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Abstract—This paper presents a tensor-based rule-space man-
agement (TERM) system for improving the available capacity of
switches in software defined networking (SDN). Limited storage
capacity of switches is a key challenge in SDN as the switches use
ternary content addressable memories having very low capacity.
Low rule storage capacity eventually leads to the high number of
Packet-In messages and control plane overloading. The challenge
is to design a dynamic scheme to store a large number of het-
erogeneous flow-rules in SDN switches and reduce the number of
Packet-In messages. To address this problem, we apply the con-
cept of tensor decomposition in order to aggregate flow-rules. In
addition, we employ a rule caching mechanism for better through-
put. Simulation results show the efficiency of TERM in terms of
reduction in the number of Packet-In messages. TERM reduces
the Packet-In message count by 57.78% than the flow aggregation
approach proposed in the existing literature.

Index Terms—Caching, flow-rule, software defined networking
(SDN), ternary content addressable memories (TCAM), tensor
decomposition.

I. INTRODUCTION

SOFTWARE defined networking (SDN) provides a global
view of the network by separating the control plane from

the data plane [1]. This simplifies the task of network adminis-
trators and makes SDN suitable for large-scale networks [2]. In
particular, researchers are proposing SDN-based architectures
for Internet of Things (IoT) applications [3]. These applications
involve the management of millions of heterogeneous flows per
second [4]. However, the exigency of scalable rule-space in
SDN switches is evident [5]. The limited rule-space capacity
increases the event of flow-table miss and causes the switch to
send Packet-In messages to the controller for the installation of
new rules. A Packet-In message contains the header of a cap-
tured packet, which has no matching entry in the flow-table. The
controller formulates new flow-rule based on the contents of the
Packet-In message and installs the rule at the corresponding
switch. For IoT applications, the number of Packet-In messages
can be a bottleneck for the control plane. Therefore, the main
objective of the proposed work is to enable the switches to store
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larger number of rules and decrease the number of Packet-In
messages.

A. Motivation

State-of-the-art SDN switches store rules in ternary content
addressable memories (TCAMs). TCAM has limited capacity
constraint due to its high manufacturing cost [6]. According to
the latest OpenFlow protocol version (v1.5.1) [7], each flow-
rule contains 45 match fields. Although most switch manufac-
turers still use OpenFlow version 1.0, which has 20 match fields,
TCAM in these switches can store only up to 8000 entries [5].
This number reduces when new OpenFlow switches with higher
protocol versions are deployed. Additionally, match fields such
as the source and destination port numbers are specified as
ranges in a typical packet classifier. Multiple flow entries are
generated for an equivalent range rule in a typical packet clas-
sifier. In addition, an analysis performed on access control list
(ACL) databases of 1998 and 2004 reports that the volume of
range rules increased from 1.3% to 13.3% [8]. On the other hand,
a large number of applications today provide services to billions
of users and this number is predicted to increase rapidly in the
future [9]. For example, to serve the users of city similar to New
South Wales, an application should be capable of handling 70
million flows per second [4]. This high volume of flows causes
rapid and frequent updates in SDN switches, while generating
high number of Packet-In messages [10]. Therefore, there is
a need for rule-space management in large-scale networks in
order to store this high volume of flow-rules.

The existing literature considers three basic approaches—
flow-table aggregation [11], flow-rule partitioning [12], and flow
aggregation [13] for handling the capacity constraint of SDN
switches. However, the lack of uniformity in handling flow-
rules, which are generated from heterogeneous IoT applications,
is evident in these approaches. Additionally, these approaches
are not flexible enough to provide rule-space and reduce table
miss according to the network demand. In this paper, we propose
a scheme, named TERM, to increase the scalability of SDN
switches and reduce the Packet-In message count.

B. Contribution

The primary contributions of this paper are listed as follows.
1) We propose a scheme that is capable of aggregating het-

erogeneous flow-rules having no common prefix.
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2) We envision a tensor-based algorithm to compress rules
in each switch.

3) Extensive simulation results demonstrate that TERM sig-
nificantly reduces the average number of Packet-In mes-
sages and increases free space for storing rules.

C. Paper Organization

The remainder of this paper is organized as follows. Section II
discusses the relevant research work. In Section III, we describe
TERM in detail. Section IV presents the experimental results
and comparative studies with other existing approaches. Finally,
we conclude the work in Section V.

II. RELATED WORK

In this section, we review prior works related to flow-table
aggregation, flow-rule partitioning and flow aggregation. We
also review the existing literature on tensor and singular value
decomposition (SVD) used in this paper.

Earlier, table aggregation approaches considered only prefix
entries, where do not care (∗)s do not appear in the beginning
of the ternary strings. Applegate et al. [14] proposed a prefix-
based minimization technique for ACLs, which have entries
similar to TCAMs. Meiners et al. [11] proposed bit weaving,
which partitions the total rule-set and permutes the bit positions
for each of the partitions to transform all nonprefix entries into
prefix entries. Finally, these transformed partitions are merged
together, after which each entry is repermuted to their original
bit order. However, one of the major limitations of bit weaving
is high computation time for larger partition size. This is even
worse in networks where data changes frequently, because bit
weaving recomputes the whole rule-set for each rule update.

Other related works concerns the approach of partitioning
the flow-rules. Kanizo et al. [12] presented a decomposition
technique, which partitions a flow-table into subtables and dis-
tributes the subtables across the network. They proposed two
techniques—pivot bit decomposition (PBD) and cut-based de-
composition (CBD). PBD decomposes the table into subtables
by selecting a pivot bit/column. However, PBD increases the
total number of rules, because two separate rules are generated
for each do not care (*) pivot bits. On the other hand, CBD rep-
resents the set of rules by a dependency graph. Moshref et al.
[15] proposed a virtual Cloud Rule Information Base (vCRIB),
which partitions the overlapping rules by splitting them. Con-
sequently, the overall number of rules increases.

Flow aggregation approaches minimize the total number of
flows in order to reduce the number of flow-rules. Kosugiyama
et al. [13] proposed an approach that considers end-to-end de-
lay as a parameter of flow aggregation. However, the authors
considered delay sensitive flows only.

A tensor [16] is a high-dimensional matrix which represents
heterogeneous data. Therefore, some of the existing works use
tensors for handling large-scale data [17]. Liavas et al. [18] pro-
posed a tensor factorization technique for parallel processing
of large-scale data. Motivated by this paper, we use tensors for
representing large flow-tables. We consider a three-order ten-
sor, where the orders denote a single flow-rule, components of

Fig. 1. TERM architecture.

a flow-rule (match fields, priority, and actions), and the total
number of flow-rules, respectively. Henry et al. [19] presented a
SVD technique to extract useful data from a matrix. Schifanella
et al. [20] implemented an extension to the SVD technique,
named TUCKER decomposition [21]. Acar and Yener [22] pro-
posed higher-order SVD (HOSVD), which is a generalization of
the TUCKER decomposition. HOSVD imposes orthogonality
constraint on component matrices. We use a technique, which
is similar to HOSVD, to aggregate the flow-rules by extracting
core data from a single dimension that represents the number of
entries in a flow-table.

Synthesis: Therefore, we infer that there exist a few works for
handling the capacity constraint of flow-tables. However, most
of these works do not consider dynamic network traffic, which
is usual for IoT applications. The proposed scheme, TERM, is
distinctive in this respect, because it can extract core data from
the entire rule-space, irrespective of the original number of rules.
The volume of core data does not depend on the original number
of rules.

III. TERM: THE PROPOSED SCHEME

In this section, we discuss the network model considered
for the proposed scheme, TERM. In addition, we describe the
proposed tensor-based approach for managing the rule-space of
the switches.

A. Network Model

Fig. 1 depicts the network model considered for
TERM. The set of switches in the data plane is denoted
S = {s1 , s2 , . . . , sD}. In the control plane, there exist multiple
subcontrollers connected with a controller c. The set of
subcontrollers is denoted Csub = {csub

1 , csub
2 , . . . , csub

M }. The
subcontrollers are placed using existing controller placement
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algorithms [4]. All the subcontrollers are connected to c.
Each switch sj is connected to a subcontroller. Therefore, the
assignment between switches and subcontrollers is defined as
a D ×M binary matrix L. Each element of L is expressed as

lij =

{
1, if si is connected to csub

j

0, otherwise.
(1)

Definition 1 (Region): A region rj is defined as

rj =
⋃
i

si ,∀lij = 1. (2)

The set of rules in switch si at time t is denoted

Ri(t) = Ri
c(t) ∪Ri

a(t) ∪Ri
u (t) (3)

where Ri
c(t) is the set of cached rules, Ri

a(t) is the set of aggre-
gated rules, and Ri

u (t) denotes the set of uncompressed rules in
switch si at time t.

A switch si generates pi(t) number of Packet-In messages
at time t. Packet-In messages are generated whenever incoming
packets fail to match with any of the flow-rules in Ri(t).

The objective of this paper is to minimize the number of
Packet-In messages by maximizing the total number of rules
stored in each switch. Mathematically,

min
|S |∑
i=1

pi(t) (4)

subject to

|Ri
c(t)| < Ni,∀si ∈ S (5)

|Ri
u (t)| < Ni,∀si ∈ S (6)

where Ni denotes that the TCAM in a SDN switch si is capable
of storing Ni entries. Equations (5) and (6) express that the
number of cached rules and the number of uncompressed rules
are less than the storage capacity of the TCAM.

B. Tensor-Based Approach for Rule-Space Management

In this section, we describe the proposed scheme, TERM,
which includes three modules—rule aggregation, rule recon-
struction, and rule caching. Rule aggregation and rule recon-
struction procedures of a region rj are performed by csub

j . The
rule aggregation module compresses the flow-rules in each
switch with a tensor-based approach to increase the available
capacity of the flow-tables. The rule reconstruction module re-
constructs the compressed rules in a switch, whenever an incom-
ing packet fails to match the uncompressed rules. Additionally,
each switch has a rule caching module that caches the most fre-
quently used rules. This avoids the reconstruction of rules every
time a packet reaches a switch.

Therefore, for an incoming packet, a switch first checks for
a rule match in the cached rules, and then the uncompressed
flow-rules in each of the flow-tables. If no match is found, it
informs the subcontroller that the reconstruction of compressed
rules is required. The subcontroller reconstructs the compressed
rules and checks for a possible rule match. If a match is found
in multiple rules, the higher priority rule is selected. If no match

TABLE I
INTEGER REPRESENTATION OF TERNARY STRINGS

is found even after checking the compressed rules, the packet
is redirected to c, which generates the new rule as per existing
OpenFlow policy [7].

1) Rule Aggregation: The rule aggregation module includes
three submodules—rule restructuring, tensorization, and reduc-
tion.

a) Rule restructuring: Rule restructuring converts the ternary
string of each rule into integer value. We consider a 4-bit ternary
value for each match field and 4-bit binary value for the action
field. Each ternary string of length 2 is transformed to an integer
digit based on the transformation rules presented in Table I.

Example 1: Consider a ternary string of two match fields and
one action value {∗11∗, 10 ∗ 0, 1101}. Therefore, after transfor-
mation the resulting integer string will be {35, 82, 97}.

b) Tensorization: In this paper, we use tensor to formalize
the flow-tables in SDN switches. We transform each modified
rule-set into a three-order tensor, as follows:

T ∈ R1×Nf ×Nt (7)

where Nf denotes the number of fields in a TCAM entry, which
includes the priority value, match fields, and action value. Nf

depends on the OpenFlow protocol version. Nt denotes the total
number of uncompressed rules in the switch.

c) Reduction: Algorithm 1 transforms T to a compressed
tensor C ∈ R1×Nf ×Nr , where Nr < Nt . Nr is termed as the
reduction factor (RF). The value of RF at time t is selected as

RF(t) = Nr = Nf +
⌊ (Qmax −Qcurrent)

Qmax
× 100

⌋
(8)

where Qmax and Qcurrent denote the queue length and the number
of packets queued at the switch, respectively. When a switch has
high number of queued packets, a low Nr enables the switch to
store more number of uncompressed rules.

Therefore, the reduction coefficient is expressed as

q =
Nt −Nr

Nt
× 100%. (9)

Algorithm 1 reduces the dimensions of the initial rule tensor
T and transforms it to the reduced tensor C. In Theorem 1, we
discuss that this reduction permits a switch to store more rules,
than in the case of a traditional SDN architecture. As we aim to
reduce the rule count, we consider the mode-3 unfolded matrix
to perform the tensor decomposition method. Mode-3 matrix of
tensor T is computed in Line 1 using the procedure of tensor
unfolding or matricization [16]. Fig. 2 shows three unfolded
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Fig. 2. Matricization of initial rule tensor.

Algorithm 1: Rule Aggregation Algorithm.
INPUT:

1: T ∈ R1×Nf ×Nt � Initial rule tensor
OUTPUT:

1: key = {C ∈ R1×Nf ×Nr , Uk} � Core data
set

PROCEDURE:
1: Compute T(3) from tensor T ;
2: [USV ]← SV D(T(3)); � Singular value

decomposition of mode-3 matrix
3: Truncate Uk ∈ RNt×Nr from U;
4: C ← T ×3 UT

k ;
5: key ← {C,Uk};
6: return key;

matrices of an initial rule tensor T ∈ R1×4×8 , which represents
eight flow-rules each with one priority value and two match
fields and action value. The corresponding unfolded matrices
are T(1) ∈ R1×32 , T(2) ∈ R4×8 , and T(3) ∈ R8×4 .

A tensor element T (a1 , a2 , . . . , aN ) for a tensor T ∈
RI1×I2×···×IN corresponds to the matrix element T(p)(ap , b),
where

b = 1 +
N∑

k=1,k �=p

⎛
⎝(ak − 1)

k−1∏
m=1,m �=p

Im

⎞
⎠ . (10)

In Line 2, the unfolded matrix T(3) is decomposed using the
SVD technique. SVD factorizes matrix T(3) into the form

T(3) = USV T (11)

where U and V are the left and right unitary orthogonal ma-
trices, respectively; S is a diagonal matrix, whose elements
are singular values of T(3) [19]. Singular values of matrix T(3)
are the square roots of the common eigenvalues of T(3)T

T
(3)

and TT
(3)T(3) . The matrices U and V consist of column vec-

tors, which are transposed eigenvectors of matrices T(3)T
T
(3)

and TT
(3)T(3) , respectively.

Fig. 3. Mode-3 product of the initial rule tensor.

The left singular matrix U is truncated in Line 3, which is
given by

Uk ∈ RNt×Nr . (12)

The matrix Uk is needed to be stored for rule reconstruction.
We store this matrix Uk in parts in the subcontrollers based on
their available memory.

Line 4 generates the compressed tensor C by computing the
mode-3 product of tensor T with transpose of matrix Uk , which
can be expressed with unfolded matrices as

C = (T ×3 UT
k )⇔ C(3) = UT

k × T(3) . (13)

Space complexity of Algorithm 1 is O(N 2
t ) + O(Nt(Nr +

Nf )), which decomposes to O(N 2
t ) as Nt is greater than both

Nf and Nr . The time complexity of performing SVD on the
unfolded matrix T(3) in Line 2 is O(min{N 2

t Nf ,NtN
2
f }) [23].

The time complexity of computing mode-3 product in Line 3
is O(NtNrNf ). Therefore, time complexity of Algorithm 1
is O(min{N 2

t Nf ,NtN
2
f }) + O(NtNrNf ). Fig. 3 describes

the computation of mode-3 product for an order-3 tensor
T ∈ R1×4×8 multiplied by transpose of truncated orthogonal
matrix Uk ∈ R8×4 .

The rule aggregation procedure is triggered by the subcon-
troller if free memory of a switch si drops below a certain
threshold value th. This limit th is predefined based on nature of
the applications. During an aggregation procedure at time t, all
the rules in Ri

u (t) are aggregated to form a new set of aggregated
rules.

Theorem 1: The maximum number of rules stored in the
TERM SDN architecture is greater than the maximum number of
rules stored in a traditional SDN architecture with D OpenFlow
switches, where D � 1, N > Nf ; N is the storage capacity of
each OpenFlow switch in the traditional SDN architecture in
terms of the number of entries, and Nf is the number of fields
in a TCAM entry.

Proof: The maximum number of entries stored in a tradi-
tional SDN architecture with D switches, each having a TCAM
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capable of storing N entries, is given by

Maxt = D ×N. (14)

We denote the maximum number of entries stored in the
TERM SDN architecture as

Maxm = D × α (15)

where α is the storage capacity of each switch in terms of the
number of entries of the modified architecture. Therefore, we
need to prove that

Maxm > Maxt , where D � 1. (16)

Let T ∈ R1×Nf ×Nt be the tensor representing rules of a
switch with Nt uncompressed entries, where each entry has
Nf fields, and 0 < Nt < N . The corresponding switch con-
tains total (N −Nt) entries comprising of cached entries and
the aggregated entries generated from the previous aggregation
phase.

The p-mode product of a tensor is the basic flow-rule re-
duction operation for reducing tensor dimensions. To reduce
the dimension of the nth order of a tensor T from In to Ip

(In > Ip ), we need to compute n-mode product of tensor T by
a truncated left singular vector matrix U ∈ RIp ×In .

The aim of our rule aggregation approach is to reduce the 3rd
order of tensor T ∈ R1×Nf ×Nt from Nt to Nr , where Nr < Nt ,
to allow storage of larger flow-tables. Therefore, the compressed
tensor C ∈ R1×Nf ×Nr is expressed as

C = T ×3 UT
3 (17)

where U3 is obtained by retaining the left Nr unitary orthogo-
nal vectors from the left singular vector matrix generated from
singular value decomposition of mode-3 matrix of tensor T .
Fig. 3 illustrates the operation of computing compressed ten-
sor C from an initial tensor T . From experimental results, we
observe that the minimum value for Nr is Nf for exact recon-
struction of flow-rules. Therefore, the maximum percentage of
rule reduction for a switch is N−Nf

N × 100 %. Nr can be chosen
dynamically depending on the application type. If the applica-
tion is latency sensitive, then the optimal value of Nr should be
chosen, considering the processing time of both rule reduction
and reconstruction for approximate rule-set size.

After rule aggregation in each switch, an extra space is avail-
able for storing maximum (Nt −Nf ) entries. So, L switches
can support upto ((Nt −Nf )×D) extra entries. So, Maxm can
be expressed as

Maxm = D × (N + (Nt −Nf )) (18)

where the storage capacity of each switch in TERM is α = (N +
(Nt −Nf )). The term (N + (Nt −Nf )) > 0, as 0 < Nf �
45, L > 0, Nt > 0, and N > Nf [7]. Hence, the statement of
(16) is true. �

2) Rule Reconstruction: The corresponding subcontroller
reconstructs the aggregated rules of the switch to verify whether
there is a match. Rules in the switch do not change during this
process. The reconstructed rules are stored in the subcontroller.
After the subcontroller completes the verification process for a

possible rule match, it releases the memory used for rule recon-
struction.

Change in network policies or topology triggers rule update or
addition of new rules. To handle these changes, the aggregated
rules of selected switches are reconstructed and then aggregated
again after incorporating the changes.

a) Approximate rule tensor generation: For rule reconstruc-
tion, initially, we generate an approximate rule tensor TA ∈
R1×Nf ×Nt , by computing the mode-3 product of compressed
tensor C ∈ R1×Nf ×Nr with truncated unitary orthogonal ma-
trix Uk computed using [see (12)] and stored. This process is
expressed as

TA = C ×3 Uk . (19)

Equation (19) can also be expressed as

TA ( 3 ) = Uk × C(3) (20)

where TA ( 3 ) and C(3) are the mode-3 unfolded matrices of ap-
proximate rule and compressed rule tensors, respectively [16].
The space complexity of the rule reconstruction procedure is
O(Nt(Nr + Nf )). The time complexity of the rule reconstruc-
tion procedure is O(NtNrNf ).

The absolute error of approximation between initial rule ten-
sor T and approximated rule tensor TA is measured as

ε = ||T − TA ||

=

√∑1

i1 =1

∑Nf

i2 =1

∑Nt

i3 =1
(ti1 i2 i3 − tAi 1 i 2 i 3

)2 (21)

where ||X|| denotes the norm of a tensor X [16]. This error is
introduced due to approximation of the floating-point values in
the truncated unitary orthogonal matrix Uk . From experimental
results, it is observed that ε = 0 for Nr = [Nf ,Nt ].

The size of the matrix Uk depends on RF which we calculate
using (8). Hence, the rule reconstruction time is high for a high
value of RF due to the computation of mode-3 product in (19).

b) Rule recovery: After approximate rule tensor is generated,
exact rule entries are recovered. Each mode-2 fiber [16] of tensor
TA corresponds to one row of flow-table. At this stage, the action
value and all the match fields of the flow-table entries are in
integer format. Using transformation logic described in Table I,
we transform each entry of the flow-table back to ternary string.
Fig. 4 shows the process of rule recovery.

3) Rule Caching: Each switch si caches the most frequently
used rules. Incoming packets, which match with the cached
rules, directly follow the actions mentioned in the matched rule.
For “cache miss,” the packets first search for a match in Ri

u (t).
If no match is found, then the corresponding subcontroller re-
constructs the aggregated rules and checks for a match.

We used the least recently used cache algorithm. In the Open-
Flow protocol version (v1.5.1) [7], each flow-table entry con-
tains a counters field, which is updated when incoming packets
are matched with the corresponding flow-rule. Investigation of
this field allows us to discard the least recently used rules and se-
lect the frequently used ones as the potential caching candidates.
The discarded rules are added to the Ri

u (t) set. If a rule in the
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Fig. 4. Rule recovery process.

TABLE II
SIMULATION PARAMETERS

aggregated rule-set Ri
a(t) qualifies as a potential caching can-

didate, then that rule is added to set Ri
c(t) with a flag indicating

that the rule is also available in the aggregated rule-set Ri
a(t).

Therefore, when the rule is no longer needed to be cached, it
can be simply deleted from set Ri

c(t) without adding it to set
Ri

u (t).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of TERM, while
comparing with traditional OpenFlow-based approach, flow-
table partitioning approach— Pallet [12], and flow aggregation
approach (FAA) [13]. We implement all the algorithms in MAT-
LAB and consider Sprint topology [24]. We generate random
flow-table entries, each with a priority value, a counter value,
45 match fields, and an action value. The performance of TERM
is evaluated based on throughput, average packet waiting time,
free rule-space, Packet-In message count, and rule aggregation
and reconstruction time.

A. Simulation Parameters

The simulation parameters are depicted in Table II. The total
number of switches is 11. The maximum number of flow-entries
stored in a switch is 8000 [5]. The average queue size per switch
is set as 0.07 million packets [10]. In addition, the rule matching
time is fixed to 20 μs [25]. We consider 5 μs transmission delay
per kilometer distance [26].

Fig. 5. Average throughput.

Fig. 6. Average packet waiting time.

B. Result and Discussion

1) Throughput: Throughput is measured as the percentage
of packets processed per unit time. Fig. 5 shows the average
throughput when the total number of flows is varied between
20 000 and 100 000. The average packet arrival rate and packet
processing rate per switch are 0.02 mpps and 0.03 mpps, re-
spectively. From the simulation, we observe that the average
throughput for TERM is almost similar to Pallet, traditional
SDN approach, and FAA.

2) Average Packet Waiting Time: Fig. 6 depicts the average
packet waiting time for TERM, traditional SDN, Pallet, and
FAA. The average packet waiting time of TERM is 14.81%,
30.30%, and 43.90% less than traditional SDN, Pallet, and FAA,
respectively. Therefore, we yield that the average packet waiting
time is short in TERM, as the most frequently used rules are
cached in each switch.

3) Free Rule-Space: The amount of free rule-space is the
percentage of total rule-space available for storing new flow-
rules. As shown in Fig. 7, the average free rule-space is sig-
nificantly higher in TERM, as each rule aggregation procedure
aggregates the existing rules and releases rule-space.

4) Packet-In Message Count: Fig. 8 shows the average num-
ber of Packet-In messages generated from each switch in the
network. The cached rule-space size is fixed to 10% of the
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Fig. 7. Average free rule-space.

Fig. 8. Average number of Packet-In messages.

Fig. 9. Effect of cache size on Packet-In message count.

total rule-space. The average number of Packet-In messages is
49.45%, 70.83%, and 57.78% less than traditional SDN, Pallet,
and FAA, respectively.

Fig. 9 depicts the average number of Packet-In messages
generated from each switch for different cache size. The total
number of flows is 10 000. As shown in Fig. 9, the number
of Packet-In messages for 20% cache size is 22.96% less than
that for no cache. Therefore, we yield that caching reduces the
Packet-In message count. In addition, we synthesize that after

Fig. 10. Rule aggregation time.

Fig. 11. Rule reconstruction time.

a specific size of Ri
c(t), the Packet-In message count decreases

as most of the packets are matched in Ri
c(t).

5) Rule Aggregation and Reconstruction Time: The rule ag-
gregation time is the time required to compress flow-rules of
a switch into lesser number of TCAM entries. Similarly, the
rule reconstruction time is the time needed to transform the ag-
gregated TCAM entries into actual flow-rules. Figs. 10 and 11
depict the average rule aggregation and reconstruction time of
a switch, respectively. For 8000 flow-rules, rule reconstruction
phase takes 16.25% lesser time than the rule aggregation phase.

V. CONCLUSION

In this paper, we proposed a rule-space management system,
TERM, which aims to reduce flow-table miss by increasing the
available capacity of switches in SDN. We used tensor decom-
position technique to compress heterogeneous flow-rules. We
evaluated the performance of the proposed scheme by com-
paring it with existing approaches. Results indicate enhanced
performance in terms of reduced packet waiting time, increased
free rule-space, and reduced number of Packet-In messages.

In the future, we aim to extend the proposed scheme by
optimizing the rule caching procedure and the placement of
flow-rules in SDN switches. The future extension of this paper
also includes implementation of the proposed scheme in a real
test bed.
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