
Algorithms for Feature Based Formal Equivalence
Checking between Hybrid Systems

Bruto da Costa Antonio Anastasio

Algorithms for Feature Based Formal Equivalence
Checking between Hybrid Systems

Thesis submitted to
Indian Institute of Technology Kharagpur

for the award of the degree of

Master of Technology
in

Computer Science and Engineering

by

Bruto da Costa Antonio Anastasio

(Roll No: 12CS60R20)

Under the guidance of

Professor Pallab Dasgupta

Deptartment of Computer Science and Engineering
Indian Institute of Technology - Kharagpur

West Bengal - India, 721302
April 2014

© 2014 Bruto da Costa Antonio Ananstasio. All Rights Reserved.

Dedicated to my dearest parents.

v

CERTIFICATE

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

WB 721302, India.

This is to certify that the thesis entitled Algorithms for Feature Based
Formal Equivalence Checking between Hybrid Systems, submitted by
Bruto da Costa Antonio Anastasio, Roll Number: 12CS60R20, in the
Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, India, for the award of the degree of Master of Technology, is a
record of original research work carried out by him under my supervision and
guidance. The thesis fulfills all the requirements as per the regulations of this
institute. Neither this thesis nor any part of it has been submitted for any degree
or academic award elsewhere.

Prof. Pallab Dasgupta

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

vii

DECLARATION

I, Bruto da Costa Antonio Anastasio, Roll No. 12CS60R20, registered as a student
of the M.Tech program in the Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India (herein after referred to as the
‘Institute’) do hereby submit my project report, titled: Algorithms for Feature
Based Formal Equivalence Checking between Hybrid Systems (herein after referred
to as ‘my thesis’) in a printed as well as in an electronic version for holding in the
library of record of the Institute.

I hereby declare that:

1. The electronic version of my thesis submitted herewith on CDROM is in
PDF Format.

2. My thesis is my original work of which the copyright vests in me and my
thesis does not infringe or violate the rights of anyone else.

3. The contents of the electronic version of my thesis submitted herewith are
the same as that submitted as final hard copy of my thesis after my viva
voce and adjudication of my thesis in April/May 2014.

4. I agree to abide by the terms and conditions of the Institute Policy and
Intellectual Property (herein after Policy) currently in effect, as approved
by the competent authority of the Institute.

5. I agree to allow the Institute to make available the abstract of my thesis in
both hard copy (printed) and electronic form.

6. For the Institute’s own, non commercial, academic use I grant to the Institute
the non-exclusive license to make limited copies of my thesis in whole or in
part and to loan such copies at the Institute’s discretion to academic persons
and bodies approved of from time to time by the Institute for non-commercial
academic use. All usage under this clause will be governed by the relevant
fair use provisions in the Policy and by the Indian Copyright Act in force at
the time of submission of the thesis.

7. Furthermore,

(a) I agree to allow the Institute to place such copies of the electronic
version of my thesis on the private Intranet maintained by the Institute
for its own academic community.

ix

x

(b) I agree to allow the Institute to publish such copies of the electronic
version of my thesis on a public access website of the Internet should
it so desire.

8. That in keeping with the said Policy of the Institute I agree to assign to the
Institute (or its Designee/s) according to the following categories all rights
in inventions, discoveries or rights of patent and/or similar property rights
derived from my thesis where my thesis has been completed.

(a) With use of Institute-supported resources as defined by the Policy and
revisions thereof,

(b) With support, in part or whole, from a sponsored project or program,
vide clause 6(m) of the Policy. I further recognize that:

(c) All rights in intellectual property described in my thesis where my work
does not qualify under sub-clauses 8(a) and/or 8(b) remain with me.

9. The Institute will evaluate my thesis under clause 6(b1) of the Policy. If
intellectual property described in my thesis qualifies under clause 6(b1) (ii)
as Institute-owned intellectual property, the Institute will proceed for com-
mercialization of the property under clause 6(b4) of the policy. I agree to
maintain confidentiality as per clause 6(b4) of the Policy.

10. If the Institute does not wish to file a patent based on my thesis, and it
is my opinion that my thesis describes patentable intellectual property to
which I wish to restrict access, I agree to notify the Institute to that effect.
In such a case no part of my thesis may be disclosed by the Institute to
any person(s) without my written authorization for one year after the date
of submission of the thesis or the period necessary for sealing the patent,
whichever is earlier.

Bruto da Costa Antonio Anastasio Prof. Pallab Dasgupta
(Name of the Student) (Name of Supervisor)

Acknowledgements

I am most grateful to the Almighty for blessing me with the opportunity to
be part of this great institute, and for the wonderful people that have made this
journey memorable.

My experience as an M.Tech student at IIT-Kharagpur has been nothing short
of amazing. I have had the opportunity to challenge myself in many areas, and I
am blessed to have had a wonderful support structure to guide me through these
two years.

First and foremost, I wish to thank my adviser Prof. Pallab Dasgupta. Words
cannot express how much he has influenced my work and my life during these
years. He has been my inspiration, a true teacher, who first introduced me to
the world of formal methods, and ignited my curiosity in the area. He has been
involved in my work, every step of the way, steadily steering me when needed,
always lifting my spirits and encouraging me to work harder, and be better than
I ever thought I could. I thank him for his patience, enthusiasm, motivation, and
immense knowledge. A quick visit to his office is sufficient to lighten my mood
and lift my spirits. In the past year, he has taken the role being my project guide,
my councilor and my confidante. I could not have imagined having a better guide
during my M.Tech.

I acknowledge the support of Semiconductor Research Corporation (SRC)
through the research grant, 2012-TJ-2267. I also thank Dr. Rubin Parekhji
and Mr. Lakshmanan Balasubramanian of Texas Instruments, India, for their
comments and encouragement.

I want to express my gratitude to all the members of the Formal Verification
group that have supported me. Special thanks to Antara Ain, and Aritra Hazra
for their guidance and support.

Dozens of people have helped teach me during my M.Tech and I am most
grateful to them all. I also wish to thank the faculty and staff of the Department
of Computer Science, for their help and support; and for promoting a stimulating
and welcoming academic and social environment. My sincere thanks to Prof.
Partha Pratim Das, our class faculty adviser for his overall guidance during the
M.Tech program.

I also acknowledge the Directorate of Higher Education - Goa, for awarding
me with the Goa Scholars scholarship, enabling me to pursue the M.Tech course
at IIT-Kharagpur.

I am greatly indebted to all my colleagues and friends at IIT-Kharagpur who
have supported me through this journey. Special gratitude go to Santhosh, Jit,
Nirvik, Nita and Remya, for their kindness, friendship, support and for adding
spice to my life at IIT.

Home is where my heart is, and I would not have had the strength to make it
through these two years, had it not been for the support from my wonderful friends

xi

xii

from home. It is you all who have helped mould me into who I am today. The
difficulties of being in a new place, thousands of miles away from home, dissipated
via extended phone calls, skype calls and google hangouts. Some who knew would
say that I carried home along with me. My gratitude goes especially to Monalizza
Lobo, Geena Sandhu, Shweta Nadkarni, Melody Coelho, Elton Carvalho, Roshwin
Carvalho, Godwin Clovis da Costa, Elroy Pereira, Stephanie Barreto and Clarice
Pereira. Snehalesh Mahale, I would not be in IIT, had you not encouraged and
mentored me. I will always be most grateful for having you all in my life.

The role played by teachers never ends, and as such I would like to thank Prof.
Maruska Mascarenhas (Goa Engineering College) who always believed in my aca-
demic abilities and for always having words of encouragement for me. Sometimes
students need a little nudging to head back into academia. Thank you for seeing
potential where I hadn’t, and for helping me see far beyond.

Finally, I wouldn’t have had the strength to push through the varied challenges
I’ve faced without the unwavering support of my parents and brothers. You have
always had faith in me, encouraging me to be myself and do what I love.

τhαηκ γoν

Bruto da Costa Antonio Anastasio
Roll No. 12CS60R20

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

List of Abbreviations

AMS - Analog and Mixed Signal
LTL - Linear Temporal Logic
PTL - Propositional Temporal Logic
MTL - Metric Temporal Logic
MITL - Metric Interval Temporal Logic
TPTL - Timed Propositional Temporal Logic
STL - Signal Temporal Logic

PORV - Predicate Over Real Variables
SVA - SystemVerilog Assertions
PSL - Property Specification Language
LDO - Linear Drop-Out Regulator

xiii

List of Symbols

∧,& – Logical AND
∨, || – Logical OR
¬ – Logical NOT (Negation)
× – Cartesian Product
R – Real set

G or � – Global operator of LTL.
F or ♦ – Future operator of LTL.

U – Until operator of LTL.
⇒ – Implication operator used in AMS-LTL

[## t] – an exact delay of t time units used
in AMS-LTL and SVA

@+(X) – At the positive edge of the signal X.
@−(X) – At the negative edge of the signal X.

∈ – Belongs to
⊂ – Subset of
∀ – for all
∃ – there exists
= – is equal to
6= – does not equal

xv

Abstract

Equivalence checking for finite state systems is well studied and many
algorithms exist that can determine whether or not two finite state systems
are equivalent. Analysing infinite state systems is very complex. Infinite state
systems can be modeled as Hybrid Systems, that have discrete and continuous
behaviours that describe the hybrid state. Many methods for checking equivalence
between two Finite State Systems exist. However, for infinite state systems,
this traditional crude definition of equivalence is too constrained. A more
effective equivalence definition is one that is best expressed in terms of features
or behavioural signatures of the infinite state systems. Behavioural aspects
used for feature comparison can be expressed as a linear combination of state
variables. For a given Hybrid Automaton, the range of values taken on by a
specific feature aspect can be obtained by observing the state space of the Hybrid
System reachable from an initial state. However, we cannot directly apply the
traditional reachability analysis to determine feature based equivalence. This
report formalizes the notion of feature based reachability analysis of Hybrid
Systems and describes feature driven modifications required to prepare the given
Hybrid Automata for feature based equivalence checking.

Keywords: Integrated Circuits, Verification, Mathematical logic, Formal Lan-
guages, Hybrid Automata, Reachability Analysis.

xvii

Contents

Certificate vii

Declaration ix

Acknowledgements xi

List of Abbreviations xiii

List of Symbols xv

Abstract xvii

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description and Objective 3
1.3 Summary of Contributions . 4
1.4 Organization of the Report . 6

2 Background and Related Work 7
2.1 Hybrid Systems and Hybrid Automata 7

2.1.1 Definition of a Hybrid Automaton 7
2.1.2 Modeling systems using Hybrid Automata 9

2.1.2.1 Nuclear Reactor Example 9
2.2 Reachability Analysis of Hybrid Systems 10

2.2.1 Basic Flow Pipe Computation Procedure 10
2.3 Tools for Reachability Analysis . 13
2.4 Assertion Languages for Hybrid Systems 14
2.5 Automated Hybrid Automaton Parameter Extraction 20

3 Feature based Abstract Interpretation 21
3.1 Feature Specification: Syntax and Semantics 21
3.2 Evaluating Feature Values over Flow Pipe Approximations 23
3.3 Concluding Remarks . 27

xix

xx CONTENTS

4 Feature Driven Modifications to the Hybrid Automaton 29
4.1 Handling Type-1 Attributes . 30
4.2 Handling Type-2 Attributes . 30
4.3 Handling Type-3 Attributes . 38
4.4 Handling Type-4 Attributes . 41
4.5 Reachability Output: A Graphical Perspective 44
4.6 Concluding Remarks . 45

5 Formal Feature Based Equivalence Checking 47
5.1 Features and Equivalence Definitions 47
5.2 Semantics of Feature based Equivalence 49
5.3 Concluding Remarks . 50

6 Case Studies 51
6.1 CASE STUDY-1: Low Dropout Regulator 52
6.2 CASE STUDY-2: Battery Charger . 56
6.3 Concluding Remarks . 61

7 Conclusion and Future Work 63
7.1 Conclusion . 63
7.2 Future Work . 64

7.2.1 Varying Inputs to the Hybrid Automata 64
7.2.2 Further Optimizations . 65
7.2.3 Parameterized Systems . 65
7.2.4 Developing a tool flow for automating the Equivalence Check-

ing Process . 66

Appendix A Feature Specification Syntax 67
A.1 Tokens . 67
A.2 Grammar Production Rules . 67

Appendix B Equivalence Specification Syntax 69
B.1 Grammar Production Rules . 69

References 71

List of Figures

1.1 Traditional v/s Feature Based Equivalence 2

2.1 Hybrid Automaton for the Nuclear Reactor 9
2.2 Flow Pipe Approximation . 13
2.3 Flow pipe approximation for the PHAVer Oscillator Demo 15

3.1 Graphical visualization of the function f , and the set of constraints. . 24

4.1 Hybrid Automaton H1 . 30
4.2 Splitting Hybrid Automaton H1 . 31
4.3 Location qi before splitting on PORVj ≡ xj ∼ c 34
4.4 qi after splitting on @+ or @− events on (PORVj ≡ xj ∼ c) 35
4.5 qi after splitting on PORVj ≡ xj ∼ c 35
4.6 Hybrid Automaton H1 with time . 38
4.7 Hybrid Automaton H1 with Rabbit Ears 41
4.8 Location with Rabbit Ears . 42
4.9 Reachability Analysis of H1. Variables x and y are plotted on the x and

y axes respectively . 44
4.10 Feature Driven Reachability Analysis of H1, with variables y and yRise-

Time on the x and y axes respectively 45

6.1 Hybrid Automaton for the Low Dropout Regulator: ldo 53
6.2 Hybrid Automaton for a Battery Charger: batt 58
6.3 Battery Charger Automaton modified for the feature, “ChargeTime” . . 60

xxi

List of Tables

6.1 Predicates and Guard Conditions of an LDO Regulator 54
6.2 Types of modifications required for each LDO feature 56
6.3 LDO Feature Ranges and PHAVer Exectution Times 56
6.4 Types of modifications required for each Battery Charger feature . . . 61
6.5 Battery Charger Feature Ranges and PHAVer Exectution Times 61

Chapter 1
Introduction

“There is nothing more difficult to take in hand,
more perilous to conduct, or more uncertain in its success,

than to take the lead in the introduction of a new order of things.”
-Niccolo Machiavelli

Dynamical Systems can be broadly classified based on the evolution of the
system state over time. The state of the system can be viewed as consisting of
the valuation of a finite number of variables. Some system variables may change
discretely whereas others may evolve continuously as time progresses. With this
knowledge we can proceed to classify systems as follows:

1. Continuous: If the state takes values in the Euclidean space Rn for some
n ≥ 1. We will use x ∈ Rn to denote the state of a continuous dynamical
system.

2. Discrete: If the state takes values in a countable or finite set {q1, q2, ...}. We
use q to denote the state of a discrete system.

3. Hybrid: If one part of the system state takes values in Rn while another part
takes values in a finite set.

We are interested in the third classification of systems, i.e. Hybrid Systems.
The behaviour of Hybrid Systems can be captured by Hybrid Automata [4]. The
topic reachability analysis and model checking between Hybrid Automata has
been well studied [4][9][13]. However, no algorithms are known, that meaningfully
describe the equivalence relationship between Hybrid Automata.

1.1. Motivation
Many systems can be modelled as Hybrid Automata. Many classes of systems exist
for which the traditional definition of state equivalence does not apply. Influenced
by other work being done by the Formal Verification group at IIT-Kharagpur,

1

2 1. Introduction

this research looks specifically at the class of AMS circuits. AMS circuits can
be modelled as Hybrid Automata [4][40] by capturing the discrete modes of the
circuit(modes of the digital controller) as the locations of the hybrid automaton,
and by using control variables and differential equations to capture the circuit’s
analog behaviour. The class of analog and mixed-signal(AMS) circuits is one class
of Hybrid Automata wherein the definition of equivalence must evolve to consider
behavioural signatures that capture the designer’s definition of equivalence.

With respect to AMS circuits, in determining the equivalence, it is important
to view the notion of equivalence with respect to domain specific features of the
circuit. Complex AMS circuits have multiple modes of operation and the definition
of equivalence often relates to specific ways in which the circuit is expected to
behave in different operating modes [17]. For example, for a Linear Dropout
regulator (LDO) the rise time, which is the time required for the output of the
LDO to rise from 10% to 90% of its rated voltage, is a feature of the start-up
mode of operation for an LDO. The rise time is one of the several features that
is typically used in the definition of equivalence between LDOs, that is, it may
be a requirement, that the rise times for two equivalent LDOs be equal, within a
tolerance of 0.1µs.

≡ ≡F

M1

M2

H1

H2

FInputInput Y/N Y/N

(a) Traditional Equivalence (b) Feature Based Equivalence

Figure 1.1: Traditional v/s Feature Based Equivalence

As shown in Figure 1.1, the traditional definition of equivalence talks about
two machines M1 and M2 being equivalent, if for the same inputs they produce
the same outputs. This definition of equivalence is appropriate for systems having
a countable number of states. However for infinite state systems, this notion
becomes too restrictive and is considered outdated. Infinite state systems are
Hybrid Systems and can be modelled as Hybrid Automata. Equivalence between
two Hybrid Automata must be defined in the context of the behaviours portrayed
by the two automata. These behaviours are termed as features, that essentially
describe patterns observed in runs of the Hybrid Systems.

This work is thus motivated to define the equivalence between two Hybrid

1.2. Problem Description and Objective 3

Systems on the basis of specific features, where the features are based on the
system designers understanding of equivalence between the two systems.

Given behaviours of interest to the designer, captured formally using features,
there is a need to develop a method to have these features drive the process of
equivalence checking through standard reachability analysis.

1.2. Problem Description and Objective
We first intuitively understand the notion of feature based equivalence. A feature
based equivalence definition has two important components:

1. The specification of the feature, which in turn has two main parts:

• A specific functionality(behaviour) over which the feature is evaluated.

• A expression for evaluating the feature over the specified behaviour.

2. The specification of the quivalence predicate, which is a comparative function
that relates the valuations of the feature over designs being compared.

Having formalized the notion of feature, the general problem this research
addresses is defined below:

Given two Hybrid Automata defined as H1 = (Q1, X1, f1, Init1,
Dom1, E1, G1, R1) and H2 = (Q2, X2, f2, Init2, Dom2, E2, G2,
R2), and a formal equivalence definition constrained by feature
F , the goal is to compute the set of feature values for H1 and H2,
using them to determine if the two Hybrid Automata H1 and H2

are equivalent with respect to the feature F . The aim is to answer
the question,

Is H1 ≡F H2 ?

The first step to establishing feature based equivalence between two Hybrid
Automata is to define features relevant to an equivalence comparison. Each feature
of interest will correspond to a system behaviour associated with a quantity, a
signature of the feature, which can be expressed as a linear combination of control
variables of the Hybrid Systems. The values of these control variables represent the
internal state of the Hybrid System. Internal states of a Hybrid System that are
visited during its operation can be identified using standard reachability analysis
techniques.

Reachability analysis for Linear Hybrid Systems has been well studied [4][9][13]
and many tools exist that perform reachability analysis [14]. Reachability analysis

4 1. Introduction

answers questions about states that are reachable in each mode of operation of the
system and in the system as a whole. However, current techniques for reachability
analysis do not answer questions such as, In the discrete state l, when variable x
crosses 10, what is the value of variable y?, cannot be answered due to the level
of abstraction at which the systems behaviour is represented.

Features might consider cross events that occur within a given location of the
Hybrid Automaton, or might require variable values to be captured across differ-
ent time points within a location and across locations. A reachability analysis will
provide the entire set of reachable states within each location of the automaton, in-
dependent of the events and predicates specified in the features. The feature might
also require the introduction of auxiliary variables such as clocks, or variables de-
rived from existing control variables of the system. How can current reachability
analysis algorithms be extended to handle features? In what way can existing tools
be leveraged to answer questions about equivalence? In this dissertaion a technique
for performing feature based abstract interpretation is introduced, that piggybacks
feature computation over standard flow-pipe analysis, to extract feature values and
determine equivalence.

The major objectives of this research are summarized as follows:

1. Developing a formal language for specifying features for Hybrid Automata
and for specifying the equivalence criterion that dictates whether or not two
Hybrid Automata are equivalent.

2. Algoirthms for creating feature driven abstractions of the given Hybrid Au-
tomaton, with the aim of driving the reachability analysis implicitly using
the feature specification.

1.3. Summary of Contributions
This thesis presents the findings of our research on creating a formal framework for
determining feature based equivalence between Hybrid Automata. We formalize
the notion of features and feature based equivalence, discuss various categories of
features that are relevant to the definition of equivalence, present feature driven
non-trivial transformations that prepare the Hybrid Automaton for feature based
reachability analysis, establish the use of reachability results in determining equiv-
alence and present case studies on two power management circuits.

In this work, categories of features that can be used for feature based equiva-
lence checking are identified. Two broad categories of features are explored:

1. Features in the value domain: Features in the value domain consist of
those features whose measurement is solely based on aspects of the system

1.3. Summary of Contributions 5

that do not directly measure time. An example would be a feature whose
value is the dropout voltage of an LDO(Smallest difference between input
and output voltages required to maintain regulation). Here, dropout voltage
is a value that is independent of time.

2. Features in the time domain: Features in the time domain consist of
features whose signatures are computed based on time. An example would
be a feature that measures the time it takes to charge a completely drained
battery to full capacity. Here, the feature signature solely consists of a time
measurement.

We formalize the syntax used to specify a feature and the classes of feature
assertions that can be used in the context of determining Feature based equivalence
between Hybrid Systems.

We show that, if the feature signature is expressed linearly in terms of control
variables of the Hybrid Automaton, then the range of values that define the feature
signature, can be calculated from a flow pipe analysis of the Hybrid Automaton.

The flow pipe analysis provides an over approximation of the reachable region
for each location, consisting of all possible trajectories and state valuations. In
order to focus the flow pipe analysis on the trajectories of interest, the given
Hybrid Automaton is modified on the basis of the feature specification.

A Hybrid Automaton is modified, by adding new control variables, special
transitions, splitting and duplicating hybrid locations, and finally marking loca-
tions for analysis, on the basis of the assertion that captures the behaviour of
interest, as specified by the feature.

Running the flow pipe analysis on the modified Hybrid Automaton then ensures
that the feature implicitly drives the flow pipe analysis.

Once the flow pipe analysis is complete, the feature signature is computed
using the polyhedra computed from the flow pipe. This gives us the maximum
and minimum values of the feature signature. We obtain the extremal points for
the feature signature defined for each Hybrid Automaton. Using these extremal
values, in conjunction with the goal predicate, feature based equivalence between
the two Hybrid Automata can be determined.

Automated evaluation of ranges for formally specified features is a new chal-
lenge addressed for the first time in this dissertation. We introduce a set of trans-
formations corresponding to a given feature, which when applied on the given
Hybrid Automaton, reduces the feature range computation problem to an equiv-
alent reachability analysis problem in the modified Hybrid Automaton. The re-
duced problem is then solved using standard abstract interpretation techniques,
and interpreting the result yields the desired feature range.

6 1. Introduction

1.4. Organization of the Report
This report demonstrates how features can be incorporated into the given Hybrid
Automata, allowing features to drive the reachability analysis for Hybrid Systems,
and thus how this helps us in formally checking for feature based equivalence
between two Hybrid Systems.

The thesis is organized as follows:

B Chapter 2 discusses the theory required to understanding how Hybrid Sys-
tems are modeled as Hybrid Automata, how reachability analysis is per-
formed and tools for modeling and analyzing Hybrid Automata. It also de-
scribes assertion languages relevant to developing a framework for formally
specifying feature and equivalence definitions.

B Chapter 3 introduces the notion of features and feature based equivalence.
This chapter also shows how the result of the reachability analysis can be
used to determine the equivalence between two Hybrid Automata.

B Chapter 4 enumerates various classes of features and focuses on algorithms
that use the feature definition to transform the Hybrid Automaton so that
the feature implicitly drives the reachability analysis of the automaton.

B Chapter 5 extends the notion of features, by formally defining equivalence
between two Hybrid Automata. This chapter introduces the syntax used for
specifying the equivalence criterion, and demonstrates the use of the syntax
using examples over AMS circuits in the Power Management Domain.

B Chapter 6 describes case studies of two AMS circuits in the Power Manage-
ment Domain, namely Low Dropout (LDO) Voltage Regulators and Battery
Chargers. Each circuit is modeled as a Hybrid Automaton, relevant features
are enumerated for each, and the methods introduced in Chapter 4 are used
to compute feature value ranges for each feature.

B Chapter 7 concludes the thesis and presents outlines for future problems.

Chapter 2
Background and Related Work

“An investment in knowledge pays the best interest."
-Benjamin Franklin

Much work in the analysis and verification of systems, has been in writing very
specific assertions, whose truth or falsity makes or breaks the idea of correctness
for that system. In testing for correctness, for complex Hybrid Systems, a list of
scenarios are enumerated, and the system is made to execute according to each
scenario, the outcome of which determines the safety and correctness of these
systems.

In this chapter, we describe well known Hybrid Automata based abstractions
for modeling Hybrid Systems, and present a technique for performing reachability
analysis of Linear Hybrid Automata. To add a flavour of verification, we introduce
assertion languages that are relevant to our work in formally specifying behavioural
features for Hybrid Systems. We also list various tools that are widely used in the
verification of Hybrid Systems.

2.1. Hybrid Systems and Hybrid Automata
A Hybrid System consists of a discrete program working with an analog environ-
ment which consists of a set of real variable entities. The way these real entities
evolve describes the behaviour of the environment. We view each run of a Hy-
brid System as a sequence of discrete steps. Between each step, the system state
evolves continuously according to a dynamical law until a transition occurs and
the next discrete step is taken. Transitions are instantaneous state changes that
separate continuous state evolutions.

2.1.1. Definition of a Hybrid Automaton

We model a Hybrid System as a finite automaton that is equipped with a set of
variables. The automaton consists of a set of locations that are labeled with evo-
lution laws. Each location represents the part of Hybrid System that is discrete.
Within the location the evolution of the variables is governed by the evolutionary

7

8 2. Background and Related Work

laws labeling that state. Edges between the locations represent discrete transi-
tions and are labeled with a guarded set of assignments. When in a location, if
the guard condition for a transition becomes true, the transition is enabled. If
an enabled transition is taken, then this translates into executing the guarded
assignments which modifies the values of the variables accordingly. Each location
is also labeled with an invariant condition that must hold when the control resides
at the location. This model for Hybrid Systems can be viewed as a generalization
of timed automata [5][25][27].

Definition 2.1. Hybrid Automaton
A Hybrid Automaton H is a collection H = (Q, X, f, Init, Dom, E, G, R), where:

• Q = q1, q2, ... is the set of discrete states also known as locations;

• X = Rn is the set of continuous states;

• f(q,x) : Q ×X → Rn is a vector field. The vector field (denoted as ẋ)
describes how the continuous state x ∈ X evolves over time, while in location
q;

• Init ⊆ Q × X is a set of initial states;

• Dom(q) : Q→ P (X) is a domain. This function assigns a set of continuous
states, Dom(q) ⊆ Rn, to each discrete state q ∈ Q.

• E ⊆ Q × Q is a set of edges

• G(qi, qj) : E → P (X) is a guard condition;

• R(qi, qj, x) : E ×X → P (X) is a reset map

A state of H is given as (q, x) ∈ Q×X.

�

Initially the system is in one of the initial states (qi0 , xj0). The overall composite
state then evolves according to the vector field ẋ = f(q,x). A vector field is basically
a differential equation, wherein ẋ describes how variable x evolves. While in a
discrete state q, the system remains in state q so long as x remains in Dom(q).
When the continuous state x satisfies the guard condition given by G(q, q′) ∈ E,
the discrete state may change its value to q′. At this time when the discrete state
change takes place, the continuous state gets reset based on the reset function
R(q, q′, x) ∈ Rn. And this process continues.

2.1. Hybrid Systems and Hybrid Automata 9

2.1.2. Modeling systems using Hybrid Automata

2.1.2.1. Nuclear Reactor Example

This example has been taken from [4]. We have a nuclear reactor tank, whose
temperature we need to maintain between θm and θM . We do this, using a system
that controls the coolant temperature in the reactor, by moving two independent
control rods. When the temperature reaches its maximum value θM , the tank
must be refrigerated with one of the rods. The temperature rises at a rate vr and
decreases at at rate v1 and v2 when rod 1 and rod 2 are respectively inserted.
A rod can be moved again, only if T time units have elapsed since the end of
its previous movement. The insertion and removal of a rod constitutes a single
movement. If the temperature of the coolant cannot decrease because there is no
available rod, a complete shutdown is required. Figure 2.1 graphically describes
the Hybrid Automaton for this system.

0
θ̇ = vr

θ ≤ θM

ẋ1 = 1

ẋ2 = 1

x1 == T

x2 == T

1
θ̇ = v1

θ ≤ θM

ẋ1 = 1

ẋ2 = 1

(θ == θM) ∧ (x1 ≥ T)

θ == θm

x1 := 0

2
θ̇ = v2

θ ≤ θM

ẋ1 = 1

ẋ2 = 1

(θ == θM)

∧(x2 ≥ T)
θ == θm

x2 := 0

3

shutdown

(θ == θM)

∧(x1 < T) ∧ (x2 < T)

Figure 2.1: Hybrid Automaton for the Nuclear Reactor

The variables are as follows:

• θ indicated the present temperature of the reactor tank.

• x1 represents the time that elapsed since the last use of rod 1.

• x2 represents the time that elapsed since the last use of rod 2.

• θm represents the minimum temperature constraint

10 2. Background and Related Work

• θM represents the maximum temperature constraint

Let us analyze the automaton given in Figure 2.1. Initially, we begin with both
rods out, and the timers for both rods set to T . This allows us to move the rods
if required. The temperature in the reactor, without either rods inserted, rises at
a rate vr. If the temperature reaches θM , and x1 ≥ T , i.e. we can insert rod 1,
we move to state 1 where the temperature now starts to decrease at a rate of v1.
When the minimum temperature is reached, we reset the timer for rod 1 and move
back to state 0, effectively removing the rod from the reactor. Thus T is the time
measured since you last pulled the rod out of the reactor. A similar execution is
followed for moving into state 2, i.e. we move to state 2, if x2 ≥ T and if the
temperature exceeds its maximum. If we can’t move into either state 1 or 2, then
the reactor must be shutdown.

2.2. Reachability Analysis of Hybrid Systems
If σ and σ′ are two states of a Hybrid System H, the state σ′ is reachable from
the state σ, written as σ ∗→ σ′, if there is a run of H that starts in σ and ends in
σ′. The reachability question is: Is σ ∗→ σ′ true for two given states σ and σ′ of
a Hybrid System H.

We can approximate the set of states reachable from an initial state σ or from
a set of initial states.

According to [13], it is possible to compute the outer boundaries for the set of
all trajectories of a dynamic system starting from a given set of initial states. The
reachable set over an interval of time [0,tf] is called a flow pipe.

We make the assumption that in every location of the Hybrid System, the
variables evolve linearly. Under this assumption it becomes clear that the set of
states consisting of n variables, reachable from some initial set of states, can be
constrained using n-dimensional hyperplanes. [13] suggests a method for approxi-
mating this reachable set. This method is described in Section 2.2.

2.2.1. Basic Flow Pipe Computation Procedure

Consider an autonomous dynamical system with state equation,

ẋ(t) = f(x(t)) (2.1)

in the bounded and connected domain W ⊂ Rn. We assume that the vector field
f is Lipschitz, that is, there exists a constant L such that,

||f(x1)− f(x2)|| ≤ L× ||x1 − x2|| (2.2)

2.2. Reachability Analysis of Hybrid Systems 11

for all x1, x2 ∈ W . The constant L is called the Lipschitz constant. The Lipschitz
condition implies that every initial state x0 there is a unique solution x(t, x0) to
the state equation.

Given a set of initial states X0, the set of states reachable at time t is formally
given as,

Rt(X0) = {xf |xf = x(t, x0), for some x0 ∈ X0} (2.3)

Given Equation 2.3, the flow pipe, or the set of states reachable from X0 during
the time interval [t1, t2] is defined as,

R[t1,t2](X0) =
⋃

t∈[t1,t2]
Rt(X0) (2.4)

Given a polytope X0 of initial state, and a final time tf , the procedure [13]
aims to compute a polyhedral approximation R̂[0,tf](X0) to the exact flow pipe
R[0,tf](X0) such that,

R[0,tf](X0) ⊆ R̂[0,tf](X0) (2.5)

A series of convex polytopes is used to capture the set R̂[0,tf](X0).

The convex polytope POLY (C, d) is defined the pair (C, d) ∈ Rm×n × Rm

according to,

POLY (C, d) = {x|Cx ≤ d} (2.6)

Each row ci
T , i = 1,...,m of C represents the normal vector to the ith face of

the polytope. For each polytope P, no vertex of P can be expressed as a convex
combination of any other two points in P. Let the set of vertices of P be denoted
as V(P).

Give a finite set of points, τ ,the convex hull of τ , denoted as CH(τ), is the
smallest convex set (a polytope) that contains τ .

A non-convex flow pipe is approximated by segmenting the flow pipe such
that each segment relates to a specific time interval. The kth flow pipe segment
corresponding to the time interval [tk−1, tk] is the set R[tk−1,tk](X0).

The approximation must fully contain given flow pipe. Hence the kth segment
must be an outer approximation to the kth flow pipe segment. If the approximating
polytope corresponds to a matrix-vector pair (C, d), then we want,

R[tk−1,tk](X0) ⊆ POLY (C, d) (2.7)

Given C, to obtain minimal approximation error for a fixed C, d is computed

12 2. Background and Related Work

by solving the following optimization problem:

min
d

volume[POLY (C, d)]

s.t. R[tk−1,tk](X0) ⊆ POLY (C, d)
(2.8)

The solution POLY (C, d∗), to the equations 2.8 represents the minimal set
denoted by, SminC (R[tk−1,tk](X0)). The components of d∗ which would be obtained
solving 2.8, can be found by solving the following constrained optimization prob-
lems for i=1,...,m.

max
x

ci
Tx

s.t. x ∈ R[tk−1,tk](X0)
(2.9)

The constrained problem shown above tries to determine the components of d∗

by ensuring that every valuation of variable x in the flow pipe segmentR[tk−1,tk](X0)

in contained in the polytope.
From the definitions given above, the optimization problem 2.9 can be re-

written as,

max
x0,t

ci
Tx(t, x0)

s.t. x0 ∈ X0

t ∈ [tk−1, tk]

(2.10)

Proposition 2.1. Let (x∗0,i,t∗i) be the solution to 2.10 for i=1,...,m. The solution
to 2.8 is given by d∗i = cTi x(t

∗
i , x
∗
0,i), for i=1,...,m.

A proof is provided in [13].
To solve 2.10, one needs to solve the state equation to find x(t, x0) for each

t and x0. The solution x(t, x0) can be computed numerically using an ordinary
differential equation (ODE) solver.

Choosing a Set of Direction Vectors Previously, the assumption was that
we had the set of normal vectors C. To compute the set of normal vectors, that
is, the rows of the matrix C, for each flow pipe segment, the heuristic that is used
is described below.

Let Vtk−1
(X0) and Vtk(X0) be the sample points at times tk−1 and tk along the

flow pipe trajectory starting with the vertices of X0; that is:

Vt(X0) = {x(t, v)|v ∈ V (X0)}. (2.11)

Starting at each vertex of X0, using simulation, each point in the above set

2.3. Tools for Reachability Analysis 13

can be obtained. Using these points a convex hull is formed, which serves as an
initial approximation to the flow pipe segment R[tk−1,tk](X0), denoted by

φ[tk−1,tk](X0) = CH(Vtk−1
(X0) ∪ Vtk−1

(X0)). (2.12)

This step is illustrated in the figure 2.2.

Figure 2.2: Flow Pipe Approximation

The dashed lines indicate the boundary of the flow pipe segment. For sim-
plicity purposes, there are two vertices in X0. Hence the initial set X0 is a line
segment. Simulation begins with the vertices ofX0, and sets Vtk−1

(X0) and Vtk(X0)

are computed. The convex hull φ[tk−1,tk](X0), drawn with thick lines, is then con-
structed from these points. As illustrated in Figure 2.2, φ[tk−1,tk](X0) may not
contain the flow pipe segment R[tk−1,tk](X0). Let (Cφ, dφ) be the matrix pair defin-
ing φ[tk−1,tk](X0), i.e.

φ[tk−1,tk](X0) = POLY (Cφ, dφ). (2.13)

The normal vectors to the faces of this convex hull obtained and then used as
the set of direction vectors to compute the minimal convex set containing the flow
pipe segment.

2.3. Tools for Reachability Analysis
Over the past decades, a number of efforts have been made to develop tools that
implement verification techniques for Hybrid Systems. These tools [9, 11, 10, 19,
37] work on Linear or Affine Hybrid Automata and produce a flow pipe output as
a set of linear constraints or vertex corners of polyhedra that contain the reachable
region.

The tool UPPAAL [11] can be used to verify properties of Linear Hybrid Au-
tomata. One needs to manually re-write the Hybrid Automaton as a set of con-
current Timed Automata [5], which are then fed to UPPAAL via its graphical

14 2. Background and Related Work

user interface.
A MATLAB plug-in, CheckMate [37], was developed for modeling, prototyping

and simulating specific situations and formally verifying Hybrid Systems that have
constant, linear or non-linear dynamics. Dynamics of locations are modeled using
Switched Continuous System blocks of MATLAB. CheckMate, was tested and
found to be very unstable in our work and was hence discarded.

A different group of scientist published a tool HyTech [24]. HyTech has a very
easy to use text based input language which can be used to express linear Hybrid
Automata. It also allows users to ask reachability questions, and can print linear
constraints representing regions that are reachable. HyTech however can work
on only Linear Hybrid Automata. There have been many challenges faced while
using HyTech, one of the major ones includes the overflow problem. A detailed
discussion of the issues facing its use are detailed in [22].

We finally settled on the Polyhedral Hybrid Automaton Verifier (PHAVer) [19].
PHAVer addresses some of the problem faced by HyTech. It uses more accurate
mathematical libraries to prevent the overflow problem, and supports the use of
affine dynamics. The tool has a syntax that is similar to that of HyTech and allows
us to ask reachability questions. PHAVer also support a variety of set operations
and various configuration parameters to manage the over-approximation during
flow-pipe computation. The output of PHAVer can be either a set of location
names and linear formulas, or a sequence of linear constraints in floating point
form, or linear formulas as a sequence of vertices in floating point form. We prefer
the use of the third output alternative. The syntax and usage of PHAVer can be
found in [20].

We demonstrate the tool PHAVer on an example Hybrid Automaton for an Os-
cillator [18]. PHAVer performs a reachability analysis on the Hybrid Automaton.
The analysis produces an approximation to the flow pipe. A graphical represen-
tation of the flow pipe approximation, as a result of running PHAVer is shown in
Figure 2.3.

2.4. Assertion Languages for Hybrid Systems
Systems are designed to meet the designers specifications. Verification engineers
use assertion languages to formally specify properties that express the designers
intent. Assertion languages exist to alleviate the problems that result from incor-
rect interpretation of specifications written in natural languages such as English.
The verification process then tries to validate whether the system meets the given
specifications. Expressing properties using formal languages also allows for con-
struction of automated property checker. This section reviews some well known
formal property specification languages that form the backbone of the feature

2.4. Assertion Languages for Hybrid Systems 15

Figure 2.3: Flow pipe approximation for the PHAVer Oscillator Demo

specification language presented in Chapter 3.
Systems that have a basis in temporal domain require languages that allow us

to relate the truth of propositions over different time instances. Languages that
assert properties over time have their basis in Linear Temporal Logic (LTL) [35].
LTL which is also referred to as Propositional Temporal Logic (PTL) [21], can
be used to assert properties over a sequence of states; a path. In order to ex-
press properties for systems in which a state can have more than one possible
next state, LTL was extended to create branching-time logics such as Computa-
tional Time Logic (CTL) [15]. Branching-time logics are based on the notion that
at a state, multiple next states are possible, representing multiple possible com-
putations that begin at that state. These logics were then included in industry
standards such as SystemVerilog Assertions (SVA) [1] and Property Specification
Language (PSL) [2].

LTL syntax is defined over a set of atomic propositions, AP , as follows:

ϕ := true | a | ¬ φ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2 | © ϕ

The operators © and U represents the next-state and until operators respec-
tively. ©ϕ is true iff ϕ is true in the next state. ϕ1 U ϕ2 is true iff ϕ1 is true
from the current state upto the state where ϕ2 is true. These operators can be
extended by the use of the � (globally true) and ♦ (true sometime in the future)
operators. �ϕ is true iff ϕ is true in all states, and ♦ϕ is true iff ϕ is true at some

16 2. Background and Related Work

state in the future. We can express them in terms of the more basic U operator
as follows:

♦ϕ ≡ true U ϕ

�ϕ ≡ ¬(♦ ¬ϕ)

Assertion languages like LTL are based on a clocked model of a system, and can
be used to write properties for clocked digital systems that have boolean signals.
Efforts have been made to relax the semantics of linear temporal logic operators
in Metric Temporal Logic (MTL) [7], allowing temporal operators to have time
bounds. Further, in order to write properties over dense time, LTL was extended
to Metric Interval Temporal Logic [6]. This allows us to express properties such
as:

�(♦[0,5]x⇒ ♦[6,7.5]y)

Temporal logics were made more expressive in Timed Propositional Temporal
Logic (TPTL) [8] by including temporal variables that could be bound to a time
instant in the local temporal context of the instant and used in a later part of the
temporal formula. In [29], an extension of MITL [6], called Signal Temporal Logic
(STL), was proposed which allows PORVs along with the dense timed temporal
operators.

The formal definition of PORVs is given below:

Definition 2.2. Predicate over Real Variables: If the set of continuous vari-
able is denoted by X={x1, x2, ..., xn}, then a Predicate over Real Variables, pa,
may be defined as, pa ::= f(x1, x2, ..., xn) ∼ 0, where f is a mapping, f : Rn → R,
and ∼ is a relational operator such that ∼ ∈ {>,≥}. Throughout this thesis, we
consider f to be a linear map.

�

Other relational operators like <,≤, and = are derived from ∼ and the propo-
sitional connectives.

The interested reader may refer to [29] for a comprehensive discussion of the
syntax and semantics of STL formulae.

Example properties that are expressed using STL are presented below:

Example 2.1. If enable is low, Vout will be less than 0.2V within 10µs, is expressed
by the following STL safety property:

¬enable⇒ ♦[0,10−6](Vout < 0.2)

2.4. Assertion Languages for Hybrid Systems 17

While STL was being developed, the research group at IIT-Kharagpur devel-
oped a similar logic, AMS-LTL [30], which like STL extended MITL with PORVs
and cross-events. The inclusion of a formalism to specify cross-events in AMS-LTL
is what differentiates it from its sibling STL. A property written in AMS-LTL is
shown in the example below:

Example 2.2. The property If enable is low, Vout will cross 0.2V within 10µs, is
expressed by the following AMS-LTL safety property:

¬enable⇒ ♦[0,10−6]@+(Vout < 0.2)

In the example the @+(Vout < 0.2) indicates the point at which Vout becomes
less that 0.2V , and is termed as a cross-event, recognizing that the event when
signal Vout crosses 0.2V .

Assertion languages like SystemVerilog [1] work with discrete time semantics,
wherein events are checked at clock boundaries. SystemVerilog adds the notion of
local variables to the logic. Local variables allow binding of uninterpreted variables
across time domains. For example, consider the following property:

property LOOPBACK;

int loopData;

(posedge clk)

(RTS && CTS, loopData=TX) |-> ##[1,100] (RX == loopData);

endproperty

The property says that, at each posedge of the clock when the Request to
send(RTS) and Clear to send (CTS) signals are asserted, capture the data on the
transmission line (TX) in the local variable loopData and asserts that the data
on the receive line(RX) within the next 1 and 100 cycles is what was transmitted.
Here, loopData is an uninterpreted variable. To verify the property, the simulator
binds the data transmitted to loopData when (RTS && CTS) evaluates to true, so
that it can be compared with the received data during the next 99 clock cycles. In
SVA, a boolean expression over propositional variables are used trigger assertion
matching. However, in the domain of Hybrid Systems, we have continuously
evolving variables, that need to be monitored when certain thresholds are crossed.
The specification of cross events, is not supported by SVA.

Extensions to SVA and the Open Verification Library (OVL) have been sug-
gested in [34], that incorporate PORVs into existing syntax for applications for
simulation environment that support SVA/PSL and those that don’t. We first look
at the syntax of AMS-LTL, for specifying properties over PORVs and cross-events.

18 2. Background and Related Work

Definition 2.3. Syntax of AMS-LTL: The syntax of an AMS-LTL formula ϕ
is defined recursively by the following grammar rules.

ϕ ::= true | p | E | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

E is defined as follows:

E ::= @+(B) | @−(B) | @(B)

B ::= p | ¬B | B1 ∧B2

where, p ∈ AP ∪ APA.

�

Definition 2.4. Time Interval: A Time Interval I is a non-empty convex subset
of R≥0 and is expressed in the forms (a,b), [a,b], (a,b], [a,b), where a, b ∈ R≥0
and b > a. The left and right end points of I are denoted by l(I) = a and r(I) = b
respectively.

In this interval notation, for t, t′ ∈ R≥0, (I+t) denotes the interval {t′ + t|t′ ∈
I}. Similarly (I-t) denotes the interval {t′ − t|t′ ∈ I and t′ − t ≥ 0}.

�

Definition 2.5. Timed State Sequence: A state sequence is an infinite sequence
of states, S = s0, s1, ... such that si ⊂ AP ∪APA. An interval sequence I is an
infinite sequence of intervals I = I0, I1, ..., where Ii is left closed and right open
∀i ∈ N≥0, and I has the following three properties.

• Initiality: For I0, l(I0) = 0.

• Progress: For every t > 0, there exists and interval Ii such that t ∈ Ii.

• Adjacency: For every i ≥ 0, Ii and Ii+1 are adjacent to each other.

A timed state sequence is a pair τ = (S, I) such that for each time, t ∈ Ii, the
state is si.

�

Definition 2.6. Semantics of AMS-LTL: For an AMS-LTL ϕ and a timed
sequence τ = (S, I), the satisfaction relation τ |= ϕ is identical to that of STL
with the following additional semantics of events.

• τ t |= @+(b), iff ∃Ii such that l(Ii) = t, ∀t′ ∈ Ii, τ t′ |= b, and ∀t′′ ∈ Ii−1, τ t′′ 2
b

2.4. Assertion Languages for Hybrid Systems 19

• τ t |= @−(b), iff ∃Ii such that l(Ii) = t, ∀t′ ∈ Ii, τ t′ 2 b, and ∀t′′ ∈ Ii−1, τ t′′ |=
b

• τ t |= @(b), iff τ t |= @+(b) or τ t |= @−(b)

�

Inspired by the use of boolean variables in the assertion syntax of SVA [1],
AMS-LTL was extended to AMS-LTLL with real-valued local variables. Based on
AMS-LTLL, further extensions have been proposed in [31] that augment AMS-
SVA [34] with local variables that can capture real valued signals, thus extending
SVA into the analog domain.

Definition 2.7. Syntax of AMS-LTLL: An AMS − LTLL subformula ϕl in-
volving a single local variable follows the grammar:

ϕl ::= (E, xl ← z) ∧ ϕ(AP ∪ APA ∪ APL) | (E, xl ← z)⇒ ϕ(AP ∪ APA
∪ APL)

Here E is an event on trace S, z ∈ X, AP is the set of Boolean variables, and
APA is a set of PORVs over X, where X is the set of continuous variables. xl ← z

denotes assignment of the current value of z to the local variable xl. APL is a set
of PORVs over X ∪ {xl}. ϕ is an AMS-LTLL formula over AP ∪ APA ∪ APL.

�

We have already seen in Section 2.1, that a Hybrid System can be described
using a Hybrid Automaton. The state of a Hybrid Automaton is written as:

< qt, [η(x1), η(x2), ..., η(xn)]t >

where xt = [η(x1), η(x2), ..., η(xn)]t is the valuation of the control variables
of the Hybrid Automaton while in location qt at time t. A run of the Hybrid
Automaton is a timed sequence of states < qt, xt >.

The discrete location is an important factor while writing assertions and forms
part of the state of the Hybrid Automaton. Languages such as AMS-LTLL only
express a match of a sequences of states between different variable valuation com-
binations. However, they do not take Hybrid System locations into considera-
tion. [33] extends the AMS-LTLL specification, by augmenting the system over
which properties are written using Auxiliary State Machines. An Auxiliary State
Machine captures the design intent in the form of abstract states with guarded
transitions allowing movement between states. The assertions written in this new
language, capture specific behaviours of the AMS circuit and form the basis of
features that were introduced in [17].

20 2. Background and Related Work

[17] suggests formalisms for specifying feature based equivalence for AMS cir-
cuits. The specification language suggested is based on AMS-LTLL that is ex-
tended with the use of Auxillary State Machines [33][32]. In this research, the
language described in [17] is adapted to our requirement of establishing feature
based equivalence between Hybrid Automata.

2.5. Automated Hybrid Automaton Parameter Ex-

traction
Most systems exist as variations of similar topologies. For example: multiple bat-
tery charger controllers may exist, however most follow the same constant-current,
constant-voltage cycle, varying only in specific application related parameters [39].
A few other topologies may exist, for instance, a pulse-mode battery charger [12].

[3] proposes the use of a tool called CHASIS for Power Management Units that
can extract exactly those parameters that vary across the circuit family. Given a
circuit netlist, and a test-bench that drives the circuit into desired regions of op-
eration wherein required parameters can be extracted, CHASIS is able to extract
distinguishing parameters. CHASIS is designed to work with Linear Dropout Volt-
age Regulators and Buck Converters. It generates the behavioral model of a PMU
component by creating a parameterized skeleton model of the component from a
pre-written template. CHASIS supports the estimation of two broad categories of
parameters:

1. Specified parameters : are those given in the design specification. Examples
include bias currents, reference voltages etc.

2. Unspecified parameters : are those parameters that are not readily available
with the designer. Examples include the shutdown resistance of the LDO.

We propose a tool-flow that can use a tool like CHASIS to extract parameters
from AMS circuits. We simultaneously maintain a repository of Hybrid Automa-
ton skeletons fully fitted with location activities, but having parameters that are
free. The parameters obtained from the CHASIS-like tool can then be fitted into a
Hybrid Automaton skeleton, giving us a fully functional Hybrid Automaton model
of the circuit. This model can then be used for further feature based analysis.

Chapter 3
Feature based Abstract Interpreta-
tion

“If we knew what it was we were doing,
it would not be called research, would it?"

-Albert Einstein

It is most natural for the human mind to think of systems in terms of the
behaviours it portrays. It is also intuitive to make statements about what to
expect from complex systems in terms of their behaviours. In this chapter, system
behaviours are presented as features; described qualitatively as a pattern that
matches when the system exhibits a specific behaviour, and quantitatively as a
range of values that represent the feature signature. We also study how features
affect standard reachability analysis in Hybrid Systems, and ask the question, can
we piggy-back feature computation over flow-pipe analysis of Hybrid Automata.

3.1. Feature Specification: Syntax and Semantics
This Section presents a summary of the syntax and semantics of the proposed
language formalism for specifying features. A significant portion of the syntax
has been borrowed from SystemVerilog Assertions (SVA), for which the detailed
syntax and semantics can be found in [1].

The basic syntax of a feature definition is as follows:

feature <feature-name> (<list-of-parameters>);

begin

var <list-of-local-variables>;

<sequence-expr>

|-> <feature-name> = <feature-expr> ;

end

The definition of sequence-expr is very similar to sequence expressions of
SVA with the following restrictions and annotations:

21

22 3. Feature based Abstract Interpretation

1. We do not support the repetition operator of SVA in the present version.

2. In SVA all signals are Boolean. AMS extensions of assertion lan-
guages [34] [29] support the notion of a predicate over real variable (PORV).
For example (M.Vout > 0.1*Vrated) is a PORV used in the example pre-
sented earlier.

3. PORVs can be prefixed with the @+ and @- operators to indicate the pos-
itive and negative crossings. These are similar to cross events of Verilog-
AMS, and the $rose and $fell constructs of SVA. For example, @+(M.Vout
> 0.1*Vrated) specifies the positive crossing of the PORV, (M.Vout >

0.1*Vrated).

4. Local variables can be assigned in sequence-expr in the same way as
in SVA, but the values assigned can be used only in feature-expr. In
sequence-expr, local variables can only be assigned the values of real vari-
ables used in the PORVs. Therefore we use local variables only for the
purpose for feature computation, not for the purpose for which they are
used in SVA.

5. The feature value is computed using feature-expr which is a linear arith-
metic expression over the local variables assigned in sequence-expr and
other constants.

6. Parameter values are treated as constants everywhere.

The semantics of sequence-expr is similar to the AMS extension of SVA
presented in [34], except that time intervals are treated as dense. Each match
of the sequence described by sequence-expr yields a valuation of the feature
obtained by computing feature-expr.

The formal interpretation of features over Hybrid Automata models gleaned
from AMS models/designs is the main subject of this thesis.

A match of a given sequence-expr on a run of the Hybrid Automaton is
defined as the timed sequence of states with valuations of discrete and continuous
variables that together satisfy the chain of PORVs and events specified in the
sequence-expr.

A run of the Hybrid Automaton, H, may have one or more matches of
sequence-expr defined in a feature, F . Each match yields a feature valuation,
which is a real number obtained by computing feature-expr corresponding to
that match. The range of valuations of F on H is the interval [Fmin, Fmax], where
Fmin and Fmax are the minimum and maximum valuations of F among all matches
of sequence-expr on all runs of H.

3.2. Evaluating Feature Values over Flow Pipe Approximations 23

Given a Hybrid Automaton, H, and a feature, F , our goal is to determine the
range of values of F over all runs of H. Abstract interpretation and reachability
analysis techniques have been extensively used [23, 4, 13] to find the (possibly
overapproximated) set of reachable states of a Hybrid Automata. For simple
features, it is possible to define the feature as a function of the variables of H,
and then add them as additional variables into H, so that abstract interpretation
yields the feature range. For more complex features, we can reduce the feature
range computation problem to the abstract interpretation problem through a non-
trivial set of transformations. Chapter 4 presents an outline of the proposed
transformations, along with their correctness proofs; and Chapter 6 demonstrates
the use of these transformations with examples. Appendix A describes the feature
specification syntax.

3.2. Evaluating Feature Values over Flow Pipe Ap-

proximations
We express a feature expression, feature-expr, as given in Section 3.1, as a linear
combination of the system’s variables. We obtain the flow pipe for the variables
that define the feature using a method for appropriately over-approximating the
flow pipe, for example, using the method described in [13]. Currently the tool
PHAver is being used to compute the flow pipe for the Hybrid Automaton [19].
This flow pipe helps constrain the range of values the variables can take.

We express the equivalence relation between two Hybrid Automata as a pred-
icate over real variables [29].

Lemma 3.1. Given, a linear function f(x1, x2, x3, ..., xn) defined over n variables,
and m linearly independent constraints that form a convex region over the same n
variables, then, f takes values (within the constrained convex region), that have a
maximum and minimum defined at two corner points of the convex region defined
by the constraints.

Proof. Let us begin with the assumption that there are two variables x and y. m
linear constraints exist defined in terms of x and y. The ith constraint is of the
form,

ai.x+ bi.y ≤ ci (3.1)

where ai, bi, ci ∈ R.
We also have a function f(x, y) ⊆ R. We need to maximize or minimize the

function over the constrained domain. The function f has the following form.

f(x, y) = a.x+ b.y (3.2)

24 3. Feature based Abstract Interpretation

where a, b ∈ R.
We observe that the constraints represent lines. Since the constraints are

pairwise linearly independent, each pair of lines intersect. The convex region
defined by the constraints has a boundary that consists of a set of line segments
connected to each other at corners.

If we observe the function f, we can determine the slope of the line. The slope
of the line is given as −a

b
.

Let us write the equation of this line as,

y =
−a
b
× x+ c (3.3)

which can be re-written as,
y +

a

b
× x = c (3.4)

Here c represents the y intercept of the line.

The function f

Constraint lines

x axis

y axis

Position 2

Position 3

Position 1

Figure 3.1: Graphical visualization of the function f , and the set of constraints.

In Figure 3.1, the highlighted boundary represents the constrained domain,
having corner points clearly marked with heavy circles as the intersections of the

3.2. Evaluating Feature Values over Flow Pipe Approximations 25

constraints. In the figure, the slope −a
b

is shown to be negative. An identical
argument can be made when the slope is positive or zero. The example used in
the figure is presented for illustration purposes only.

As can be seen in Figure 3.1, the line with slope −a
b

can be arbitrarily posi-
tioned. Initially we assume that the line is at Position 1 as shown in the figure. To
maximize f(x, y) in Equation 3.2, we are effectively maximizing the y-intercept,
c, in Equation 3.4. If we sweep the line corresponding to the slope −a

b
, from left

to right, across the space, we observe that the line enters the constrained region
at a corner point, i.e at Position 2. As the line is moved towards the right, it
exits the constrained region at another corner point, at Position 3. Observe that
when the line is at Position 2, the y-intercept is minimum. As the line moves
right, the y-intercept increases until the line reaches Position 3. At this position
the y-intercept is maximum among y-intercepts for all alternative positions of the
line within the constrained region. Thus the minimum and maximum are seen at
the corner points of the constrained space.

If any constraint has the same slope as the line corresponding to f , then the
line corresponding to the constraint is parallel to that corresponding to f . If one
of the corner points corresponds to either one extreme (maximum or minimum),
then every point along the line segment that is part of that constraint line, will
also define the same extreme value.

When the constraints are defined over three variables, the constraints corre-
spond to planes in three dimensional space. The function f defined over the three
variable, f(x1, x2, x3), also corresponds to a plane. The normal to this plane is
known from the equation of the function f . We maximize or minimize the perpen-
dicular distance of the plane from the origin of the co-ordinate space of x1, x2, x3,
to maximize or minimize f respectively. Similar to the above case, as the plane
sweeps across the space, the plane enters the constrained convex region at some
corner point or along some corner edge of the region and similarly leaves at some
corner point or edge of the same region.

We can extend this idea to higher dimensions. In higher dimensions, the con-
straints will determine the position of hyperplanes, and the function f will define
a hyperplane H, whose exact position will depend on the variable independent
constant.

In general it is known [26] that geometrically, a hyperplane in Rn is a set of
the form

H = {x : aTx = b} (3.5)

where a ∈ Rn, a 6= 0, and b ∈ R. The position of the hyperplane in space is given
by the direction of the vector a, and the amount of the displacement along the

26 3. Feature based Abstract Interpretation

direction a, is given by b. Precisely, |b| is the length of the closest point, x0, on H
from the origin, and the sign of b determines if H is away from the origin, along the
direction a or −a. As we increase the magnitude of b, the hyperplane is shifting
further away along ±a, depending on the sign of b. Hence, similar analogies to
planes can thus be extended to hyperplanes as well, wherein the factor being
maximized or minimized is b.

In conclusion, given a set of m linear constraints in n-variables, and a function
f(x1, x2, x3, ...), we see that the maximum and minimum of f , in the constrained
region, is always found to lie at two corner points of the constrained region.

Lemma 3.2. Given a Hybrid Automaton H = (Q,X, f, Init,Dom,E,G,R) with
linear dynamics, and a feature whose signature is defined as a linear equation
over the real variables of the Hybrid Automaton, the maximum and minimum of
the range of values corresponding to the signature of the feature, can be correctly
computed from the flow pipe for the system variables that define the feature.

Proof. Given a set of initial states, flow pipe analysis of Hybrid Automata can
be performed using the method suggested in [13]. The flow pipe consists of a set
of constraint equations. These constraints are expressed in terms of the system
variables, thus describing the part of the state space that is reachable from the set
of initial states. These constraints are linear constraints.

The linear equation describing the feature signature is given. From Lemma
3.1, the linear constraints can be used to obtain the minimum and maximum of
the range of this signature.

Thus we can correctly compute the maximum and minimum range of values
corresponding to the signature of the feature directly from the flow pipe of the
system variables that define the feature.

Theorem 3.1. Given two Hybrid Automata H1 = (Q1, X1, f1, Init1, Dom1,

E1, G1, R1) and H2 = (Q2, X2, f2, Init2, Dom2, E2, G2, R2), feature equivalence can
be determined using the traditional flow pipe analysis for Hybrid Automata.

Proof. Let f1 and f2 be the feature signatures corresponding to feature F for the
Hybrid Automata H1 and H2 respectively.

Using the method specified in Lemma 3.2, we can obtain the range of the
feature signatures f1 and f2. The equivalence between the two Hybrid Automata
is defined based on the feature definition. We express the equivalence between the
two automata using the feature signatures, as the predicate,

|f1 − f2| ≤ threshold (3.6)

−threshold ≤ f1 − f2 ≤ threshold (3.7)

3.3. Concluding Remarks 27

where threshold ∈ R is a threshold value.
Since f1 and f2 are given as ranges, we have the minimum and maximum of f1

and f2 given as f1min
, f1max and f2min

, f2max respectively. Hence the equivalence
relation can be expressed more succinctly as the conjunction of the predicates,

(f1max − f2min
) ≤ threshold (3.8)

(f2max − f1min
) ≤ threshold (3.9)

If the conjunction of the above predicates evaluates to true, then it can safely
be ascertained that the two Hybrid Automata H1 and H2 are equivalence with
respect to the feature F .

3.3. Concluding Remarks
The syntax used for specifying features is described in Section 3.1. The feature
syntax is an extension of AMS-LTLL [31] and SVA [1], and introduces the notion of
a feature signature, evaluated over a match of an AMS-LTL property. Section 3.2
brings feature computation in the context of flow-pipe based reachability analysis,
and shows why it is possible to compute the feature signature over a flow pipe
represented as a convex polyhedron.

Chapter 4
Feature Driven Modifications to
the Hybrid Automaton

“Science is a way of thinking
much more than it is a body of knowledge."

-Carl Sagan

Given an abstraction of an AMS circuit model as a Hybrid Automaton, a
reachability analysis of the model is easy to perform using readily available tools
such as Checkmate [37] and PHAver [19]. During this research, the tool PHAver
has been used to express the Hybrid Automaton and to extract the flow pipe.

In order to focus our analysis on specific features of the system, we need to
make certain modifications to the Automaton to take advantage of the algorithms
used to extract the flow pipe. The modifications, do not in any way modify the
behaviour of the original abstraction. The modifications augment the Hybrid Au-
tomaton with additional locations and transitions that help focus the reachability
search on the behavioural aspects concerning the features of interest.

We broadly consider the following attributes of features:

1. Value attributes. We consider the relation between the proposi-
tions/PORVs in the property and the invariants/guards in the Hybrid Au-
tomaton. We further consider two possible types of such attributes, namely:

Type-1 : PORVs and propositions which are either true at all states in a
location or false at all states in the location.

Type-2 : PORVs that are not location invariants. Overlaying the compu-
tation of such features over abstract interpretation can be achieved by
splitting of locations.

2. Temporal attributes. We consider the nature of time dependency of the
feature. Specifically we consider two possible types under this head, namely:

29

30 4. Feature Driven Modifications to the Hybrid Automaton

x ≤ 5.5

x ≥ 45

x ≥ 9

x := x x := x

x := x

y == 0

q0
ẋ = 2

0 ≤ x ≤ 10

ẏ = 1

0 ≤ y ≤ 8

q1
ẋ = −2
ẏ = 3

1 ≤ y ≤ 200
5 ≤ x ≤ 50

q2
ẋ = 4

5 ≤ x ≤ 50
1 ≤ y ≤ 200

ẏ = 0

x == 0

y := y y := y

y := 1

Figure 4.1: Hybrid Automaton H1

Type-3 : Features that are concerned with computing the time between
two events.

Type-4 : Features that are defined over the valuations of state variables at
two or more points in time.

A feature may contain any combination of the above attributes. The presence of
each attribute is handled with a specific type of transformation, which is presented
in the remainder of this chapter. For the sake of simplicity we demonstrate the
handing of each attribute type in isolation.

4.1. Handling Type-1 Attributes
Consider the Hybrid Automaton, H1, in Figure 4.1 and the following feature:

feature valueX();

begin

H1.state == q1 || H1.state == q2

|-> valueX = H1.x ;

end

The feature aims to find the range of the variable x when H1 is in the location
q1 or q2. Given such a feature, we use the standard flow pipe analysis for Hybrid
Automata [4, 13, 19], to derive the reachable region for each location of H1.
Given the convex nature of the polyhedra computed by this analysis, it suffices to
compute the range of x over the corner points of the polyhedra at the locations
q1 and q2. In our tool flow, we use PHAver [19] to compute the polyhedra of
reachable states at q1 and q2, and then compute the range of x over the corner
points of the polyhedra. It is easy to see that the same approach works well for
Type-1 attributes where feature-expr is linear.

4.2. Handling Type-2 Attributes
If a feature contains a PORV which is not a location invariant, then we shall
split the location into states that satisfy the PORV and states that do not sat-
isfy the PORV. For example, consider the following feature over the same hybrid
automaton, H1, of Figure 4.1:

4.2. Handling Type-2 Attributes 31

y == 0
x == 0

x := x
y := y

y == 0

x == 0

q01

0 ≤ x ≤ 3

x ≥ 3

x == 3

q02

q03

x == 3

3 ≤ x ≤ 10

x := x
y := y

x := x
y := y

x := x
y := y

x := x
y := y

x := x
y := y

x := x
y := 1

x ≥ 9

x ≥ 9

x ≥ 9

x ≥ 45 x ≤ 5.5

q1
ẋ = −2
ẏ = 3

1 ≤ y ≤ 200
5 ≤ x ≤ 50

q2
ẋ = 4

5 ≤ x ≤ 50
1 ≤ y ≤ 200

ẏ = 0
ẋ = 2
ẏ = 1

0 ≤ y ≤ 8

ẋ = 2
ẏ = 1

0 ≤ y ≤ 8

ẋ = 2
ẏ = 1

0 ≤ y ≤ 8

y == 0

x == 0

Figure 4.2: Splitting Hybrid Automaton H1

feature yValue(c);

begin

((H1.state == q0) && (H1.x >= 3))

|-> yVvalue = H1.y ;

end

The feature computes the value of y when x crosses 3 while the automaton is in
location q0. The expression: ((H1.state == q0) && @+(H1.x >= 3)) is false
at all states of all locations other than q0, and therefore we consider splitting the
location q0 only. Since we are concerned with those states at which the crossing
of (H1.x >= 3) takes place, we split location q0 into three locations, namely a
location q01 where x < 3, a location q02 where x = 3, and a location q03 where
x > 3. The resulting Hybrid Automaton is shown in Figure 4.2, and we seek the
reachable states under the location q02.

We apply algorithms for the feature patterns given below:

1. HAi.state = loc1, condition1, var_assignment1 ##[0, $]

HAi.state = loc2, condition2, var_assignment2
7→ feature_value = expr

2. HAi.state = loc1, condition1, var_assignment1 ##W

HAi.state = loc2, condition2, var_assignment2
7→ feature_value = expr

In the algorithms and definitions used to describe the transformations, we use
the following notations for convenience:

32 4. Feature Driven Modifications to the Hybrid Automaton

1. loc1 and loc2 refer to the locations in the sequence expressions.

2. condition refers to either condition1 or condition2.

3. PORV refers to a relational expression of the form “x op c", where op ∈ {=
,≥,≤}. The condition is a convex combination of such PORVs. If a PORV
is part of a cross-event, we denote it as PORVE.

4. L and L′ refer to the set of variables that form destination operands for
local variable assignments preceding and succeeding respectively, the ‘ 7→’
operator. LH/L′H refers to the variables L/L′ that are used in the assertion
for Hybrid Automaton H.

5. Rexpr and R′expr refer to the set of expression on the right of local vari-
able assignments preceding and succeeding respectively, the ‘7→’ operator.
Rexpr(v)/R′expr(v) corresponds to the expression assigned to variable v.

Given a Hybrid Automaton defined as H = (Q, X, f, Init, Dom, E, G, R),
where Q, X, f, Init, Dom, E, G, R are as defined in Definition 2.1, and a feature
specification F , the Hybrid Automaton H is split on the basis of F as follows.

Definition 4.1. Hybrid Automaton Modification-Type 2

The Hybrid Automaton H ′ is a collection H ′ =

(Q′, X, f ′, Init′, Dom′, E ′, G′, R′), where

• Q′ =


q for Dom(q) ∩ condition = φ, q ∈ Q

{q1, q2, q3} for q ∈< sequence− expr > Dom(q) ∩ PORVE 6= φ, q ∈ Q
{q1, q3} for q ∈< sequence− expr > Dom(q) ∩ PORV 6= φ, q ∈ Q

is the set of discrete states;

• f ′(q, x) =

{
f(q, x) for x ∈ X q ∈ Q ∩Q′
f(p, x) for x ∈ X q ∈ {p1, p2, p3}

is a vector field. The vector field (denoted as ẋ) describes how the
continuous state x ∈ X evolves over time, while in state q;

• Init′ =


q for q ∈ Init, q ∈ Q ∩Q′

{q1, q2, q3} for q ∈ Init, q /∈ Q ∩Q, Dom(q) ∩ PORVE 6= φ

{q1, q3} for q ∈ Init, q /∈ Q ∩Q, Dom(q) ∩ PORV 6= φ

is a set of initial states;

4.2. Handling Type-2 Attributes 33

• Dom′(q) =



Dom(q) for q ∈ Q ∩Q′
Dom(p) ∩ PORV for p ∈ Q, q ≡ p1 ∈ Q′, p |= PORV.

x == c for p ∈ Q, q ≡ p2, p2 ∈ Q′,
PORV ≡ x op c,

p |= PORV.

Dom(p) ∩ PORV for p ∈ Q, q ≡ p3 ∈ Q′,
p |= PORV.

is a domain function. This function assigns a set of continuous states,
Dom′(q) ⊆ Rn, to each discrete state q ∈ Q′.

• E ′ =



(p, q) for (p, q) ∈ E, p, q ∈ Q ∩Q′
p× {q1, q2, q3} for (p, q) ∈ E, p ∈ Q′, q /∈ Q′
{p1, p2, p3} × q for (p, q) ∈ E, q ∈ Q′, p /∈ Q′

(q1, q2) for q ∈ Q, q /∈ Q′, q1, q2 ∈ Q′
(q2, q3) for q ∈ Q, q /∈ Q′, q2, q3 ∈ Q′
(q1, q3) for q ∈ Q, q, q2 /∈ Q′, q1, q3 ∈ Q′

is a set of edges

• G′(p, q) =



G(p, q) for (p, q) ∈ E, p, q ∈ Q ∩Q′
G(p, r) for (p, r) ∈ E, p ∈ Q ∩Q′, q ∈ {r1, r2, r3}
G(r, q) for (r, q) ∈ E, q ∈ Q ∩Q′, p ∈ {r1, r2, r3}
x == c for p, q /∈ Q, p ≡ r1, q ≡ r2, (p, q) ∈ E ′, r ∈ Q
PORV for p, q /∈ Q, p ≡ r2, q ≡ r3, (p, q) ∈ E ′, r ∈ Q

is a guard condition;

• R′(p, q, x) =


R(p, q, x) for p, q ∈ Q ∩Q′
R(p, r, x) for (p, r) ∈ E, p ∈ Q ∩Q′, q ∈ {r1, r2, r3}
R(r, q, x) for (r, q) ∈ E, q ∈ Q ∩Q′, p ∈ {r1, r2, r3}

x for p, q ∈ {r1, r2, r3}, r ∈ Q, (p, q) ∈ E ′

is a reset map.

�

State splitting with respect to PORVs is a known technique, and was used for
model checking abstractions of Hybrid Systems [36]. However the requirement to
capture a feature valuation at a cross event (as in the above example) necessitates
a three way split as opposed to a two way split between states satisfying or refuting
the PORV.

To prove that the modification introduced in Definition 4.1 doesn’t change the
behaviour of the original Hybrid Automaton, we introduce the definition for paths
of a Hybrid Automaton.

34 4. Feature Driven Modifications to the Hybrid Automaton

Definition 4.2. Path in a Hybrid Automaton
A Path in a Hybrid Automaton H, is defined as a timed sequence of states

〈l0, x0〉 τ1−→ 〈l1, x1〉 τ2−→ 〈l2, x2〉 τ3−→
τi−→ 〈li, xi〉

τi+1−→ ...

such that state 〈li, xi〉 is reachable from state 〈li−1, xi−1〉 in τi time, ∀i ≥ 1, ac-
cording to the activities and transition rules of H, where 〈l0, x0〉 ∈ Init.

�

Paths(H) refers to the set of all paths permitted by Hybrid Automaton H. A
run in a Hybrid Automaton is a continuous timed-sequence of states permitted by
some path in the Hybrid Automaton. A sub-run of a run ρ, is a timed sequence
of states that form a sub-sequence of states from the run ρ.

Definition 4.3. Difference between Runs
The difference between runs ρ1 and ρ2, ρ1− ρ2, where ρ1 = ρa.ρb and ρ2 = ρb.ρc is
defined as the timed-sequence of states, ρa.

ρ1 − ρ2 = ρa , where ρ1 = ρa.ρb and ρ2 = ρb.ρc

�

ITr1

ITrm

OTr1

OTrn

....
....

qi
ẋ1 = f(qi, x1)

X ∈ Dom(qi)

ẋ2 = f(qi, x2)....
ẋk = f(qi, xk)

Figure 4.3: Location qi before splitting on PORVj ≡ xj ∼ c

Theorem 4.1. Definition 4.1 transforms Hybrid Automaton H into H ′ such that
Paths(H ′) ≡ Paths(H).

Proof. The transformation of a Hybrid Automaton location in H that is affected
by Definition 4.1, is described in Figures 4.3, 4.4 and 4.5. ITr and OTr refer to
incoming and outgoing transitions respectively. Essentially a location qi is split
on account of a PORVj ≡ xj ∼ c, where ∼∈ {≥,≤,==} as follows:

1. Split qi into three parts qi1 , qi2 , qi3 , if the PORV is part of an event; else we
require a two way split into qi1 and qi3 .

2. All incoming and outgoing transitions (guards and resets included), location
invariants, and location activities of part locations qi1 , qi3 , qi3 are identical
to those of the parent location qi.

4.2. Handling Type-2 Attributes 35

ITr1

ITrm

OTr1

OTrn

....
....

qi1
ẋ1 = f(qi, x1)

X ∈ Dom(qi)

ẋ2 = f(qi, x2)....
ẋk = f(qi, xk)

∩PORVj

ITr1

ITrm

OTr1

OTrn

....
....

qi3
ẋ1 = f(qi, x1)

X ∈ Dom(qi)

ẋ2 = f(qi, x2)....
ẋk = f(qi, xk)

∩PORVj

ITr1

ITrm

OTr1

OTrn

....
....

qi2
ẋ1 = f(qi, x1)

X ∈ Dom(qi)

ẋ2 = f(qi, x2)....
ẋk = f(qi, xk)

∩(xj == c)

(xj == c) (xj == c)

Figure 4.4: qi after splitting on @+ or @− events on (PORVj ≡ xj ∼ c)

ITr1

ITrm

OTr1

OTrn

....
....

qi1
ẋ1 = f(qi, x1)

X ∈ Dom(qi)

ẋ2 = f(qi, x2)....
ẋk = f(qi, xk)

∩PORVj

ITr1

ITrm

OTr1

OTrn

....
....

qi3
ẋ1 = f(qi, x1)

X ∈ Dom(qi)

ẋ2 = f(qi, x2)....
ẋk = f(qi, xk)

∩PORVj

PORVj

Figure 4.5: qi after splitting on PORVj ≡ xj ∼ c

3. We add invariants PORVj, xj == c, and PORVj respectively to locations
qi1 , qi3 and qi3 .

4. We also allow the following transitions:

(a) On guard: xj == c between qi1 and qi2 in both directions (equivalent to
two transitions, one in either direction), when the PORV is associated
with an event.

(b) On guard: PORVj between qi2 and qi3 in both directions (equivalent to
two transitions, one in either direction), when the PORV is associated
with an event.

(c) On guard: PORVj between qi1 and qi3 in both directions (equivalent
to two transitions, one in either direction), when the PORV is NOT
associated with an event.

Steps 1 and 2 create identical copies of the original location qi. Locations
qi1 , qi2 and qi3 each are identical to qi, in terms of the transitions, invariants and
activities in the locations. As of this point, addition of these locations introduces
three redundant sets of states.

36 4. Feature Driven Modifications to the Hybrid Automaton

Step 3 modifies the new locations by adding invariants. The union of the new
domains of qi1 , qi2 , qi3 , is equal to the domain of the single location qi.

Dom(qi1) ∪Dom(qi2) ∪Dom(qi3) = {Dom(qi) ∩ PORVj} ∪
{Dom(qi) ∩ xj == c} ∪
{Dom(qi) ∩ PORVj}

= Dom(qi)

Let ρ be a run of H. Let ρi be a timed sequence of states 〈qi, Xt〉, a sub-
sequence of ρ, where Xt ∈ Dom(qi) is a valuation of variables in H at time t in
the run, ρ. We can break ρi into:

• ρi1 ⊆ ρi |〈qi, Xt〉 ∈ ρi1 iff Xt ∈ {Dom(qi) ∩ PORVj}

• ρi2 ⊆ ρi |〈qi, Xt〉 ∈ ρi2 iff Xt ∈ {Dom(qi) ∩ xj == c}

• ρi3 ⊆ ρi |〈qi, Xt〉 ∈ ρi3 iff Xt ∈ {Dom(qi) ∩ PORVj}

Since PORVj ≡ xj ∼ c, where ∼ ∈ {≥,≤,==}; ρi2 ⊆ ρi1 and ρi2 ⊆ ρi3 . We
can re-construct ρi as the concatenation of, ρi1 with (ρi3 − ρi2), or (ρi1 − ρi2) with
ρi3 .

Let lr(ρ) refer to the initial state of the run ρ. Since ρi is a run through qi,
ρi1 is a run through qi, with its domain restricted by PORVj. Similarly ρi2 is a
run through qi, with its domain restricted with xj == c, and ρi3 is a run through
qi with its domain restricted with PORVj. Since the activities in qi1 , qi2 and qi3
are identical to qi, with initial states lr(ρi1), lr(ρi2) and lr(ρi3) in qi1 , qi2 and qi3

respectively, will result in exactly the runs ρi1 , ρi2 and ρi3 .
The discrete transitions added by Step 4, allow discrete moves between loca-

tions qi1 , qi2 and qi3 . If we project the run ρ of H in H ′, for the sub-sequence
ρi of the run ρ, when state 〈qi, Xt〉, Xt ∈ xj == c is reached, state 〈qi1 , Xt〉,
Xt ∈ xj == c is reached in H ′, and ρi1 completes, moving forward into qi2 pro-
ducing the sub-run ρi2 . For the case when the PORV is not associated with an
event, when state 〈qi, Xt〉, Xt ∈ xj == c is reached, state 〈qi1 , Xt〉, Xt ∈ xj == c

is reached in H ′, and ρi1 completes, moving forward into qi3 producing the sub-run
ρi3 . Since xj == c is an invariant of qi2 , it is important to observe that no time is
spent in qi2 . Therefore, every run ρ of H is a run ρ in H ′.

The reverse can be easily proven by recreating ρi in H from ρi1 and (ρi3 − ρi2),
or (ρi1 − ρi2) and ρi3 .

It is clear that for events of the form @+(PORVj), @−(PORVj), or @(PORVj),
the states reachable in qi2 captures information at the cross-event.

Theorem 4.2. The Transformation of Definition 4.1, correctly captures the intent
in the feature specification, that is:

4.2. Handling Type-2 Attributes 37

1. q2 captures exactly the value of variable x ∈ X at the cross-event involving
x.

2. The location labeled with the PORV, captures exactly the values of the vari-
able x ∈ X, that satisfy the PORV.

Proof. Sequence expressions are of two types,

1. ϕ |-> <feature-computation>

2. ϕ1 ##[<time-window>] ϕ2 |-> <feature-computation>

Due to the semantics of the Hybrid Automaton, any sub-run ρ′ that matches
<sequence-expr>, will have a timed-sequence of states that either matches ϕ in
its entirety, or if the sequence expression is of the alternate form, ρ′ will have a
prefix that matches ϕ1 and a suffix that matches ϕ2.

For any run ρ which has a sub-run ρ′ that matches the sequence expression,
we assert that, the transformation specified captures the matched sub-run ρ′. For
sequence expressions of the first type, ϕ causes the automaton to be transformed
by location splitting, so that exactly the location for which ϕ is true, is labeled by
ϕ. A match of ρ′ implies that the timed sequence of states of ρ′ satisfy ϕ. These
states are thus states of a location labeled with ϕ, and a reachability analysis
focused on locations labeled with ϕ will produce exactly the states of ρ′. For
sequence expressions of the second type, the prefix of ρ′ will be contained in the
states of some location labeled by ϕ1. The suffix will be contained in the states of
some location labeled by ϕ2. A reachability analysis of the locations labeled ϕ1,
and those labeled ϕ2, respectively contain the states of the prefix and suffix of ρ′.

We also need to prove that although the reachability analysis techniques used
include possibly unreachable states in the result, these variations do not produce
false positives. The feature signature is interpreted over the range of values of
variables in locations labeled by PORVs. Unreachable states can only add to the
size of the state space discovered. These states could introduce false negatives,
as it so happens with all abstract interpretation techniques used in the formal
analysis of systems. [16] False negatives are handled by refining the set of runs
captured in the reachable regions, using smaller time steps to more accurately
capture the evolution of the state variables.

Any results obtained due to permitted runs are never lost as proved above,
hence ensuring that feature signatures contain all runs that are permitted.

38 4. Feature Driven Modifications to the Hybrid Automaton

x ≤ 5.5

x ≥ 45

x ≥ 9

y == 0

x == 0

y := 1

q0
ẋ = 2

0 ≤ x ≤ 10

ẏ = 1

0 ≤ y ≤ 8

ṫ = 0 ṫ = 0

q1
ẋ = −2
ẏ = 3

1 ≤ y ≤ 200
5 ≤ x ≤ 50

ṫ = 0

1 ≤ y ≤ 200
5 ≤ x ≤ 50

q2
ẋ = 4
ẏ = 0

x ≤ 5.5

x ≥ 45

x ≥ 9q01
ẋ = 2

0 ≤ x ≤ 10

ẏ = 1

0 ≤ y ≤ 8

ṫ = 1 ṫ = 1

q11
ẋ = −2
ẏ = 3

1 ≤ y ≤ 200
5 ≤ x ≤ 50

ṫ = 1

1 ≤ y ≤ 200
5 ≤ x ≤ 50

q21
ẋ = 4
ẏ = 0

y == 0 y == 3
yRiseTimet := 0
:= t y == 0

y == 3

t := 0

y == 0
t := 0

y == 3

0 ≤ y ≤ 3 0 ≤ y ≤ 3 0 ≤ y ≤ 3

0 ≤ y ≤ 3 0 ≤ y ≤ 3

0 ≤ y ≤ 3
y := 1

yRiseTime

:= t
yRiseTime

:= t

Figure 4.6: Hybrid Automaton H1 with time

4.3. Handling Type-3 Attributes
In the proposed language, the time of occurrence of an event can be recorded in a
local variable using the following syntax:

<event>, <local-var> = $time

For example, consider the following feature:

feature yRiseTime();

begin

var t1, t2;

(@+(H1.y >= 0), t1=$time)

##[0,$]

(@+(H1.y>=3), t2=$time)

|-> yRiseTime = t2 - t1;

end

In this feature, the time of occurrence of cross events, @+(H1.y >= 0) and
@+(H1.y >= 3) are recorded in the local variables t1 and t2 respectively. The
feature value is defined as the difference between these values, and therefore reflects
the time between these events. In order to overlay the computation of such features
over abstract interpretation of a Hybrid Automaton, we add a new clock variable,
t, into the Hybrid Automaton. We also add a new variable, yRiseT ime, to capture
the feature value. The transformation of H1 is shown in Figure 4.6.

As shown in the figure, we first create a copy of the Hybrid Automaton. In the
figure the subgraph induced by q0, q1, q2 represents the original automaton, and

4.3. Handling Type-3 Attributes 39

the subgraph induced by q01, q11, q21 represents the copy. The clock t advances
only in the states of the copy. Initially we are in the original automaton. When the
first cross event, namely @+(H1.y >= 0), occurs we may reset t and move to the
copy. Once we move to the copy, we continue in the copy (advancing t with time
spent) until the second cross event, namely @+(H1.y >= 3, occurs. When this
happens, we enforce the return to the original automaton by adding the location
invariant 0 ≤ y ≤ 3 in all locations of the copy. A reachability analysis of the
Hybrid Automaton for variable yRiseT ime yields the required feature value.

Note that the transition to the copy is a non-deterministic choice when the
event @+(H1.y >= 0) occurs. This takes care of overlapping matches of of
<sequence-expr> and ensures that the feature range is computed over all possible
matches.

Given a Hybrid Automaton defined as H = (Q, X, f, Init, Dom, E, G, R),
where Q, X, f, Init, Dom, E, G, R are as defined in Definition 2.1, and a feature
specification F , the Hybrid Automaton H is split on the basis of F as follows:

Definition 4.4. Hybrid Automaton Modification-Type 3

The Hybrid Automaton H ′ is a collection H ′ =

(Q′, X, f ′, Init,Dom′, E ′, G′, R′), where

• Q′ =

{
q for q ∈ Q
q1 for q ∈ Q

is the set of discrete states;

• f ′(q, x) =

{
f(q, x) for x ∈ X q ∈ Q
f(p, x) for x ∈ X q ≡ p1, p ∈ Q

is a vector field. The vector field (denoted as ẋ) describes how the
continuous state x ∈ X evolves over time, while in state q;

• Dom′(q) =

{
Dom(q) for q ∈ Q
Dom(p) for q ≡ p1, p ∈ Q

is a domain function. This function assigns a set of continuous states,
Dom′(q) ⊆ Rn, to each discrete state q ∈ Q′;

• E ′ =


(p, q) for (p, q) ∈ E
(p1, q1) for (p, q) ∈ E
(p, p1) for < p,Dom(p) >∈ condition1

(p1, p) for < p,Dom(p) >∈ condition2

is a set of edges;

40 4. Feature Driven Modifications to the Hybrid Automaton

• G′(p, q) =


G(p, q) for (p, q) ∈ E
G(r, s) for p ≡ r1, q ≡ s1, (r, s) ∈ E

condition1 for q ≡ p1, < p,Dom(p) >∈ condition1

condition2 for p ≡ q1, < q,Dom(q) >∈ condition2

is a guard condition;

• R′(p, q, x) =


R(p, q, x) for (p, q) ∈ E
R(r, s, x) for p ≡ r1, q ≡ s1, (r, s) ∈ E

0 for x ≡ t, q ≡ p1, < p,Dom(p) >∈ condition1

t for x ≡ F, p ≡ q1, < q,Dom(q) >∈ condition2

is a reset map.

�

Theorem 4.3. Definition 4.4 transforms Hybrid Automaton H into H ′ such that
Paths(H) ∈ Paths(H ′).

Proof. The transformation creates two identical copies of H in H ′. Let us refer to
the two copies as H1 and H2. Initial states of H are projected as initial states of
H1. Transitions between H1 and H2 are merely suggestions for movements that
are voiced whenever the guard predicates are satisfied by the state. Since a run
begins in H1, all runs of H are contained in runs of H1. The paths that are added
to Paths(H) are those that have cumulative time, t, captured as part of H2. If
we delete t from all states in H2, Paths(H) ≡ Paths(H ′) by overlapping identical
runs through H1 and H2 at equivalent time points.

Theorem 4.4. Definition 4.4 correctly captures the temporal attribute of ‘time’
when sequence -expr matches in a run of H ′.

Proof. Definition 4.4 duplicates H into H1 and H2, which together form H ′. If a
state 〈p,Xt1〉 |= condition1 in run ρ inH1, then Definition 4.4 allows a transition to
p1 inH2. On the transition, t is reset to zero. While ρ proceeds inH2, t counts from
the instance t1 at which the transition to H2 was made. When a state 〈q,Xt2〉 |=
condition2 is reached in run ρ in H2, then Definition 4.4 allows a transition to
q in H1. At the instant when the transition is taken, t has counted from 0,
when H2 was first entered, upto time instant t2, when H2 is first left, effectively
computing t = t2 − t1. On the transition, the current value of t is captured in
the feature variable F . Time sub-sequence ρ′ ⊂ ρ while in H2, represents a match
of sequence-expr on ρ, and F contains the elapsed-time corresponding to the
match.

4.4. Handling Type-4 Attributes 41

q1 q2x ≤ 5.5

x ≥ 45

x ≥ 9
yWindow == 0

t == 0

q0
ṫ = 1

˙yWindow = 0

ẏ1 = 0
ẏ2 = 0

t == 30

t := 0

˙yWindow = y2 − y1
y1 := y

y2 := yt := 0
y1 := y

y1 == 0

y2 == 0

ṫ = 1

˙yWindow = 0

ẏ1 = 0
ẏ2 = 0

ṫ = 1

˙yWindow = 0

ẏ1 = 0
ẏ2 = 0

t := 0
y1 := y

t == 30

t := 0

˙yWindow = y2 − y1
y1 := y

y2 := y t := 0
y1 := y

t == 30

t := 0

˙yWindow = y2 − y1
y1 := y

y2 := y

q2
ṫ = 1
ẏ1 = 0
ẏ2 = 0

t := 0
y1 := y

Figure 4.7: Hybrid Automaton H1 with Rabbit Ears

4.4. Handling Type-4 Attributes
We now consider features that are functions of values of variables at different time
points. As an example, consider the following feature:

feature YWindow();

begin

var y1, y2;

y1 = H1.y ##30 y2 = H1.y

|-> YWindows = abs(y2 - y1);

end

This feature returns the change in the value of y in any time window of 30.
Since time is dense, we have to consider time windows starting at every time point.

We leverage the notion of non-determinism to overlay the computation of such
features over abstract interpretation of Hybrid Automata. Intuitively, we add a
clock variable t, and add the following transformations at every location of the
Hybrid Automaton:

1. We add a self-loop at every location which resets t at any non-
deterministically selected point of time and records the value of y in the
variable y1 at this time.

2. We add a self-loop at every location which can be taken when t is equal to
30. The self loop also assigns to some feature variable, the value of abs(y2
− y1), where y2 is the value of y recorded at this time.

Since abstract interpretation of Hybrid Automata automatically considers all pos-
sible computations, the above transformations are sufficient to evaluate abs(y2

− y1) over all time windows.
Adding the two self loops as indicated above renders a visual similarity of the

locations with rabbit ears, hence we shall refer to this transformation as rabbit ear
transformations.

42 4. Feature Driven Modifications to the Hybrid Automaton

The rabbit ear transformation for the Hybrid Automaton, H1, with respect to
the above feature is shown in Figure 4.7.

Theorem 4.5. The Rabbit Ear Transformation applied to locations of paths of
interest, captures the required feature exactly for the window specified.

Proof. The proof idea is as follows:
The generic rabbit ear method, adds rabbit ears along locations on paths of

interest. This is abstracted out as a graph problem, that finds all locations along
paths from the location that matches the sequence expression first, upto and
including the location that matches last. If any PORV causes locations to be
split, then the transformation in Section 4.2 must be applied first. We proceed to
prove that the rabbit ear transformation applied is sufficient to capture the feature
signature over runs of the Hybrid Automaton.

Local variables of the feature and the feature variable F , are added as control
variables in the Hybrid Automaton. The activity acting upon them causes no
change in their value while in a location. A variable t, that is a representative of
time, is also added as a control variable to the automaton. t is a clock variable,
and as such has an activity ṫ = 1 working on it in all locations. In locations not
on paths of interest ṫ = 0. The value of t is carried over across transitions along
paths of interest and is reset to 0 other wise. Incoming transitions into locations
on paths of interest have resets for local variables, that set them using assignment
expressions as given in the feature specification. On locations on paths of interest,
we take advantage of non-determinism to add two transitions:

ITr1

ITrm

OTr1

OTrn

....
....

qi

ẋ1 = f(qi, x1)

X ∈ Dom(qi)

ẋ2 = f(qi, x2)....
ẋk = f(qi, xk)

t == W

t := 0
t := 0

Set Local Variables

v̇1 = 0
....

v̇l = 0

ṫ = 1

Calculate Feature Value

Set Local Variables

Figure 4.8: Location with Rabbit Ears

1. A Transition that sets t := 0, restarting the window; and sets assigns to
each local variable a value computed from the corresponding assignment
expression in the feature specification. The guard on the transition is always
true. The semantics of Non-determinism, thus allow the transition to be
taken at any instant of time, i.e. from every state in the location, thus

4.4. Handling Type-4 Attributes 43

allowing us to restart the window computation non-deterministically at any
point in time.

2. A Transition that evaluated the feature F when the window width is
breached. If W is the window width, then the transition is guarded by
the expression t == W .

Type 4 features discuss features evaluated over finite-windows, over paths spec-
ified by the sequence expression. These paths are identified by abstract matches
of the sequence expression, considering only location names and PORVs labeling
locations; which follows from the semantics of the sequence expression. The rabbit
ears are added only to locations on these paths. Taking any one of the transitions
(rabbit ears) can be thought of as, tapping on a rabbit ear.

Of the rabbit ears added, Rabbit Ear 1, allows us to non-deterministically start
the feature computation window at any state in the location. As time progresses,
non-determinism allows the computation of many parallel windows. For each run,
starting with tapping on Rabbit Ear 1, time progresses until the the time window
has elapsed. Since the feature must be computed only when a sequence expression
matches over a time equal to the window size, exactly when the window bound is
reached, tapping on Rabbit Ear 2, achieves exactly what we desire. Tapping on
the second ear, allows us to calculate the feature value and restart the window. If
the window crosses over locations, there are two possibilities:

• The window crosses over locations on paths of interest: In this case transi-
tions along the path carry over all variable values assigned at the beginning
of the window by using unit resets (Of the form x := x). When the window
boundary is reached, tapping on the second rabbit ear in the location where
the window boundary is reached, will cause the feature to be computed using
the values that were carried over from when the first ear was tapped.

• The window crosses over some locations not on paths of interest: In this case
when the first transition is taken from a location on a path of interest, to one
that is not on a path of interest, the variable t is reset, with t := 0 effectively
starting a new window. In such locations that are not of interest ṫ = 0,
and hence the window can never begin while in such a location. When a
location of interest is first entered, the window can begin a fresh because all
transitions coming into such a location set all local variables with expressions
specified in the feature specification.

We compute the feature by extracting the values taken on by F in all locations.
And since F is assigned a value only when the second rabbit ear is tapped, that

44 4. Feature Driven Modifications to the Hybrid Automaton

is when the window boundary is reached, the feature range computed is exactly
what is required.

4.5. Reachability Output: A Graphical Perspective
We demonstrate the output of PHAVer on H1 after processing the Type-3 feature
detailed in Section 4.3.

Figure 4.9: Reachability Analysis of H1. Variables x and y are plotted on the x and
y axes respectively

Figure 4.9 depicts the reachable regions for variables x and y of Hybrid Au-
tomaton H1 shown in Figure 4.1. In the figure, polygons are plotted describing
the regions that are reachable in H1, given the initial condition x == 0∧ y == 0.

Referring to the feature yRiseTime introduced in Section 4.3, modify H1 as
shown in Figure 4.6. Running PHAVer on the resulting transformed Hybrid Au-
tomaton produces the same reachable region for variables x and y as shown in
Figure 4.9. Analyzing for the feature variable yRiseTime, we obtain the feature
values depicted in Figure 4.10. The feature signature yRiseTime is plotted on the
y-axis, while variable y is plotted on the x-axis. The figure shows two parallel lines
indicating the runs in the identical locations in the new automaton. yRiseTime

is zero (initial value) when in Level 2 of the automaton. yRiseTime is set when
moving from Level 2 to Level 1. Thus the non-zero value of yRiseTime in the plot
indicates values of the variable captured for runs in the Level 1 of the automaton.

4.6. Concluding Remarks 45

Figure 4.10: Feature Driven Reachability Analysis of H1, with variables y and yRise-
Time on the x and y axes respectively

4.6. Concluding Remarks
This chapter expresses the notion of using the feature specification to drive modi-
fications made to the Hybrid Automaton. These modifications essentially overlay
the assertions to be matched, along with feature computation over the standard
reachability analysis. It is shown that features can consist of properties specified
over control variable valuations or valuations of time. For each type of feature
an appropriate modification is made to allow a flow-pipe analysis to embed the
feature intent.

Chapter 5
Formal Feature Based Equivalence
Checking

“It’s only ‘single steps’ that make a journey of 1000 miles.
It means the combined effect of many steps is the equivalent of

a great journey. Go, take many little steps."
- Israelmore Ayivor

Feature ranges may be used to define the equivalence between AMS designs.
In the first report submitted under the SRC project [17], a language formalism
for specifying feature based equivalence was introduced. The notion of feature
based equivalence is recapitulated and some new thoughts in the light of the new
research is presented in this chapter.

5.1. Features and Equivalence Definitions
Intuitively, the definition of feature based equivalence has the following compo-
nents:

1. The definition of the feature.

2. A predicate that defines equivalence in terms of the feature values.

Example 5.1. The dropout voltage of a LDO is defined as the smallest differ-
ence between the input and output voltages required to maintain regulation. The
dropout voltage can be evaluated in the dropout mode of operation (which is a
location of the Hybrid Automaton). In this mode of operation, the output voltage
of the LDO falls with the input voltage while maintaining this difference. Sup-
pose our definition of equivalence between two LDO circuits/models includes the
requirement that the dropout voltage must be within 5 mV of each other. In other
words, if ldo1.Vout and ldo2.Vout are respectively the output voltages of LDO1 and

47

48 5. Formal Feature Based Equivalence Checking

LDO2 for input voltages ldo1.Vin and ldo2.Vin respectively, then the equivalence
requirement is formally specified as follows:

feature vdrop1;

begin

(ldo1.state == DROPOUT) |-> vdrop1 = (ldo1.Vin - ldo1.Vout) ;

end

feature vdrop2;

begin

(ldo2.state == DROPOUT) |-> vdrop2 = (ldo2.Vin - ldo2.Vout) ;

end

equiv DropoutRange;

begin

feature vdrop1, vdrop2;

DropoutRange := abs(vdrop1 - vdrop2) <= 0.005;

end

Formally, an equivalence specification will consist of one or more formally spec-
ified features, and an equivalence predicate as shown below:

feature <feature-name> (<list-of-parameters>);

begin

var <list-of-local-variables>;

<sequence-expr>

|-> <feature-name> = <feature-expr> ;

end

equiv <equivalence-name>;

begin

feature <list-of-feature-names>;

<equivalence-name> := <equiv-predicate>;

end

The syntax is elaborated as follows. The definition of features has been ex-
plained in Chapter 3.

1. Each equivalence criterion has a name by which it is referred. The name is
also the placeholder for its truth (which is Boolean), as explained below.

5.2. Semantics of Feature based Equivalence 49

2. The equivalence predicate is a linear constraint (or a conjunction of linear
constraints) over one or more features, which are defined independently out-
side the equivalence definition, but declared inside the equivalence definition.

Appendix B describes the equivalence specification syntax.

5.2. Semantics of Feature based Equivalence
We now explain the notion of feature based equivalence. Without loss of gener-
ality, suppose P (x1, . . . , xk) denotes the equivalence predicate over the features,
x1, . . . , xk. Suppose R(x1) denotes the range of values that xi can take on the de-
sign for which it is defined. For example, R(vdrop1), denotes the range of dropout
values for ldo1 in its dropout mode. Then the validity of the following expression
captures the specified equivalence criterion:

∀z1 ∈ R(x1) . . . ∀zk ∈ R(xk)P (z1, . . . , zk)

Once the feature ranges are computed (say, using the methods presented in this
report), the task of determining the validity of the equivalence predicate is straight
forward. Since the equivalence predicate is linear, it suffices to check the truth of
the equivalence predicate on the corner points of the convex region defined by the
intersection of the range constraints for each feature.

It is interesting to note that feature based equivalence is not an equivalence
relation in general, because transitivity does not hold always. For example, the
following situation is possible with respect to the dropout criterion above:

• The dropout ranges of LDO1, LDO2, and LDO3 are respectively, [2.002,
2.005], [2.003, 2.006], and [2.004, 2.008] respectively.

• The equivalence predicate, abs(vdrop1 - vdrop2) <= 0.005, is valid for
LDO1 and LDO2, because it holds for all valuations of vdrop1 and vdrop2

within their ranges.

• Likewise, the equivalence predicate, abs(vdrop2 - vdrop3) <= 0.005, is
valid for LDO2 and LDO3, because it holds for all valuations of vdrop2 and
vdrop3 within their ranges.

• The equivalence predicate, abs(vdrop1 - vdrop3) <= 0.005, is not valid
for LDO1 and LDO3, because the predicate is false for vdrop1 = 2.002 and
2.007 < vdrop3 <= 2.008.

It is interesting to observe that feature based equivalence is not an equivalence
relation in general.

50 5. Formal Feature Based Equivalence Checking

5.3. Concluding Remarks
Chapters 3 and 4 explain how features can implicitly drive a reachability analysis
to consider the feature being computed. This chapter effectively describes how fea-
tures influence the definition of equivalence between two Hybrid Automata. The
equivalence predicate is defined as a function of feature valuations of two Hybrid
Automata. Equivalence between the two Automata then requires the equiva-
lence predicate to be true for all possible feature valuation combinations. These
valuation combinations are abstracted using an interval of values. Checking for
equivalence thus relies on evaluating the equivalence predicate at the boundaries
of the intervals.

Chapter 6
Case Studies

“We are apt to forget that children watch examples
better than they listen to preaching."

-Roy L. Smith

The proposed methodology has been worked out on two important test cases
from the power management domain, namely a Low Dropout Regulator (LDO)
and a Battery Charger. For both of these circuit families, there exists well defined
Hybrid Automata models. In past work, a tool flow had been developed for
generating Hybrid Automata models for PMU components that match the given
circuit netlists with high level of accuracy [3]. In this chapter we outline the
structure of the Hybrid Automata models for these families, and then report our
results on the proposed method for formal evaluation of feature ranges.

In the past, researchers have attempted to generate abstract models of circuits
using techniques such as model order reduction. Such techniques have not been
successful in raising the level of abstraction to a form where formal techniques
such as abstract interpretation are feasible, particularly for complex circuits such
as LDOs and battery chargers. At the other extreme, researchers have suggested
manual development of behavioral models that are amenable for formal analysis,
as the first step in the design flow. Our approach lies in between these extremes,
that is:

1. It has been shown in the past [3] that accurate Hybrid Automata models
can be automated by starting with a parameterized model skeleton for the
family and learning the model parameters automatically. We believe that
this is a practical way to make best use of domain knowledge without having
to manually create models for every instance of a circuit family.

2. The Hybrid Automata models are amenable for formal evaluation of circuit
feature ranges using the techniques outlined in this thesis.

We believe that the combination of the above two steps yields a powerful as well as
practical direction for formal analysis of AMS designs. This chapter substantiates

51

52 6. Case Studies

this claim by outlining two case studies and by reporting our results on these test
cases.

6.1. CASE STUDY-1: Low Dropout Regulator
A Low Dropout regulator (LDO) is a linear DC voltage regulator that can operate
with a very small input-output differential voltage. An LDO has the following
operational modes [38]:

• Start-up Mode: When the bias current, reference voltage, and input sup-
ply voltage are within specified range, and the necessary enable signals are
asserted, an LDO enters its start-up mode of operation.

• Steady (ST) Mode: When the output voltage rises above a threshold in
the start-up mode, the LDO transits to the steady mode. In this mode of
operation, steady output voltage is maintained.

• Shutdown Mode: If the enable signal is de-asserted, or if the bias current,
the reference voltage, or the input supply voltage falls outside the specified
range, then the LDO moves to the shutdown mode of operation.

• Dropout Mode: For proper functioning of the LDO, the relation:
vin > vout + vdropmin

should hold. If the input voltage starts falling, then the output voltage will
remain constant as long as the above relation holds. But if the input-output
differential voltage falls below the dropout value, then the output voltage
starts falling below its rated value to keep the input-output difference above
dropout value. This mode of LDO operation, when the output voltage falls
with the fall of input voltage is called the dropout mode of operation.

• Short Circuit (SC) Mode: When the load current crosses a certain cur-
rent limit (called the short-circuit current), the LDO enters the short circuit
mode, where it lowers its output voltage to protect its own circuitry from
burnout.

Some features that would be of interest are:

1. Time Constant in Start-up Mode is the time taken by the output voltage to
rise from 0% to 63.2% of the steady state voltage.

2. Time Constant in the Shutdown Mode is the time taken by the output voltage
to fall from 100% to 32.8% of steady state voltage.

3. Dropout Voltage is the input-output voltage difference in the dropout mode.

6.1. CASE STUDY-1: Low Dropout Regulator 53

SHUTDOWN

MODE

START-UP

MODE

STEADY

MODE

SHORT

MODE

DROPOUT

MODE

CIRCUIT

G1

G2

G1

G5

G4G4

G3

G7

G6

Q1

Q2

Q3

Q4

Q0

G1 G1
G1

G3

G3

Figure 6.1: Hybrid Automaton for the Low Dropout Regulator: ldo

4. Short Circuit Current is the current value for which the LDO transits to the
short circuit mode.

5. Rise Time is the time for the output voltage to rise from 10% to 90% of
steady state voltage.

6. Line Regulation is the ratio of change in output voltage to change in input
voltage during regulation.

7. Load Regulation is the change in output voltage to change in output current
under varying load conditions.

Due to the complexity of the Hybrid Automaton for the LDO, we cannot
diagrammatically describe it in this report. We refer to [3] to create the Hybrid
Automaton model of the LDO. Figure 6.1 and Table 6.1 depict an abstraction of
the Hybrid Automaton that we use, without the dynamics listed.

These features are coded in the proposed specification language as follows:

1. Time Constant in the Start-up Mode

feature StartupTimeConstant(Vss);

begin

var t1, t2;

((ldo.state == STARTUP) && @+(ldo.Vout >= 0*Vss)), t1= $time

##[0:$]

((ldo.state == STARTUP) && @+(ldo.Vout >= 0.632*Vss)), t2= $time

|-> StartupTimeConstant = t2 - t1;

end

2. Time Constant in the Shutdown Mode

54 6. Case Studies

Table 6.1: Predicates and Guard Conditions of an LDO Regulator

(a) Predicates used for an LDO Regulator
Predicates Explanations
p1 :: biasmin ≤ Ibias ≤ biasmax The bias current is within tolerance limits, where biasmin, biasmax

are lower and upper tolerance values for bias current (Ibias).
p2 :: V in ≥ tol Input voltage is above tol, the tolerance value for supply voltage.
p3 :: V en > fullscale/2 Enable is asserted when the enable(V en) voltage crosses fullscale/2.
p4 :: ref1 ≤ V ref ≤ ref2 ref2, ref1 are upper and lower tolerance values for reference

voltage (V ref).
p5 :: Iout ≥ Ishrt The output current Iout is above the short circuit limit (Ishrt).
p6 :: V in− V out ≤ dropout V in is the input voltage, V out is the output voltage. The difference

between the voltages should be below the dropout rating.
p7 :: |V out− Vss| < ε Vss is the rated steady state output voltage and derived

from select and trim input variables; ε is a very small value.

(b) Guard Conditions of an LDO Regulator
Guard Conditions (G) Transition Relation (δ)
G1 = ¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ¬p4 From any mode to shutdown mode i.e., (Qi → Q1)
G2 = p1 ∧ p2 ∧ p3 ∧ p4 From shutdown to start-up mode i.e., (Q0 → Q1)
G3 = p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 From any mode except shutdown to short circuit

mode i.e., (Q1/Q2/Q3 → Q4)
G4 = p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5 ∧ p6 From start-up or regulatory to dropout mode

i.e., (Q1/Q2 → Q3)
G5 = p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5 ∧ ¬p6 ∧ p7 From start-up to regulatory mode i.e., (Q1 → Q2)
G6 = p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5 ∧ ¬p6 From dropout to start-up mode i.e., (Q3 → Q1)
G7 = p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5 From short circuit to start-up mode

i.e., (Q4 → Q1)

feature ShutdownTimeConstant(Vss);

begin

var t1, t2;

((ldo.state == SHUTDOWN) && @+(ldo.Vout <= Vss)), t1= $time

##[0:$]

((ldo.state == SHUTDOWN) && @+(ldo.Vout <= 0.328*Vss)), t2= $time

|-> ShutdownTimeConstant = t2 - t1;

end

3. Dropout Voltage

feature VDrop;

begin

(ldo.state == DROPOUT)

|-> VDrop = (ldo.Vin - ldo.Vout);

end

4. Short Circuit Current

feature ShortCircuitCurrent;

begin

(ldo.state == STARTUP || ldo.state == REGULATORY || ldo.state == DROPOUT)

&& ##E (ldo1.state == SHORTCIRCUIT)

6.1. CASE STUDY-1: Low Dropout Regulator 55

|-> ShortCircuitCurrent = ldo.Iout;

end

5. Rise Time

feature RiseTime(Vss);

begin

var t1,t2;

(ldo.state == STARTUP) && @+(ldo.Vout > 0.1 * ldo.Vss), t1=$time

##[0,$]

(ldo.state == STARTUP) && @+(ldo.Vout > 0.9 * ldo.Vss), t2=$time

|-> RiseTime = t2 - t1;

end

6. Line Regulation

feature LineRegulation(Vss);

begin

var Vout1,Vout2,Vin1,Vin2;

(ldo.state == REGULATORY), Vout1=ldo.Vout, Vin1 = ldo.Vin

##[E,$]

(ldo.state == REGULATORY), Vout2=ldo.Vout, Vin2 = ldo.Vin

|-> LineRegulation = (Vout2-Vout1)/(Vin2-Vin1);

end

7. Load Regulation

feature LoadRegulation(Vss);

begin

var Vout1,Vout2,Iout1,Iout2;

(ldo.state == REGULATORY), Vout1=ldo.Vout, Iout1 = ldo.Iout

##[E,$]

(ldo.state == REGULATORY), Vout2=ldo.Vout, Iout2 = ldo.Iout

|-> LoadRegulation = (Vout2-Vout1)/(Iout2-Iout1);

end

Note: The use of ‘E’ in the above properties refers to a very small constant,
semantically equivalence to the use of ε.

The PORV ldo.Vout >= 0.632*Vss in the feature StartupTimeConstant re-
quires a three was split of the location encapsulating the behaviour of the startup
mode. The PORV ldo.Vout <= 0.328*Vss in the feature ShutdownTimeCon-
stant requires a three was split of the location encapsulating the behavior of the

56 6. Case Studies

shutdown mode. The measurement of time for both features requires location
duplication as was explained previously.

On evaluating these feature on the LDO yields a startup time constant of
171.74µs and a shutdown time constant of 2.568µs. PHAver took about 4 seconds
to extract the range of values for each feature.

The type of modifications required for the remaining features are described in
Table 6.2, and the result of reachability analysis for the same are given in Ta-
ble 6.3. As can be seen from the tables, some features can be evaluated only if
the inputs to the LDO vary in certain ways. These variations can be exercised
through test-benches written for simulating behavioural models. However, we are
still to determine what constructs can be used to model inputs whose behaviours
are essentially unknown. Hence, modeling inputs while constructing hybrid au-
tomaton models is considered as an important direction for future research in the
area of verification.

Sr.No Feature Modification Location &
Name Type Variable of Interest

1. StartupTimeConstant Type 2, Type 3 STARTUP: ‘StartupTimeConstant’
2. ShutdownTimeConstant Type 2, Type 3 SHUTDOWN: ‘ShutdownTimeConstant’
3. VDrop Type 1 DROPOUT: ‘VDrop’
4. ShortCircuitCurrent Type 1 SHORTCIRCUIT: ‘Iout’
5. RiseTime Type 2, Type 3 ‘RiseTime’
6. LineRegulation Type 4 REGULATION: ‘LineRegulation’
7. LoadRegulation Type 4 REGULATION: ‘LoadRegulation’

Table 6.2: Types of modifications required for each LDO feature

Sr.No Feature Feature Feature Execution
Name MIN MAX Time(s)

1. StartupTimeConstant 171.739 µs 171.739 µs 4.039
2. ShutdownTimeConstant 2.568 µs 2.568 µs 3.878
3. VDrop Requires modeling variations of Input Signal(Vin)
4. ShortCircuitCurrent
5. RiseTime 88.88 µs 800 µs 3.699
6. LineRegulation Requires modeling variations of Input Signal(Vin)
7. LoadRegulation

Table 6.3: LDO Feature Ranges and PHAVer Exectution Times

6.2. CASE STUDY-2: Battery Charger
A typical Li-ion battery has the following operational modes [39]:

• Off-Mode: In this mode, the charger is in the shut-down phase and no
charging occurs.

6.2. CASE STUDY-2: Battery Charger 57

• Pre-Charge(PC) Mode: When the input voltage(Vin) lies between 4.5V
and 6V, the charger enters into the pre-charge mode. The charging starts
with a very low current value, called the pre-charge current(Ipre), and con-
tinues till the battery voltage, Vbatt, reaches 3V, which is called the fullrate
voltage.

• Constant Current(CC) Mode: In this mode a constant current, called
the constant charging current(Icc) is used till the battery voltage rises to
4.2V (terminal voltage).

• Constant Voltage (CV) Mode: After reaching the terminal voltage, the
charger enters into the CV mode to charge up the battery with a constant
voltage. The charging current (Ichg) starts decreasing as Vbatt remains con-
stant.

• Maintenance Mode: When the charging current drops to 25 mA (end of
charge current), the charger enters the maintenance mode. With time, the
battery voltage starts falling from the terminal voltage value. The charg-
ing process is re-initiated when the battery voltage falls below 4V (restart
voltage).

Some features that would be of interest are:

1. Time to Charge from ε volts (completely drained of charge) to the battery’s
rated voltage.

2. Maximum rise in battery voltage in any 10 minutes during charging.

3. Pre-charge Current in the Pre-charge mode.

4. Constant Charge Current in the Constant Current mode.

5. Constant Charge Voltage in the Constant Voltage mode.

6. CC Time Constant of the Voltage Response during the Constant Current
mode.

7. Maintenance Time Constant of the Voltage Response during the Mainte-
nance mode.

We use the Hybrid Automaton model of the battery charger batt shown in
Figure 6.2.

These features are coded in the proposed specification language as follows:

1. Time to Charge:

58 6. Case Studies

Precharge

v̇ = (Vfullrate − v)/τ1

i̇ = 0
0 ≤ v ≤ Vfullrate

i == Iprecharge

ConstantVoltage

v̇ = 0

i̇ = −i/τ3
|v − Vterm| ≤ ǫ

0 ≤ i ≤ Ichg

Maintenance

v̇ = −v/τ4

i̇ = 0
Vrestart ≤ v ≤ Vterm

0 ≤ i ≤ Ichg

ConstantCurrent

v̇ = (Vterm − v)/τ2

i̇ = 0
Vfullrate ≤ v ≤ Vterm

0 ≤ i ≤ Ichg

v == Vfullrate

i := Ichg

|v − Vterm| ≤ ǫ

i ≤ IEOC

v ≤ Vrestart

i := Ichg
v := Vterm

i == Iprecharge
v == 0

Figure 6.2: Hybrid Automaton for a Battery Charger: batt

feature ChargeTime(Vterm,epsilon);

begin

var t1, t2;

((batt.state == PRECHARGE) && @+(batt.V >= epsilon), t1 = $time

##[0,$]

((batt.state == CV) && @+(batt.V == Vterm) , t2 = $time

|-> ChargeTime = t2-t1;

end

2. Maximum Rise in Battery Voltage:

feature MaxVoltageRise(W);

begin

var v1, v2;

v1 = batt.V ##[0,W] v2 = batt.V

|-> MaxVoltageRise = v2-v1;

end

3. Pre-charge Current

feature preChargeCurrent;

begin

(batt.state == PC)

|-> preChargeCurrent = batt.Ichg;

end

4. Constant Charge Current

6.2. CASE STUDY-2: Battery Charger 59

feature ConstantChargeCurrent;

begin

(batt.state == CC)

|-> ConstantChargeCurrent = batt.Ichg;

end

5. Constant Charge Voltage

feature ConstantChargeVoltage;

begin

(batt.state == CV)

|-> ConstantChargeVoltage = batt.Vchg;

end

6. CC Time Constant of the Voltage Response

feature CCTimeConstant(Vfullrate,Vterm);

begin

var t1, t2;

((batt.state == CC) && @+(batt.Vout >= Vfullrate)), t1= $time

##[0:$]

((batt.state == CC) &&

@+(batt.Vout >= Vfullrate + 0.632*(Vterm-Vfullrate), t2= $time

|-> CCTimeConstant = t2 - t1;

end

7. Maintenance Time Constant of the Voltage Response

feature MaintenanceTC(Vterm,Vrestart);

begin

var t1, t2;

((batt.state == Maintenance) && @+(batt.Vout <= Vterm)),

t1= $time

##[0:$]

((batt.state == Maintenance) &&

@+(batt.Vout <= Vrestart + 0.328*(Vterm-Vrestart)), t2= $time

|-> MaintenanceTC = t2 - t1;

end

The modifications required for features ChargeTime and MaxVoltageRise are
described below.

For the feature ChargeTime, since the PORV batt.V >= epsilon is not a lo-
cation invariant, we split the pre-charge and constant voltage locations into three

60 6. Case Studies

Precharge0

ṫ = 0

0 ≤ v ≤ epsilon

Precharge1

ṫ = 0

v == epsilon

v == epsilon

Precharge2

ṫ = 0

epsilon ≤ v

ConstantCurrent

ṫ = 0

ConstantVoltage0

ṫ = 0
v ≤ V term

ConstantVoltage1

ṫ = 0
v == V term

ConstantVoltage2

ṫ = 0

V term ≤ v

v == V term

v == V term

v == epsilon

Maintenance

ṫ = 0

Level 1

ṫ = 0

Level 2

ṫ = 1

epsilon ≤ v ≤ V term

v == epsilon
t := 0
chargeT ime := 0

v == V term

t := 0

chargeT ime
:= t

Figure 6.3: Battery Charger Automaton modified for the feature, “ChargeTime”

parts each. The sequence of pre-charge locations are labelled with the PORVs
(batt.V <= epsilon), (batt.V == epsilon) and (batt.V >= epsilon) re-
spectively. The sequence of Constant voltage locations are labelled with the
PORVs (batt.V <=Vterm), (batt.V == Vterm) and (batt.V >= Vterm). We
then make a duplicate of every location of the automaton, resulting in two levels
of locations. We transition from each Precharge location of level 1 to its coun-
terpart precharge location of level 2 on the guard (batt.V == epsilon). We
transition back from Level 2 to Level 1 in each location for Constant Voltage on
the guard (batt.V == Vterm). We add a variable t that does not change while
in locations in Level 1, and behaves as a clock variable when in locations of Level
2. These modifications are depicted in Figure 6.3.

For the feature MaxVoltageRise we add rabbit ears to all locations of the
battery charger automaton. We add a clock variable t and variables v1, v2,
MaxV oltageRise. On one ear, we reset MaxV oltageRise and the clock t, and
capture the current voltage in v1. On the other ear we capture the current voltage
in v2 and calculate MaxV olatageRise = v2− v1, and reset the clock t to indicate
the end of the window.

Evaluating these features over the Hybrid Automaton for the battery charger
yields a maximum voltage rise of 3V for a battery with rated voltage of 4.2V , and
a battery that takes between 54 minutes 48 seconds and 120 minutes to charge.
PHAVer took under a second to extract the flow pipe for each feature.

6.3. Concluding Remarks 61

The type of modifications required for the remaining features are described in
Table 6.4, and the result of reachability analysis for the same are given in Table 6.5.

Sr.No Feature Modification Location &
Name Type Variable of Interest

1. ChageTime Type 2, Type 3 ‘chargeTime’
2. MaxVoltageRise Type 4 ‘MaxVoltageRise’
3. preChargeCurrent Type 1 PRECHARGE: ‘Ichg’
4. ConstantChargeCurrent Type 1 CC: ‘Ichg’
5. ConstantChargeVoltage Type 1 CV: ‘Vchg’
6. CCTimeConstant Type 3 CC: ‘CCTimeConstant’
7. MaintenanceTC Type 3 MAINTENANCE: ‘MaintenanceTC’

Table 6.4: Types of modifications required for each Battery Charger feature

Sr.No Feature Feature Feature Execution
Name MIN MAX Time(ms)

1. ChageTime 54m 48sec 120m 109.56
2. MaxVoltageRise 0.24V 3V 294.90
3. preChargeCurrent 0.05 µA 0.05 µA 18.97
4. ConstantChargeCurrent 5.0 µA 5.0 µA 15.89
5. ConstantChargeVoltage 4.2V 4.2V 14.34
6. CCTimeConstant 1896 s 1896 s 127.03
7. MaintenanceTC 38.38857 s 40.308 s 49.05

Table 6.5: Battery Charger Feature Ranges and PHAVer Exectution Times

6.3. Concluding Remarks
It is possible to extract feature signatures from Hybrid Automaton models of AMS
circuits, such as LDOs and Battery Chargers, using standard reachability analysis.
This analysis is performed after transforming the given abstract models using the
transformations introduced in Chapter 4. Feature value ranges can be extracted
for two comparable Hybrid Automata. Equivalence between these two automata
is determined by comparing the feature ranges using the equivalence definition, as
explained in Chapter 5.

Chapter 7
Conclusion and Future Work

“People mistakenly assume that their thinking is done by their head;
It is actually done by the heart which first dictates the conclusion,

then commands the head to provide the reasoning that will defend it."
-Anthony de Mello

The primary focus of this work has been to give an initial direction to determin-
ing equivalence between Hybrid Systems. We suggest that equivalence be defined
on the basis of features, which are in turn described using, assertions over loca-
tions and PORVs; and a feature computation function. By carefully introducing
transformations into the given Hybrid Automata, we are able to piggyback feature
computation over standard reachability analysis techniques. After computing the
feature ranges for two Hybrid Automata, computing feature based equivalence is
a trivial step, accomplished by determining the truth of the equivalence predicate,
evaluated over the feature ranges.

7.1. Conclusion
This research demonstrates that for certain classes of Hybrid Systems, for example
in the case of AMS circuits, abstracted as Hybrid Automata(Linear or Affine), the
traditional definition of equivalence needs to be adapted to incorporate the notion
of features. A feature can be described using a signature which is expressed as
a linear equation over the variables of the Hybrid Automaton. The feature dic-
tates that the original Hybrid Automaton be modified by splitting or duplicating
locations and by adding transitions such as rabbit ears. Flow pipe analysis is
performed over the variables of the resulting Hybrid Automaton. The flow pipe
that results constrains the values taken by the state variables. We can then use
these constraints to obtain the range of values for the feature signature. Having
extracted this information for two Hybrid Automata, we can then define the equiv-
alence relation between the two automata, in terms of these feature signatures.
The equivalence relation is defined using a predicate over real variables. The truth
of the predicate gives us the truth of equivalence between the two automata, thus

63

64 7. Conclusion and Future Work

giving us the equivalence relationship between the Hybrid Systems corresponding
to the automata.

We have primarily focussed our efforts and used the methods developed on the
class of AMS circuits. We have found that assertion languages used to express
properties over AMS circuits, can be extended and suitably adapted to express
features over the general class of Hybrid Systems.

Finding the range of values for AMS features is an important requirement
in practice, which is primarily done today through simulation. It is infeasible in
practice to cover all possible behaviors in simulation, more so due to the complexity
of analog simulation. Formal symbolic evaluation of feature ranges is therefore an
attractive proposition, but it has several technical challenges.

This thesis presents the first attempt to declaratively overlay the definition of
feature values on an AMS assertion language. The report also presents the first
techniques for preparing a given Hybrid Automata description of an AMS circuit
in a way such that abstract interpretation yields the desired feature range. We
have demonstrated the utility of the proposed approach on two important circuit
families. We have also outlined the utility of our approach in determining feature
based equivalence between two AMS models / designs.

7.2. Future Work
There are many aspects of the problem of equivalence checking that are yet to be
solved. Some of them are listed below.

7.2.1. Varying Inputs to the Hybrid Automata

To determine equivalence between two Hybrid Systems, such as AMS-circuits, we
first need a Hybrid Automaton model of the circuit. Circuits receive input from
their environment and produce output. Simulation is the typical method followed
for testing the correctness of circuits. A testbench is the primary engine that
drives the circuit through desired scenarios, by driving the inputs to the circuit
and observing its output.

While designing the Hybrid Automaton for an AMS-circuit, one needs to an-
swer the following questions:

1. What variables form the state of the circuit? Which variables are real-valued
and which are discrete? The variables that are real will be termed control-
variables. The discrete variables will contribute to determining the modes
of the circuits operation.

2. Which are the modes of operation of the circuit? Each mode identified must
have linear/affine activities associated with its control-variables.

7.2. Future Work 65

3. What are the domains of the control-variables in each mode?

4. When does the circuit switch between its modes of operation? What happens
when it switches between two modes?

5. Which are the initial states from where the circuit starts operating?

6. How do we define the admissible input patterns for which the circuit is
expected to function?

We find that Questions 3 and 6 can pose issues to creating a Hybrid Automaton
model of a closed system consisting of the circuit and its environment. Hybrid I/O
Automata [28] re-defines Hybrid Automata to include formalisms that represent
the interaction of the automaton with its environment. In cases where input
behaviours are not obvious, we have begun exploring methods for modeling inputs
using non-determinism and the ramifications on creating a closed system consisting
of the circuit and its environment.

7.2.2. Further Optimizations

Other improvements to the methodology that need to be explored are as follows:

1. Optimizing Location splitting
The number of locations that results in the splitting operation is very large.
When more features are added, it is possible for redundant states to be
created. This begs the question “Is it possible to reduce the number of
locations by smartly considering the feature definitions?"

2. Unconstrained Variables
It is often the case that variables in the original Hybrid Automaton are
unconstrained at either or both ends. It is essential to have them constrained
so that reachability analysis tools like PHAVer can perform an analysis of
the system. Is there a general solution to this problem? An example of an
unconstrained variable is time. Perhaps an extension to the tool used, that
widens [4] regions when appropriate could help solve this problem. Another
proposition is that, from feature definition, we extract constraints that add
upper and lower bounds to the range of values a variable can take in locations
where it has a non-zero activity. However, these constraints should not in
any way hamper the original behaviour of the system.

7.2.3. Parameterized Systems

The general design and working of a Hybrid System can be modelled as a Hybrid
Automaton. Every instance of the design is an implementation of the system

66 7. Conclusion and Future Work

in which the some system parameters are set. For different instances certain
parameters differ. Is it possible to check for equivalence between two design classes
that have design parameters whose ranges are known?

7.2.4. Developing a tool flow for automating the Equivalence

Checking Process

Currently the process of equivalence checking, Hybrid Automaton location split-
ting and duplication is being done manually by studying the feature specification
and the given Hybrid Automaton. Similarly, generation of reachability analysis
code, feature value computation code and goal computation code is being per-
formed manually. All these processes need to be automated.

Appendix A
Feature Specification Syntax

A.1. Tokens
RATIONAL : -?(([0-9]+|([0-9]*\.[0-9]+))(([eE][i+]?[0-9]+)?)
ARITHOP : \+|\-|* |\/
LEFT_SQR_BRKT : [
RIGHT_SQR_BRKT :]
RELOP : < | > | <= | >= | ==
EVENTTYPE : @\+ | @\- | @
BINLOGICOP : (&&) | (\|\|)
ATOM : (([_a-zA-Z]+)([_a-zA-Z0-9\.]*))

A.2. Grammar Production Rules
FEATURE_SPEC : feature ATOM (PARAMETER_LIST); FEATURE_DEFINITION

PARAMETER_LIST : PARAMETERS
| ε

FEATURE_DEFINITION: begin FEATURE_BODY end

FEATURE_BODY : VARDECL FEATUREDECL

VARDECL : var PARAMETERS ;
|ε

PARAMETERS : PARAMETERS, ATOM
| ATOM

FEATUREDECL : SEQUENCE_EXPR |-> ASSIGNMENT ;

SEQUENCE_EXPR : (SEQUENCE_EXPR DELAY SEQUENCE_EXPR)
| PREDICATE

PREDICATE : PORVExpr

67

68 A. Feature Specification Syntax

| EVENT
| PORVExpr, ASSIGNMENT
| EVENT, ASSIGNMENT

PORVExpr : (PORVExpr BINLOGICOP PORVExpr)
| PORV

PORV : (ArithExpr RELOP ArithExpr)

EVENT : EVENTTYPE (ArithExpr, ArithExpr)

ASSIGNMENT : ASSIGNMENT, ATOM = ArithExpr
ATOM = ArithExpr

DELAY : ## LEFT_SQR_BRKT RATIONAL:$ RIGHT_SQR_BRKT
| ## RATIONAL

ArithExpr : ArithExpr ARITHOP ArithExpr
| ATOM
| RATIONAL
| (ArithExpr)

Appendix B
Equivalence Specification Syntax

The equivalence specification syntax uses the tokens and production rules of Ap-
pendix A.

B.1. Grammar Production Rules
EQUIVALENCE_SPEC : equiv ATOM (FEATURE_LIST); EQUIV_DEFINITION

FEATURE_LIST : PARAMETERS

EQUIV_DEFINITION : begin EQUIV_BODY end

EQUIV_BODY : FEATURE_LIST_DECL EQUIVDECL

FEATURE_LIST_DECL: feature PARAMETERS ;

EQUIVDECL : ATOM := ArithExpr RELOP RATIONAL ;

69

References

[1] 1800-2012 - IEEE Standard for SystemVerilog–Unified Hardware Design, Spec-
ification, and Verification Language (http://standards.ieee.org/findstds/
standard/1800-2012.html).

[2] 1850-2010 - IEEE Standard for Property Specification Language (PSL) (https:
//standards.ieee.org/findstds/standard/1850-2010.html).

[3] Ain, A., Pal, D., Dasgupta, P., Mukhopadhyay, S., Mukhopadhyay, R.,
and Gough, J. Chassis: A platform for verifying pmu integration using autogen-
erated behavioral models. ACM Transactions on Design Automation of Electronic
Systems 16, 3 (June 2011), 33:1–33:30.

[4] Alur, R., C.Courcoubetis, N.Halbwachs, Henzinger, T., Ho, P.,
Nicollin, X., Olivero, A., J.Sifakis, and S.Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science 138 (1995), 3–34.

[5] Alur, R., and Dill, D. L. A theory of timed automata. Theoretical Computer
Science 126 (1994), 183–235.

[6] Alur, R., Feder, T., and Henzinger, T. A. The benefits of relaxing punctu-
ality. J. ACM 43, 1 (Jan. 1996), 116–146.

[7] Alur, R., and Henzinger, T. A. Real-time logics: Complexity and expressive-
ness. Tech. rep., Stanford University, Stanford, CA, USA, 1990.

[8] Alur, R., and Henzinger, T. A. A really temporal logic. J. ACM 41, 1 (Jan.
1994), 181–203.

[9] Asarin, E., Bournez, O., Dang, T., and Maler, O. Approximate reachability
analysis of piecewise-linear dynamical systems. In Hybrid Systems, Computation and
Control (2000), vol. 1790, Springer, pp. 20–31.

[10] Asarin, E., Dang, T., and Maler, O. d/dt: A tool for reachability analysis of
continuous and hybrid systems. In 5th IFAC Symposium Nonlinear Control Systems
(NOLCOS) , 2001. [ACH + 95 (2001), pp. 3–34.

[11] Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Wang, Y., and
Weise, C. New generation of uppaal, 1998.

[12] Chen, L.-R. A design of an optimal battery pulse charge system by frequency-
varied technique. IEEE Transactions on Industrial Electronics 54 (2007), 398–405.

[13] Chutinan, A., and Krogh, B. H. Computing polyhedral approximations to flow
pipes for dynamic systems. In Proceedings of the 37th IEEE Conference on Decision
and Control (1998), vol. 2, IEEE Press, pp. 2089–2094.

71

http://standards.ieee.org/findstds/standard/1800-2012.html
http://standards.ieee.org/findstds/standard/1800-2012.html
https://standards.ieee.org/findstds/standard/1850-2010.html
https://standards.ieee.org/findstds/standard/1850-2010.html

72 REFERENCES

[14] Chutinan, A., and Krogh, B. H. Computational techniques for hybrid system
verification. IEEE Transactions of Automatic Control 48 (2003), 64–75.

[15] Clarke, E. M., Emerson, E. A., and Sistla, A. P. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8, 2 (Apr. 1986), 244–263.

[16] Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (New York, NY, USA, 1977), POPL ’77, ACM, pp. 238–252.

[17] Dasgupta, P., Mukhopadhyay, S., Ain, A., Sinha, C., and R, M. Y. Towards
a formal framework for specifying feature based equivalence between ams models.
Tech. rep., Indian Institute of Technology, Kharagpur, 2013.

[18] Frehse, G. PHAVer - Polyhedral Hybrid Automaton Verifyer (http://
www-verimag.imag.fr/~frehse/phaver_web/).

[19] Frehse, G. Phaver: Algorithmic verification of hybrid systems past hytech. In
Hybrid Systems: Computation and Control, M. Morari and L. Thiele, Eds., vol. 3414
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 258–
273.

[20] Frehse, G. Language Overview for PHAVer version 0.35, June 22 2006.

[21] Gabbay, D., Kurucz, A., F.Wolter, and M.Zakharyaschev. Many-
Dimensional Modal Logics: Theory and Applications. Elsevier Science Publishers
B. V., 2003.

[22] Henzinger., T., Preussig, J., and Wong-Toi, H. Some lessons from the hytech
experience. In Proceedings of the 40th Annual Conference on Decision and Control
(CDC’01) (2001), IEEE Press (2001), pp. 2887–2892.

[23] Henzinger, T. A., and Ho, P.-H. A note on abstract interpretation strategies for
hybrid automata. In Hybrid Systems II (London, UK, UK, 1995), Springer-Verlag,
pp. 252–264.

[24] Henzinger, T. A., Ho, P.-H., and Wong-toi, H. Hytech: A model checker for
hybrid systems. Software Tools for Technology Transfer 1 (1997), 460–463.

[25] Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. Symbolic model
checking for real-time systems. Information and Computation 111 (1992), 394–406.

[26] L. El Ghaoui, EECS Department, U. B. Hyper-Textbook: Optimization Models
and Applications. UC Berkeley, 2013.

[27] Lygeros, J. Lecture notes on hybrid systems. Tech. rep., University of Patras,
2004.

[28] Lynch, N., Segala, R., and Vaandrager, F. Hybrid i/o automata. Informa-
tion and Computation 185, 1 (2003), 105 – 157.

[29] Maler, O., and Nickovic, D. Monitoring temporal properties of continu-
ous signals. In Proceedings of Formal Modeling and Analysis of Timed Systems
(FORMATS-FTRTFT). Volume 3253 of LNCS (2004), Springer, pp. 152–166.

http://www-verimag.imag.fr/~frehse/phaver_web/
http://www-verimag.imag.fr/~frehse/phaver_web/

REFERENCES 73

[30] Mukherjee, S. Assertions: From a Mixed-Signal Perspective. PhD thesis, De-
partment of Computer Science and Engineering, Indian Institute of Technology
Kharagpur, August 2012.

[31] Mukherjee, S., and Dasgupta, P. Incorporating local variables in mixed-signal
assertions. In IEEE International Conference TENCON (2009).

[32] Mukherjee, S., and Dasgupta, P. Auxiliary state machines and auxiliary func-
tions: Constructs for extending ams assertions. In VLSI Design (2011).

[33] Mukherjee, S., Dasgupta, P., and Mukhopadhyay, S. Auxiliary specifica-
tions for context-sensitive monitoring of ams assertions. IEEE Transactions on CAD
(TCAD) 30(10) (2011), 1446–1457.

[34] Mukhopadhyay, R., Panda, S. K., Dasgupta, P., and Gough, J. Instrument-
ing ams assertion verification on commercial platforms. ACM Trans. Des. Autom.
Electron. Syst. 14, 2 (Apr. 2009), 21:1–21:47.

[35] Pnueli, A. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (Washington, DC, USA, 1977),
SFCS ’77, IEEE Computer Society, pp. 46–57.

[36] Prabhu, S. M., and Dasgupta, P. Model checking controllers with predicate
inputs. In Proceedings of the 26th International Conference on VLSI Design (2013),
VLSID ’13, IEEE Computer Society, pp. 332–337.

[37] Silva, B. I., Richeson, K., Krogh, B., and Chutinan, A. Modeling and veri-
fying hybrid dynamic systems using checkmate. In Proceedings of 4th International
Conference on Automation of Mixed Processes (September 2000), pp. 323–328.

[38] TI. LM2940-N/LM2940C 1A Low Dropout Regulator (http://www.ti.com/lit/
ds/symlink/lm2940-n.pdf).

[39] TI. LM3658 Dual Source USB/AC Li Chemistry Charger IC for Portable Applica-
tions (http://www.ti.com/lit/ds/symlink/lm3658.pdf).

[40] Zaki, M. H., Tahar, S., and Bois, G. Review: Formal verification of analog
and mixed signal designs: A survey. Microelectronics Journal 39, 12 (Dec. 2008),
1395–1404.

http://www.ti.com/lit/ds/symlink/lm2940-n.pdf
http://www.ti.com/lit/ds/symlink/lm2940-n.pdf
http://www.ti.com/lit/ds/symlink/lm3658.pdf

	Certificate
	Declaration
	Acknowledgements
	List of Abbreviations
	List of Symbols
	Abstract
	 List of Figures
	 List of Tables
	Introduction
	Motivation
	Problem Description and Objective
	Summary of Contributions
	Organization of the Report

	Background and Related Work
	Hybrid Systems and Hybrid Automata
	Definition of a Hybrid Automaton
	Modeling systems using Hybrid Automata
	Nuclear Reactor Example

	Reachability Analysis of Hybrid Systems
	Basic Flow Pipe Computation Procedure

	Tools for Reachability Analysis
	Assertion Languages for Hybrid Systems
	Automated Hybrid Automaton Parameter Extraction

	Feature based Abstract Interpretation
	Feature Specification: Syntax and Semantics
	Evaluating Feature Values over Flow Pipe Approximations
	Concluding Remarks

	Feature Driven Modifications to the Hybrid Automaton
	Handling Type-1 Attributes
	Handling Type-2 Attributes
	Handling Type-3 Attributes
	Handling Type-4 Attributes
	Reachability Output: A Graphical Perspective
	Concluding Remarks

	Formal Feature Based Equivalence Checking
	Features and Equivalence Definitions
	Semantics of Feature based Equivalence
	Concluding Remarks

	Case Studies
	CASE STUDY-1: Low Dropout Regulator
	CASE STUDY-2: Battery Charger
	Concluding Remarks

	Conclusion and Future Work
	Conclusion
	Future Work
	Varying Inputs to the Hybrid Automata
	Further Optimizations
	Parameterized Systems
	Developing a tool flow for automating the Equivalence Checking Process

	Appendix Feature Specification Syntax
	Tokens
	Grammar Production Rules

	Appendix Equivalence Specification Syntax
	Grammar Production Rules

	References

