Using an
appropriately large K ensures that the computed feature range
safely over-approximates the reachable interval of feature
values.

To begin, no feature value F is initially known. If a
behaviour contributing to the feature exists, its feature value
will either be positive (including zero), or negative. Therefore,
initially the search uses goals F < 0 and F ≥ 0 as pivots
about which to begin. The algorithm pushes a pivot as far as
possible in each direction to find the corners of the feature
range. However, since it is not known how far to push the
pivot, a combination of exponential expansion and bisection
is used to identify the corners of the feature range.

For pivot value f∗, a goal that trivially checks if F < f∗

may return a feature value very close to f∗ resulting in
repeatedly finding values of f∗ that are within close proximity

f∗

M
2M4M

8M

W
2

W
4

W
8

W

Expand

Bisection

frfl

Fig. 8: Using Expand-Bisect to compute the left corner
.

of each other. Therefore the algorithm explores the feature
space in steps of size 2i−1×M , where i is the ith expansion
step. M is a search parameter chosen by the designer. For
instance, in the computation of the settling time for a buck
regulator, M = 10−6, because the feature value is in the
order of µs. Expansion tries to find a feature value further
than the current pivot f∗ by an amount M , and pushes the
new value further by a recursive call to itself on the new pivot
with a step size of 2 ×M . When no new pivot is found, a
bounded interval search ensues to find a feature value within
a distance of M from the last known pivot f∗. The search
refines the interval tapering it towards the corner of the feature
range. Figure 8 depicts this strategy, starting at a pivot f∗ with
boxes indicating steps during the expansion, red circles are
new pivots, and red crosses indicate no feature value found.
The bisection search terminates when the interval containing
the feature corner has a width of ε (the error tolerance) or less.

A bounded interval search for the left corner is now de-
scribed. For the interval W = [fl, fr], the midpoint mid is
used as a pivot. The algorithm looks for a feature value, f∗, in
the leftmost interval [fl,mid]. If found, it proceeds to search
the interval [fl, f

∗ − ε]. The shrinking of the right interval
boundary by ε is consistent with the precision requirements
of the algorithm and excludes the already found feature value
f∗ from the search. If no feature value is found in [fl,mid],
then the search moves to [mid, fr]. If a feature value is found
in [mid, fr], then it forms the basis of a new pivot and the
algorithm is recursively called on the interval [mid, f∗ − ε].
Every interval search uses the last feature value found as the
pivot and excludes it from future searches. If no new feature
value is reachable about the last pivot, then the last known
reachable feature value and its corresponding trace (returned
by the SMT solver as evidence of a satisfiable instance) are
returned. The steps of exploration for the right corner mirror
those for the left corner.

Testing if a feature value f∗ is reachable involves invoking
the SMT solver to answer the question specified as the goal
G in the context of the model HF . A ‘YES’ answer of the
solver returns a trace, ensuring that the dynamics, invariants
and guard conditions of HF are not violated. A ‘NO’ answer,
returns an EMPTY indicating that no behaviour of HF yields a
feature value specified in G.

If an interval for the feature is known, via a primary
reachability analysis using a coarse overapproximation in a
tool like SpaceEx, then the bounded bisection algorithm can
be applied to search for the feature corners within the known
estimate of the feature range.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2857361, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

NoRods

Tmin ≤ x ≤ Tmax
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ċ1 = ċ2 = 1
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ẋ = x
10

− 540 ẋ = x
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Fig. 9: Temperature Control of an Atomic Reactor.

V. CASE STUDIES AND EXPERIMENTAL RESULTS

This section discusses the various models we have used in
our analysis, and data from our results, comparing the feature
analysis of HA using the reachability analysis tool SpaceEx
versus using the SMT tool dReach. We compare the results of
analyzing the following models and features:

1) Battery Charger [19]: Time for the battery to charge to
its rated voltage; Time for the battery to restore charge
while in its maintenance mode.

2) Buck Regulator [23]: Time for the output of the Buck
regulator to settle; Peak voltage overshoot of the voltage
response curve for the regulator.

3) Nuclear Reactor Temperature Control [26]: Unsafe
Operating Temperature of the reactor.

4) Adaptive Cruise Control [27]: Time to capture cruise
speed from a specific velocity; Time to capture cruise
speed while in any velocity within a range of velocities.

Here, we pay special attention to the condition of meltdown
for an atomic reactor cooling strategy. The temperature control
strategy for a nuclear reactor [26] is designed to insert a
cooling rod into the reactor with the aim of maintaining the
temperature of the reactor below the threshold for meltdown
and above the threshold for sustaining the nuclear reaction.
Mechanical constraints prevent both rods from being inserted
simultaneously, and requires each rod to be given a resting
period of 20 time units before re-insertion. An adaptation of
the HA of [26] is shown in Figure 9. The feature for analyzing
the condition of meltdown is expressed as follows:
Example 2. Unsafe Operating Temperature: Reactor temper-
atures that if reached can lead to reactor meltdown.
feature unsafe();
begin

var temp;
(c1<=20 && c2<=20 && x>=550), temp = x

##[0:$] (c2<=20 && x>=590)
|-> unsafe = temp;

end

The condition of meltdown occurs when the reactor tem-
perature, x, rises above the safe threshold, Tsafe. The reactor
can be in a state in which x < Tsafe, but has crossed a
point-of-no-return, i.e. neither control rod can be inserted,
inevitably leading to a state of reactor meltdown. A safety
property that checks for the safe operation of the reactor, with
a traditional model checking approach, would only yield one of
the many possible failures. However, it is of greater interest to
identify the minimum temperature at which such a failure can

Fig. 10: Unsafe Operation of a dual rod temperature control
in an atomic reactor: an extreme value trace.

occur. Knowledge of this corner enables a designer to design
a suitable strategy for managing the rods. A feature analysis,
unlike traditional model checking, yields these corner cases.
Furthermore, for such a feature where only boundary events
characterizing a failure are known, the second technology
proposed (feature analysis with SMT) can provide the precise
event sequence that yields a feature match, thereby filling the
gap specified in the ##[0:$] construct. Figure 10 shows a
corner case obtained using the methodology of Section IV,
in which the red vertical line marks a point-of-no-return.
Observe that from this point x rises, passing through safe
temperatures and beyond into the unsafe region of meltdown.
In this scenario, both rod-timers are below their thresholds,
preventing their insertion.

Note that in Examples 1 and 2, both features used a
single local variable, but were able to express very interesting
behaviours. However, in general more local variables may be
required to express complex quantities over more intricate
behaviours [14].

A feature based formal analysis was performed on the mod-
els and features outlined, the results of which are described in
Table I. Table II compares the results of using various SpaceEx
analysis parameters for analyzing the Overshoot feature of
a 7V Buck Regulator. We demonstrate the analysis of both
strategies for feature analysis on four systems that cover both
the AMS domain and the control domain. Both strategies
have been implemented in a unified tool-flow. The tool is
run on an Intel(R) Core(TM) 2 Duo CPU T6400 having two
cores, each running at 2.00Ghz with 4GB of DDR2 RAM.
For each system, the HA model and the features described
are inputs to the tool. The tool then computes the LSHA for
feature analysis. The feature range is then computed using
the reachability tool SpaceEx (with the STC scenario and
8 template directions, octagons), and the SMT-based search
using Methodology-2.

In Table I, the size of the transformed automata in terms of
the number of locations (in set QF ) and number of variables
(in set XF ) are also shown. The column titled Algorithm
indicates how the feature range was computed, with "Reach"
indicating the use of Methodology-1 with SpaceEx as the com-
pute engine, and "SMT" indicating the use of Methodology-2
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Feature Size of Set Algo CPU-Time Feature Range

Name QF XF (m : s) Min Max

Test Case: Battery Charger

Charge Time 9 7 Reach 0:10 1h49m 3h15m
SMT 0:20 2h15m 2h31m

Restoration Time 9 7 Reach 0:19 10m12s 48m58s
SMT 0:15 16m40s 18m30s

Test Case: Cruise Control Model

Speed Capture 10 8 Reach 0:19 37.23s 48.43s
Precise (k=40) SMT 1:16 41.18s 43.68s

Speed Capture 10 8 Reach 0:39 33s 48.43s
Range, (k1=20, k2=40) SMT 0:25 37.3s 40.4s

Test Case: Nuclear Reactor Control

Unsafe Operation 8 6 Reach 0:07 549.9◦ 599.9◦

Temperature SMT 0:52 550◦ 600◦

Test Case: 5V Buck Regulator

Settle Time 4 7 Reach 0:16 94.17µs 124.167 µs
SMT Out of Memory

Overshoot 4 7 Reach 0:03 5V 6.138V
SMT 69:45 5V 5.14V

TABLE I: Results for Formal Feature analysis.

No. of Template Flow-pipe SpaceEx Iterations CPU-Time Feature Range

Directions Tolerance Algo Taken (secs) Min Max

1 STC 37 0.22 1.76V 12.65V
LGG 11 0.24 4.41V 9.96V

4 0.1 STC 36 0.22 5.14V 12.11V
LGG 55 0.63 6.63V 9.90V

0.01 STC 60 0.52 6.78V 9.12V
LGG 57 0.82 6.91V 9.0V

1 STC 85 4.53 2.00V 12.04V
LGG 11 1.52 4.41V 9.32V

8 0.1 STC 28 0.66 5.17V 12.06V
LGG 55 2.75 6.63V 9.19V

0.01 STC 72 3.77 6.82V 9.08V
LGG 57 4.78 6.92V 9.0V

TABLE II: SpaceEx analysis of Overshoot of a 7V Buck
Regulator.

to refine the range computed using the former. For each feature
both corners of the feature range are reported along with the
time taken to compute the range for each methodology. Both
SpaceEx and the SMT analysis are bounded by introducing a
global clock with an upperbound on time. The global clock is a
variable that is part of the state of the LSHA. In SpaceEx, with
the STC scenario, given the way SpaceEx does fix-point com-
putation this variable must be bounded to achieve termination.
Note that the need for the bound comes from the tool used and
is not a limitation of this methodology. For the SMT analysis,
in addition to a bound on the variables, we use a transition hop
bound (K) of 15 transitions for all test cases except for the
Buck Regulator, for which a bound of 50 transitions was used.
In practice K is incrementally increased until we are satisfied
with the result. We use knowledge of the diameter of the
LSHA graph and the number of subexpressions in the feature
sequence expression to decide on a value for K. We reiterate
that K is a bound on the discrete transitions of the HA. Within

a location a large number of clauses may be generated for the
evolution of the HAs continuous variables. It is important to
note that the SpaceEx tool computes the feature range in one
sweep of the reach set; however, multiple iterations of the
SMT tool (between 15 to 20 in our experiments) are involved
in computing the feature range using "SMT". Additionally for
the feature computing the Unsafe Operation Temperatue, the
feature ranges produced by SpaceEx and the SMT tool show
errors of 0.1. We attribute this to the precision of representation
for floating-point numbers used by the tools.

Note that for the feature "Settle Time" of the Buck Regula-
tor, the methodology using SMT exceeds memory bounds on
our systems. We attribute this to the fact that the Buck Regu-
lator frequently switches between locations of the automaton,
with more than 50 transitions made within a very short span of
time (time from the perspective of the Buck Regulator). The
solver takes an inordinate amount of time to compute this. Due
to the large number of transitions taken, the number of SMT
clauses generated becomes too large for the solver to handle
and leads to the solver running out of memory. We conclude
that for systems having a high switching frequency, SpaceEx
can be used with a resolution smaller that 10−6, for which it
takes in the order of a few seconds to a few minutes to compute
the feature range (depending on the chosen resolution).

For the models used here, it is shown that the feature range
produced by the SMT solver is typically tighter than that
obtained using SpaceEx. Both methodologies were employed
using similar error tolerances. Note that the methodology using
the SMT solver requires more CPU resources as indicated
by a higher value in the column for CPU-Time. The feature
transformation methodology itself scales well with reachability
tools and SMT. The time for analysis is dependent on the
tools used. The tool SpaceEx has been used extensively for
the analysis of HA and scales well for the models on which
we have demonstrated the feature analysis approach. SpaceEx,
in benchmarks has shown to be capable of handling systems
with more than 100 variables [10]. The time and memory to
compute a feature range grows exponentially with an increase
in the hop bound when using SMT, and is attributed to a
growth in the number of SMT clauses for larger hop bounds.

VI. CONCLUSION

Features help capture the designer’s intent to quantify how
the system behaves. A feature defines a real-valued evaluation
function over a specific set of traces. By design they are
more flexible than assertions (such as in STL) for specifying
quantitative measures, at the cost of being more rigid in
their expression of sets of traces (restricted to sequences of
predicates and events).

This article aims to assist designers in generating better de-
signs, by automating the task of feature analysis and providing
useful feedback of corner case behaviours using SMT. Features
are automatically transformed into feature automata that are
composed with the model and the composition is analyzed
by off-the-shelf reachability solvers. The improved first-match
semantics employed for features in this article more directly
reflects the intent of designers and is incorporated into a
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new product automaton construction. Although the worst case
bounds for the proposed product construction (using leveling)
are worse than those of a more traditional product, in practice
we see a 4x speedup and half the memory utilization during
feature analysis with reachability solvers. We also provide an
algorithm for computing ranges of feature values that uses
SMT, which in practice produces tighter feature ranges. In
some cases, typically associated with models having fewer
location switches, the SMT-based algorithm also yields results
faster or in time comparable to SpaceEx. The present work as-
sumes piecewise monotonic and piecewise affine dynamics to
accommodate existing tools. These assumptions can be lifted
as tools mature to support urgent semantics and more complex
dynamics. Efforts for such extensions [28] are underway.
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