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Abstract—In this paper, the problem of energy scheduling and
energy exchange between microgrids and customers is studied as a
multi-leader multi-follower noncooperative Stackelberg game. The
customers act as leaders, and decide the amount of required energy
to be taken in each time slot. On the other hand, the microgrids
act as the followers, which need to decide the price per unit energy
based on the total requested energy by the connected customers. Us-
ing variational inequality, it is shown that the proposed distributed
energy management using scheduling (DEMANDS) scheme has a
Nash equilibrium solution, which is also socially optimal. In the
proposed scheme, DEMANDS, each customer gets energy from
any of the available microgrids within a coalition neither by pay-
ing higher price per unit energy, nor by waiting for the next time
slot for service. The proposed scheme, DEMANDS, which enables
the microgrids and the customers to reach the equilibrium state, is
evaluated theoretically as well as through simulations.

Index Terms—Generalized Stackelberg game, micro-grid,
Nash equilibrium, noncooperation, power management, price
optimization.

I. INTRODUCTION

TO ACHIEVE improved quality of service, traditional
electrical grids are being modernized as smart grids. A

smart grid [1] is conceptualized as a cyber-physical system
equipped with different sustainable models—energy produc-
tion, energy distribution, and energy usage. A smart grid
also integrates several advanced techniques such as advanced
metering infrastructure, energy management system, distributed
energy system, intelligent electronic devices, and plug-in hybrid
electrical vehicles [1]. Unlike the traditional grid, in which elec-
tricity is distributed unidirectionally to the customers having a
centralized system, in smart grid, customers can also participate
in the distribution of energy by announcing the actual amount
of required energy using duplex communication infrastructure.
In smart grid, the large-scale electrical grid is divided into
smaller geographical areas [2], [3]. The energy demand of each
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geographical area is fulfilled by single or multiple microgrids
[4] having bidirectional electricity exchange facilities with
the substation, and the main grid. In the presence of several
microgrids [4], it is desired to allow the customer to choose
appropriate microgrids to ensure proper distribution of energy
with lower price. If insufficient amount of energy is generated
by the microgrids, the customers try to optimize their requested
amount of energy, while utilizing the stored energy. Addition-
ally, customers seek opportunity to consume energy from the
microgrids, if excess energy is generated by the microgrids, in a
time slot. Therefore, a distributed energy management system is
required to ensure quality of energy service for each microgrid
and the overall smart grid infrastructure. One of the important
features in a smart grid is the demand-side energy distribution,
which gives the opportunity for flexible energy demand accord-
ing to the requirements of the customers, and the microgrid
decides the price per unit energy based on the energy demand.

The microgrids generate energy typically using renewable en-
ergy resources [5] such as wind power, solar energy, and hydro
power. Therefore, the amount of generated energy is not fixed
at different times in a day. If a microgrid has excess amount
of energy, it sells that excess amount to the main grid, or other
microgrids having demands of energy. As the requested energy
by the customers to each microgrid is discrete, the load on each
microgrid does not remain the same in any specific time. More-
over, the existing literature on energy distribution in smart grid
considered different energy management schemes, using which
each customer is connected with a single microgrid. Thus, in
on-peak hours, if the customer is willing to pay a higher price,
she/he gets the requested energy at that time slot; otherwise,
she/he waits for a significant duration of time to get serviced.
To overcome this problem, we need proper distributed energy
management using a scheduling (DEMANDS) approach. Con-
sequently, the customers need to decide the amount of energy
to be requested to the microgrid in each time slot. On the other
hand, the microgrids need to decide the price per unit energy to
ensure maximum profit. In order to do that, the customers and
the microgrids need to maximize the respective payoff values
of the utility functions.

In this paper, we propose a noncooperative game theoretic
algorithm, named DEMANDS, for distributed energy manage-
ment using scheduling. We use a multi-leader multi-follower
Stackelberg game theory to decide the strategies of the cus-
tomers to fulfill their energy demand while expending lower
cost. On the other hand, the microgrids choose strategies
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to maximize their profit and properly utilize the generated
energy. We summarize the contributions of this paper as
follows.

1) We propose an algorithm for DEMANDS for real-time
energy consumption in the presence of multiple micro-
grids in a coalition. Each customer or microgrid, decides
his/her/its strategy, based on the local information. Thus,
the proposed algorithm, DEMANDS, is distributed, which
makes it less vulnerable to system failures.

2) The multi-leader multi-follower Stackelberg game is used
to evaluate the optimal strategies of the customers using a
noncooperative game, and, in the next stage, the optimal
strategies of the microgrids are also decided using another
similar approach.

3) We present two different algorithms. The first one is ex-
ecuted at the customer-end to determine the amount of
energy to be requested. Each microgrid performs the sec-
ond algorithm in a noncooperative manner, and decides
the price per unit energy in a distributed way, based on the
total amount of requested energy.

II. RELATED WORK

In the last few years, lot of research work on smart grid
emerged [6]–[21]. Some of the existing literature are discussed
in this section. Mondal and Misra [9] proposed a decision mak-
ing process to form coalitions dynamically between microgrids
and customers. However, they did not consider how energy re-
quirement can be scheduled in a distributed manner from the
customer-side. Bakker et al. [10] recommended a distributed
load management scheme with dynamic pricing, and have mod-
eled it as a network congestion game. However, in this scenario,
customer has to wait, as the customer does not have the option to
switch to another microgrid. Molderink et al. [11] proposed an
algorithm by using the energy in the off-peak, and the on-peak
hours, with a virtual power plant, for energy management. San-
severino et al. [12] studied an algorithm for load shifting and
storage device management. The authors proposed that during
peak hour, heavy loads should be turned off, and vice versa.
However, in this scenario, if the customer does not want any
delay in receiving the requested energy, she/he has to pay high
price for it. In this situation, using the scheme proposed in the
present paper, i.e., DEMANDS, the customer can get energy
from the other microgrids with lower price per unit energy, and
with much lower delay.

Vytelingum et al. [13] proposed an algorithm, in which the
customers choose their strategies based on their advance knowl-
edge about the market. They did not consider scheduling in
distributed energy management. Fang et al. [22] proposed dif-
ferent energy management schemes. However, in this paper,
new opportunities for improved residential energy management
and bill reduction are studied without considering the impact of
scheduling approach for distributed energy management. Erol–
Kantarci and Mouftah [23] studied a time-to-use aware-energy
management scheme. In this scheme, a customer consumes en-
ergy according to the time. Yet, the energy management pol-
icy adopted by the customers and the microgrids need further

Fig. 1. Schematic diagram of DEMANDS.

research to have an optimal solution and with minimum delay
and less message overhead.

Pipattanasomporn et al. [24] considered smart grid as a multi-
agent system, which is visualized to be a combination of several
agents working in cooperation to achieve a goal. The authors de-
compose the complex problem into multiple fragments, namely,
control, distributed energy resource, user and database. How-
ever, in this paper, we consider an oligopolistic market, where
multiple customers and multiple microgrids act noncoopera-
tively, while attempting to maximize his/her/its own payoff,
individually.

In contrast to the existing works, a model is used in this paper
to characterize the effect of DEMANDS in the smart grid. We
use the multi-leader multi-follower Stackelberg game to develop
an optimal solution for DEMANDS for the customers, where
each customer has multiple option for choosing microgrids.

III. SYSTEM MODEL

We consider a distributed energy management system with
multiple microgrids and multiple customers. Each customer
connected with multiple microgrids is visualized using relays in
the electrical network. Each customer has a dedicated relay to
switch connection between the available microgrids, which are
available with the coalition. We consider that each customer is
not connected with multiple microgrids or main grid, simulta-
neously. The schematic diagram of the proposed scheme, DE-
MANDS, is shown in Fig. 1. At each time slot, each customer
chooses one suitable microgrid and consumes energy from the
selected microgrid among the available microgrids in the coali-
tion. On the other hand, each microgrid does not depend on
other microgrids for energy transmission to the customers-end.
We consider that, in this system, each microgrid m ∈ M, where
M is the set of microgrids available in a coalition C, serves the
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electricity demand. Each customer n ∈ N, where N is the set
of the customers in coalition C, demands xt

n amount of energy
to the microgrid m in time slot t ∈ T , where T is the set of the
time slots in a day. Therefore, in time slot t, the total energy
demanded from the microgrid m by the customers Nm ⊆ N,
where Nm is the set of the customers who request energy to the
microgrid m, is Dt

m . Mathematically

Dt
m =

Nm ⊆N∑

n∈Nm

xt
n ∀t ∈ T . (1)

The total demand to microgrid m by the customers Nm must
satisfy the following inequality

Dt
m ≤ Gt

m ∀m ∈ M (2)

where Gt
m is the total generation capacity of the microgrid m

in the time slot t.
Given the amount of energy requested by the customers Nm ,

each microgrid m sets a price pt
m to maximize its revenue from

supplying energy by strategically choosing the optimal value
for its price coefficient.

For completing energy trading successfully, the customers
and the microgrids exchange messages with one another, and
agree on the energy trading parameters—the amount of required
energy by each customer n, xt

n , and the price per unit energy for
microgrid m, pt

m , that satisfy the objectives of both players, i.e.,
the customers and the microgrids. We consider that in a day, the
amount of required energy by each customer n, en , is predicted
on a day-ahead basis, based on the prediction of the maximum
energy requirement by the appliances installed on the customer-
side[25]. However, xt

n is determined by the tradeoff between
the total required energy of each customer n, and pt

m decided
by the microgrid m. We represent the price vector, �P t , as the
collection of price per unit energy, pt

m , as defined in Definition
1. The demanded energy by each customer n in time slot t, i.e.,
xt

n , must satisfy the following constraints:

en ≤
t∈T∑

t=1

xt
n , and

m∈M∑

m=1

t∈T∑

t=1

Gt
m + Δm ≥

n∈N∑

n=1

t∈T∑

t=1

xt
m (3)

where Δm is the amount of energy consumed by the microgrid
m from the main grid. Moreover, the price per unit energy de-
cided by the microgrid m, pt

m , is dependent on the total amount
of demanded energy by the customer Nm , i.e.,

∑
n∈Nm

xt
n , and

the number of customers requested energy at that time slot t, i.e.,
|Nt

m |. The energy generation by each microgrid depends on the
renewable energy resources and external environmental factors.
Hence, the amount of generated energy cannot be modified for a
fixed time slot. Thereby, the total generation capacity of the mi-
crogrids M within a coalition, i.e.,

∑m∈M
m=1 Gt

m , is unchangeable
for a time slot t, as well as, the individual generation capacity of
each microgrid m for a time slot t, Gt

m , is also unchangeable.
However,

∑m∈M
m=1 Gt

m and Gt
m are not constants. Therefore, if a

microgrid m needs excess amount of energy, it needs to request
the main grid for deficient amount of energy.

Definition 1: For each time slot t, the price vector �P t is
defined by the vector with components having information

Fig. 2. Request message.

Fig. 3. Reply message.

about the price per unit energy decided by each micro-
grid m. Mathematically, we define the price vector �P t as
— �P t = {pt

1 , pt
2 , . . . , pt

m , . . . , pt
|M|}T , ∀t ∈ T .

Therefore, the energy requested by each customer n has to
fulfill the inequalities given in (2) and (3). It also affects the price
per unit energy decided by each microgrid m. Thus, the main
challenges facing the development of DEMANDS approach are

1) Modeling the decision making processes, and the interac-
tion between the microgrids and the customers.

2) Developing an algorithm, i.e., DEMANDS, for customers
such that they can decide the optimum energy to be re-
quested in each time slot t, given the price vector �P t

decided by the microgrids M.
3) Each microgrid m decides the price per unit energy, i.e.,

pt
m , based on the total demanded energy, Dt

m , while en-
suring revenue maximization.

Communication Between Microgrids and Customers

We assume that the communication infrastructure between
the customers and the microgrids is based on wireless mesh
network. We use the IEEE 802.11b protocol for communication
between the microgrids and the customers. First, each customer
decides the amount of energy to be requested, and sends a re-
quest message. The request message format is shown in Fig. 2.
Based on the requests by the customers, each microgrid decides
the price per unit energy, and sends a reply message back to the
customers. The reply message format is shown in Fig. 3.

IV. DEMANDS: THE PROPOSED NONCOOPERATIVE GAME

THEORETIC SOLUTION

A. Justification for the Use of Multi-Leader Multi-Follower
Stackelberg Game

In a distributed energy management scenario, each customer
tries to consume high amount of energy in order to fulfill his/her
energy requirement. However, having option for connecting one
of the multiple microgrids available in the coalition, she/he
needs to decide the amount of energy to be consumed, while
paying less. On the other hand, energy requested by each cus-
tomer has a cumulative effect on the price decided by the mi-
crogrids. Thereby, we use a multi-leader multi-follower Stack-
elberg game, where the customer act as the leaders, and the
microgrids act as the followers. This interaction has a similarity
with “oligopolistic market,” where the request and supply trade-
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off is to be maintained in order to maximize individual profit of
each player.

B. Game Formulation

To study the interaction between the microgrids and the cus-
tomers, we use a multi-leader multi-follower Stackelberg game
[26]. Multi-leader multi-follower Stackelberg game is a mul-
tistage and multilevel game. Here, the customers, who act as
leaders, decide the energy to be consumed from which mi-
crogrid based on the price vector defined by the microgrids,
independently. On the other hand, the microgrids act as the fol-
lowers, and decide the price per unit energy based on the total
demanded energy, independently. In this paper, we follow an
extended game formulation approach used by Tushar et al. [27].
We define the strategic form, ξ, of the proposed noncooperative
game as follows:

ξ = 〈(N ∪ M), (en , xt
n ,Un )n∈N , (pt

m ,Bm )m∈M, (�P t)t∈T 〉.
(4)

The components of strategic form ξ are as follows.
1) Each customer n acts as the leader, and decides xt

n while
satisfying the constraint defined in (3).

2) The utility function Un of each customer n captures the
benefit of consuming xt

n amount of energy in each time
slot t.

3) The utility function Bm of each microgrid m captures the
revenue gained by supplying the total demanded energy,
Dt

m , by the Nm set of customers.
4) The price per unit energy pt

m is decided by microgrid
m for each time slot t. It is also dependent on the total
amount of demanded energy by the Nm set of customers.

5) Price vector �P t is defined as a vector having the infor-
mation about the price per unit energy decided by the M
microgrids for time slot t within a coalition.

1) Utility Function of a Customer: For each customer n,
we define a utility function, Un (xt

n ,xt
−n , pt

m ), to represent the
quantified benefit consuming xt

n in each time slot t. Here,
each customer n tries to maximize his/her individual energy
consumption, while paying less money. Hence, each customer
maximizes his/her payoff of the utility function Un . Thus, the
properties that each customer n must satisfy, are as follows.

1) The utility function Un of each customer n is considered
to be a nondecreasing and nonnegative function while
satisfying the constraint given in (3).

2) For the marginal value of energy consumption, Un is
considered to be a nonincreasing function.

3) pt
m decided by microgrid m affects the utility function of

each customer n. With higher pt
m , amount of demanded

energy xt
n decreases.

Therefore, Un of each customer n is as follows:

Un (xt
n ,xt

−n , pt
m ) = enxt

n − 1
2
γt

n (xt
n )2 − pt

m xt
n (5)

where γt
n is the satisfaction factor of customer n at time

slot t, as defined in Definition 2, and γt
n ∈ (0, 1], xt

n ∈
[0, Gt

m −∑i∈Nm

i=1,i 
=n xt
i ], xt

n ∈ [0, en −∑t−1
τ =1 xτ

n ], and xt
−n =

{xt
1 , x

t
2 , . . . , x

t
n−1 , x

t
n+1 , . . . , x

t
|Nm |}.

Definition 2: At time slot t, the satisfaction factor of a cus-
tomer n, γt

n , is a quantified value which is proportionate with
the ratio of the total energy consumed till previous time slot
(t − 1), i.e.,

∑t−1
τ =1 xτ

n , and the total required energy in T time

slots, i.e.,
∑|T |

τ =1 xτ
n or en .

From Definition 2, we conclude that satisfaction factor γτ
n of

customer n at time slot τ is always the same or is higher than
the satisfaction factor of customer n at time slot τ ′, γτ ′

n , where
τ ≥ τ ′. Mathematically

γτ
n ≥ γτ ′

n , if τ ≥ τ ′ (6)

We assume that each customer n does not consume higher
amount of energy than his/her requirements.

Lemma 1: The satisfaction factor of each customer n can
have the maximum value of 1. Mathematically

arg max
n

γt
n ≤ 1 ∀t ∈ T (7)

Proof: As we assumed that the required energy of each
customer n in a day, i.e., en , is fixed, and no customer demands
higher amount of energy than his/her total requirement. There-
fore

arg max
n∈N

en ≥ arg max
n∈N

t∈T∑
t=1

xt
n

⇒ arg max
n∈N

[(
τ ∈T∑
τ =1

xτ
n

)
/(en )

]
≤ 1. (8)

We know that γt
n = arg maxn∈N [(

∑τ ∈T
τ =1 xτ

n )/(en )]. Hence, it
is proved that—arg maxn γt

n ≤ 1, ∀t ∈ T . �
2) Utility Function of a Microgrid: For each microgrid m,

we define a utility function Bm (pt
m , xt

n (pt
m )) to represent the

quantified profit by selling
∑

n∈Nm
xt

n at time slot t. By sup-
plying xt

n , the microgrid m makes a profit of pt
m xt

n amount
at time slot t. Each microgrid m aims to maximize its revenue
by selling the generated energy, Gt

m . Thus, each microgrid m
satisfies following properties.

1) Each microgrid m tries to increase the amount of selling
energy, i.e.,

∑
n∈Nm

xt
n , as it increases the revenue, while

satisfying the constraints given in (1) and (2).
2) For marginal revenue of a microgrid m, Bm is considered

to be a nonincreasing function. For reaching this marginal
revenue state, each microgrid needs to satisfy the condi-
tion – Gt

m =
∑

n∈Nm
xt

n , ∀m ∈ M.
3) Each microgrid m tries to sell Gt

m with higher price to
maximize the revenue.

Therefore, the utility function Bm for each microgrid m is
as follows:

Bm (pt
m , xt

n (pt
m )) = pt

m

∑

n∈Nm

xt
n . (9)

In the proposed DEMANDS algorithm, the customers control
the price per unit energy indirectly, by choosing a microgrid
from the available microgrids M. However, the microgrids
decide the price per unit energy, pt

m , where m, using a dynamic
pricing model. We defined the dynamic pricing model as
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follows:

pt
m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct
m , if (pt

m < ct
m ) and

(
Gt

m ≥ ∑
n∈Nm

xt
n

)

K, if (pt
m ≥ ct

m ) and

(
Gt

m ≥ ∑
n∈Nm

xt
n

)

∞, if

(
Gt

m <
∑

n∈Nm

xt
n

)

(10)
where ct

m is the generation cost per unit energy of microgrid m at
time slot t, and K = Am (

∑
n∈Nm

xt
n ) + Bm (

∑
n∈Nm

xt
n )2 +

Cm , as defined in [28], where Am , Bm , and Cm are constants
for the microgrid m. Here, each customer n tries to maximize
his/her utility function Un , while satisfying the constraints in
(1), and (2). However, the energy demand of each customer n
leads to the adoption of noncooperative strategy. Therefore, to
reach the generalized Nash equilibrium (GNE), each customer
n chooses an amount of energy to be requested, such that

arg max
xt

n

Un (xt
n ,xt

−n , pt
m )

⇒ arg max
xt

n

[
enxt

n − 1
2
γt

n (xt
n )2 − pt

m xt
n

]
. (11)

However, each microgrid m tries to choose an optimum price
per unit energy. Therefore, to reach the GNE, each microgrid
m chooses a price per unit energy, pt

m , such that

arg max
pt

m

Bm (pt
m , xt

n (pt
m )) ⇒ arg max

pt
m

⎡

⎣
∑

n∈Nm

pt
m xt

n

⎤

⎦ .

(12)
Hence, the solution of the proposed DEMANDS algorithm
reaches the Stackelberg equilibrium at which all the leaders,
i.e., N customers, reach their optimal amount of requested
energy, given the followers’ optimal strategies, i.e., the price
per unit energy by M microgrids at their GNE. We define the
GNE states of the players, i.e., the followers and the leaders, as
defined in Definition 3.

Definition 3: We define the GNE of proposed strategic form
ξ of DEMANDS algorithm using a noncooperative game, if
and only if, utility function of each customer n, i.e., leader,
Un (xt

n ,xt
−n , pt

m ), and the utility function of each microgrid m,
i.e., follower, Bm (pt

m , xt
n (pt

m )) satisfy following inequalities
defined in (13)

Un (xt∗
n ,xt∗

−n , pt∗
m ) ≥ Un (xt

n ,xt∗
−n , pt∗

m )

Bm (pt∗
m , xt∗

n (pt∗
m )) ≥ Bm (pt

m , xt∗
n (pt

m )) (13)

where n,
∑

n∈Nm
xt

n ≤ Gt
m , xt∗

n ∈ xt∗, m, pt∗
m ∈ pt∗, pt∗

m is
the price per unit energy at Nash equilibrium decided by the
microgrid m for time slot t, and xt∗

n is the requested energy at
Nash equilibrium decided by the customer n for time slot t.

C. Existence of GNE

In multi-player noncooperative game, the existence of an
equilibrium pure strategic solution is not guaranteed always.

Hence, we need to determine the existence of GNE in our
proposed multi-leader multi-follower game, i.e., DEMANDS.
Due to the fact that variational equality is more socially stable
than other GNE, as studied by Tushar et al. [27], we try to
seek the variational equality for the customers, as discussed in
Theorem 1.

Theorem 1: If the set of price decided by microgrid M, i.e.,
�P t , is fixed for a time slot t, there exists a variational equality
for utility function Un (xt

n ,xt
−n , pt

m ).
Proof: We define the overall utility function Ũ of Nm

customers as follows:

Ũ (·) =
n∈Nm∑

n=1

[
enxt

n − 1
2
γt

n (xt
n )2
]
− pt

m

n∈Nm∑

n=1

xt
n . (14)

Hence, to reach the GNE state, we need to maximize the overall
utility function Ũ . Mathematically

arg max Ũ
(
xt

1 , x
t
2 , . . . , x

t
n , . . . , xt

|Nm |; p
t
m

)
. (15)

Applying the Karush–Kuhn–Tucker (KKT) conditions with La-
grange multipliers of each nth customer, we get

∇xt
n
Un (xt

n ,xt
−n , pt

m ) − λt
n∇xt

n

⎛

⎝
∑

n∈Nm

xt
n − Gt

m

⎞

⎠ = 0

(16)

λt
n∇xt

n

⎛

⎝
∑

n∈Nm

xt
n − Gt

m

⎞

⎠ = 0 (17)

where λt
n ≥ 0, and λt

n is the Lagrangian multiplier for the cus-
tomer n at time slot t.

Hence, we extend (16). Therefore, applying the KKT condi-
tion over the overall utility function Ũ , we get

∇xt Ũ − λt∇xt

⎛

⎝
∑

n∈Nm

xt
n − Gt

m

⎞

⎠ = 0 (18)

where xt = {xt
1 , x

t
2 , . . . , x

t
n , . . . , xt

|Nm |}, and λt = {λt
1 , λ

t
2 ,

. . . , λt
n , . . . , λt

|Nm |}. Therefore, by solving ∇xt Ũ , we get

K = ∇xt Ũ

= [e1 − γt
1x

t
1 − pt

m ; . . . ; e|Nm | − γt
|Nm |x

t
|Nm | − pt

m ]T .

(19)
Now, we find the Jacobi matrix of K as follows:

JK =

⎡

⎢⎣
−γt

1 · · · 0
...

. . .
...

0 · · · −γt
|Nm |

⎤

⎥⎦ . (20)

As the Jacobian of K is a diagonal matrix, and all the elements
in the diagonal are negative, we can infer that xt has a unique
solution, i.e., xt

n is unique, where n ∈ Nm . Therefore, there
exists a variational equality and GNE solutions.

In the proposed DEMANDS algorithm, we also need to de-
termine the existence of GNE for M microgrids. Therefore,
we try to determine the variational equality for this proposed
noncooperative game, as discussed in Theorem 2.
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Theorem 2: For time slot t, if the set of requested energy xn ,
is fixed, there exists a variational equality for utility function
Bm (pt

m , xt
n (pt

m )), where ∀n, and ∀m.
Proof: We formulate the overall utility function B̃ of M

microgrids in a coalition, while satisfying the inequality – pt
m ≥

ct
m , as follows:

B̃(pt
1 , . . . , p

t
M;xt

1 , . . . , x
t
|N|) =

m∈M∑

m=1

n∈Nm∑

n=1

pt
m xt

n (21)

where cm is generation cost per unit energy for microgrid m.
Therefore, we need to maximize the overall utility function B̃
to reach the variational equilibrium solution. Mathematically

arg max
m∈M

m∈M∑

m=1

n∈Nm∑

n=1

pt
m xt

n (22)

Taking help of Lagrangian multiplier, we apply KKT condition
on the utility function Bm (pt

m , xt
n (pt

m )) of each microgrid m.
Therefore,

∇pt
m

Bm (pt
m , xt

n (pt
m )) − ϕt

m∇pt
m

[pt
m − ct

m ] = 0 (23)

ϕt
m∇pt

m
[pt

m − ct
m ] = 0 (24)

where ϕt
m ≥ 0, and ϕt

m is defined as the Lagrangian multiplier
for microgrid m at time slot t. If we perform similar transfor-
mation for other microgrids also, we get the equation for the
overall utility function as follows:

∇p t B̃ − ϕt∇p t

[
pt − ct

]
= 0 (25)

where pt = {pt
1 , p

t
2 , . . . , p

t
m , . . . , pt

|M|} and ct = {ct
1 , c

t
2 ,

. . . , ct
m , . . . , ct

|M|}. Hence, we get

L = ∇p t B̃ =
[
xt

1 , x
t
2 , . . . , x

t
m , . . . , xt

|M|
]T

(26)

where [·]T defines a transpose matrix of the solution. Therefore,
the Jacobian of matrix L is a zero matrix. As JL is a zero
matrix, we can conclude that for a fixed set of energy requests by
Nm customers, the microgrid m will have a variational equality
point for the price per unit amount of energy, pt

m , for each time
slot t.

Therefore, from Theorems 1 and 2, we conclude that the pro-
posed scheme, DEMANDS, has GNE solution for the requested
energy by each customer, and the price per unit amount of energy
decided by each microgrid within a coalition.

D. Proposed Algorithm

In this section, we formulate the GNE problem among the
customers as a variational inequality problem, and proposed
an algorithm that leads to optimally social variational equality
solution, which, in turn, leads to GNE solutions. Additionally,
the proposed scheme, DEMANDS, is not concerned with which
type of sources are there with the microgrids, as the proposed
scheme is only concerned about the amount of energy generated
by the microgrids.

1) Requested Energy Optimization: For a fixed price de-
cided by the microgrids, each customer n decides the amount of
energy, xt

n , to be requested to the microgrid using Algorithm 1.

In such situation, the proposed scheme, DEMANDS, performs
well. Applying KKT condition, we get

∂Un

∂xt
n

= 0 ⇒ en − γt
nxt

n − pt
m − λt = 0 (27)

where λt � λt
n , ∀n, satisfying the condition in (2). Therefore,

the marginal condition is as follows:

Gt
m =

∑

n∈Nm

xt
n . (28)

However, λt(Gt
m −∑n∈Nm

xt
n ) = 0, and λt ≥ 0. Therefore,

en > γt
nxt

n + pt
m . (29)

Now, for overall utility function
∑

n∈Nm

en > Gt
m

∑

n∈Nm

γt
n + Nm pt

m . (30)

Equating the condition for variational equality, we get

xt∗
n =

en − pt
m − λt

γt
n

. (31)

2) Price Optimization: Having analyzed the requested en-
ergy of the customers, each microgrid tries to find the optimum
price pt∗

m using Algorithm 2. Hence, the dynamic energy request
is taken into account in the proposed scheme, DEMANDS, while
using dynamic pricing mechanism. From (16), we infer that

pt
m ≤ en − γt

nxt
n . (32)

Considering that the requested energy by customer n is optimal,
i.e., xt

n = xt∗
n , we modify (32) as follows:

pt
m ≤ en − γt

nxt∗
n . (33)
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TABLE I
SIMULATION PARAMETERS

Parameter Value

Simulation area 20 × 20 km2

Number of microgrids 10
Number of Customers 500
Customer’s minimum requested energy 65 MWh
Customer’s maximum requested energy 110 MWh
Microgrid’s minimum generated energy 500 MWh
Microgrid’s maximum generated energy 750 MWh
Generation cost per MWh energy 10–20 USD

Therefore, for microgrid m, the maximum price per unit energy,
i.e., the decided optimum price, pt∗

m , is as follows:

pt∗
m = en − γt

nxt∗
n . (34)

Hence, each microgrid m chooses the optimum price per unit
energy based on the total requested energy,

∑
n xt

n , by Nm

customers.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We considered randomly generated positions for the micro-
grids and the customers on a MATLAB-based simulation plat-
form. We considered that the microgrids form a coalition based
on their geographical location, as discussed in [9]. In this paper,
we have taken randomly generated values for the amount of re-
quested energy for each customer and the amount of generated
energy by each microgrid at each time slot, as shown in Table I.
Therefore, we claim that the proposed scheme, DEMANDS, is
able to handle the randomness in the energy generation by the
microgrids. We considered that the total required energy of a
customer is fixed in a day. Based on the requested energy by
all the customers connected with the microgrid, the microgrid
decides the optimum price per unit energy based the variational
equilibrium solution.

We have evaluated the performance of the proposed al-
gorithm, DEMANDS, by comparing with the online optimal
real-time energy distribution algorithm (OORA)[29], and the
optimal real-time pricing algorithm (ORPA) [30] through sim-
ulations. In OORA, the authors proposed an algorithm for en-
ergy distribution with real-time pricing scheme. However, the
OORA algorithm is not based on game theory. On the other
hand, Samadi et al. [30] proposed a real-time pricing algorithm
having an energy consumption controller, which is based on
a microeconomics approach. However, they did not consider
noon-cooperative scheduling. Thus, we endeavored to improve
the performance of energy scheduling using the proposed DE-
MANDS algorithm. In addition to OORA and ORPA, we also
simulated another scheme similar to DEMANDS, but does not
use game theory. We named this scheme as distributed energy
management without game (DEMwoG).

Fig. 4. Consumed energy.

B. Performance Metrics

Requested energy by customers: In a coalition, each customer
tries to maximize his/her utility by maximizing the requested
energy to the microgrid with lower price.

Excess energy of microgrids: Each microgrid tries to reduce
the unused generated energy, i.e., excess energy, by choosing an
optimum price per unit energy.

Price per unit energy: The microgrids choose the optimum
price per unit energy such that other customers are motivated to
request energy, and the microgrid utilizes the generated energy
properly in each time slot.

Percentage of energy service served: We evaluate the overall
performance with the percentage of customers served. If a cus-
tomer gets r% of the initially requested energy, she/he gets r%
of energy service.

C. Results and Discussions

For simulation, we assume that each microgrid monitors the
real-time supply and demand in every 5 s interval. After every
5 s, each microgrid has to check the demand-supply curve, and
if there is any modification in the demand curve. However, one
microgrid may also monitor the supply-demand curve, contin-
uously, which will be computationally expensive. Hence, we
chose 5 s interval to reduce the computational complexity, and
took advantage of having energy generation and demand side
management in smart grid.

In Fig. 4, the percentage of total consumed energy in each
time slot within a coalition is shown. Fig. 4 shows that the en-
ergy consumed in each time slot is within 90%–100% for DE-
MANDS, whereas the consumed energy is within 75%–90%
for OORA, and 15%–20% for ORPA. Therefore, we can infer
that the satisfaction level of the customers is almost 9.6%, and
80% higher using DEMANDS than using OORA, and ORPA,
respectively. Fig. 4 shows that the excess amount of energy is
much less in DEMANDS than OORA, ORPA, and DEMwoG.
From Fig. 4, we conclude that the underutilization of gener-
ated energy is 16.67%, 76.75%, 77% higher than DEMANDS
in OORA, ORPA, and DEMwoG, respectively. Fig. 5 reestab-
lishes that the utilization of generated energy is much higher
using DEMANDS than using OORA, ORPA, and DEMwoG.
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Fig. 5. Excessed energy.

Fig. 6. Price per unit energy.

The excess amount of generated energy is 50%–66% higher than
DEMANDS, for OORA, ORPA, and DEMwoG. Fig. 6 shows
that the price per unit energy is much lower for DEMANDS
than OORA, ORPA, and DEMwoG. Therefore, the customers
get the required energy with much lower price. Additionally,
we consider that the microgrids sell the excess amount of gen-
erated energy to the main grid. We consider that the price per
unit energy paid by the main grid is constant, i.e., the minimum
selling price to the customers, for different schemes, such as DE-
MANDS, OORA, ORPA, or DEMwoG. Hence, we get that us-
ing DEMANDS, the profit of each microgrid is 6.76%, 19.03%,
and 18.24% higher than using OORA, ORPA and DEMwoG,
respectively, as shown in Fig. 7. Fig. 8 shows that using the pro-
posed DEMANDS scheme, almost 100% request of each cus-
tomer is served. However, the percentage of customers served in
each time slot is within 70%–95%, and 15%–25% using OORA,
and ORPA, respectively. Fig. 9 shows that, on an average the
percentage of customers served by each microgrid in a day is
also higher in DEMANDS than OORA, ORPA, and DEMwoG.
In Fig. 9, the percentage of customers served by each microgrid
remains almost invariant. However, the percentage of customers
served by each microgrid is much lower using ORPA than using
DEMANDS. Therefore, we conclude that the energy requested
by the customers are more distributed among the available mi-
crogrids using dynamic price model, and the generated energy is

Fig. 7. Cumulative profit.

Fig. 8. Customers served over a day.

Fig. 9. Customer served per micro-grid.

uniformly utilized using DEMANDS than using OORA, ORPA,
and DEMwoG. Hence, in addition to ensuring maximum use of
renewable energy sources and the minimal use of tradition en-
ergy resources, the proposed scheme, DEMANDS, also ensures
proper load balancing among the available microgrids.

VI. CONCLUSION

In this paper, we formulated the multi-leader multi-follower
Stackelberg game to study the problem of DEMANDS. Based
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on the proposed algorithm, DEMANDS, we showed how a cus-
tomer decides the optimum amount of energy to be requested,
when each customer is connected with multiple microgrids. The
microgrids also choose an optimum price per unit energy, so as
to maximize its profit, and utilize its generated energy properly.
The simulation results show that the proposed approach yields
improved results.

Future extension of this paper includes understanding how
the generated energy can be distributed using a centralized man-
agement unit. This paper can also be extended by introducing
plug-in hybrid electric vehicles in a smart grid. Additionally, this
paper can be extended by considering the uncertainty in energy
generation by the microgrids and the uncertainty in customers’
energy consumption.

REFERENCES

[1] M. Erol-Kantarci and H. T. Mouftah, “Smart grid forensic science: Ap-
plications, challenges, and open issues,” IEEE Commun. Mag., vol. 51,
no. 1, pp. 68–74, Jan. 2013.

[2] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods for the
smart grid: An overview of microgrid systems, demand-side management,
and smart grid communications,” IEEE Signal Process. Mag., vol. 29,
no. 5, pp. 86–105, Sep. 2012.

[3] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,”
IEEE Power Energy Mag., vol. 5, no. 4, pp. 78–94, Jul. 2007.

[4] E. Santacana, G. Rackliffe, L. Tang, and X. Feng, “Getting smart,” IEEE
Power Energy Mag., vol. 8, no. 2, pp. 41–48, Mar./Apr. 2010.

[5] A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power Energy Mag.,
vol. 7, no. 2, pp. 52–62, Mar./Apr. 2009.

[6] S. Misra, S. Bera, and M. S. Obaidat, “Economics of customer’s decisions
in smart grid,” IET Netw., vol. 3, no. 1, pp. 1–7, Apr. 2014.

[7] M. Such and C. Hill, “Battery energy storage and wind energy integrated
into the smart grid,” in Proc. IEEE PES Innov. Smart Grid Technol.,
Washington, DC, USA, Jan. 2012, pp. 1–4.

[8] S. Misra, S. Bera, and T. Ojha, “D2P: Distributed dynamic pricing policyin
smart grid for PHEVs management,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 3, pp. 702–712, Mar. 2015.

[9] A. Mondal and S. Misra, “Dynamic coalition formation in a smart grid: A
game theoretic approach,” in Proc. IEEE Int. Workshop Smart Commun.
Protocols Algorithms, Budapest, Hungary, Jun. 2013, pp. 1067–1071.

[10] V. Bakker, M. G. C. Bosman, A. Molderink, J. L. Hurink, and G. J. M.
Smit, “Demand side load management using a three step optimization
methodology,” in Proc. 1st IEEE Int. Conf. Smart Grid Commun., Oct.
2010, pp. 431–436.

[11] A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink, and G. J. M.
Smit, “Management and control of domestic smart grid technology,” IEEE
Trans. Smart Grid, vol. 1, no. 2, pp. 109–119, Aug. 2010.

[12] E. R. Sanseverino, M. L. D. Silvestrea, G. Zizzo, and G. Graditi, “Energy
efficient operation in smart grids: Optimal management of shiftable loads
and storage systems,” in Proc. Int. Symp. Power Electron. Elect. Drives
Autom. Motion, Jun. 2012, pp. 978–982.

[13] P. Vytelingum, S. Ramchurn, T. Voice, A. Rogers, and N. Jennings,
“Agent-based modeling of smart-grid market operations,” in Proc. IEEE
Power Energy Soc. Gen. Meeting, San Diego, CA, USA, Jul. 2011, pp. 1–8.

[14] O. Asad, M. Erol-Kantarci, and H. T. Mouftah, “A survey of sensor web
services for the smart grid,” J. Sensor Actuator Netw., vol. 2, no. 1, pp. 98–
108, 2013.

[15] S. Misra, P. V. Krishna, V. Saritha, and M. S. Obaidat, “Learning automata
as a utility for power management in smart grids,” IEEE Commun. Mag.,
vol. 51, no. 1, pp. 98–104, Jan. 2013.

[16] S. Misra, A. Mondal, S. Banik, M. Khatua, S. Bera, and M. S.
Obaidat, “Residential energy management in smart grid: A Markov deci-
sion process-based approach,” in Proc. IEEE Internet Things, Aug. 2013,
pp. 1152–1157.

[17] S. M. Amin and B. F. Wollenberg, “Toward a smart grid: Power delivery
for the 21st century,” IEEE Power Energy Mag., vol. 3, no. 5, pp. 34–41,
Sep. 2005.

[18] H. T. Mouftah and M. Erol-Kantarci, “Wireless sensor networks for cost-
efficient residential energy management in the smart grid,” IEEE Trans.
Smart Grid, vol. 2, no. 2, pp. 314–325, Jun. 2011.

[19] H. T. Mouftah and M. Erol-Kantarci, “Using wireless sensor networks
for energy aware homes in smart grids,” in Proc. IEEE Symp. Comput.
Commun., 2010, pp. 456–458.

[20] T. Khalifa, A. Abdrabou, K. Naik, M. Alsabaan, A. Nayak, and N. Goel,
“Split- and aggregated-transmission control protocol (SA-TCP) for smart
power grid,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 381–391, Jan.
2014.

[21] P. Samadi, H. M. Rad, V. W. S. Wong, and R. Schober, “Real-time pricing
for demand response based on stochastic approximation,” IEEE Trans.
Smart Grid, vol. 5, no. 2, pp. 789–798, Mar. 2014.

[22] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid the new and improved
power grid: A survey,” IEEE Commun. Surveys Tuts., vol. 14, no. 4,
pp. 944–980, Dec. 2011.

[23] M. Erol-Kantarci and H. T. Mouftah, “TOU-aware energy management
and wireless sensor networks for reducing peak load in smart grids,” in
Proc. IEEE Veh. Technol. Conf. Fall, Sep. 2010, pp. 1–5.

[24] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems in
a distributed smart grid: Design and implementation,” in Proc. IEEE/PES
Power Syst. Conf. Expo., Mar. 2009, pp. 1–8.

[25] D. Li and S. K. Jayaweera, “Uncertainty modeling and prediction for
customer load demand in smart grid,” in Proc. IEEE Energytech, May
2013, pp. 1–6.

[26] A. Sinha, P. Malo, A. Frantsev, and K. Deb, “Finding optimal strategies in a
multi-period multi-leaderfollower stackelberg game using an evolutionary
algorithm,” Comput. Oper. Res., vol. 41, pp. 374–385, 2014.

[27] W. Tushar, W. Saad, H. V. Poor, and D. B. Smith, “Economics of electric
vehicle charging: A game theoretic approach,” IEEE Trans. Smart Grid,
vol. 3, no. 4, pp. 1767–1778, Sep. 2012.

[28] X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, “UDP: Usage-based dynamic
pricing with privacy preservation for smart grid,” IEEE Trans. Smart Grid,
vol. 4, no. 1, pp. 141–150, Mar. 2013.

[29] Y. Wang, S. Mao, and R. Nelms, “Online algorithm for optimal real-time
energy distribution in the smart grid,” IEEE Trans. Emerg. Topics Comput.,
vol. 1, no. 1, pp. 10–21, Jun. 2013.

[30] P. Samadi, A. Mohsenian-Rad, R. Schober, V. W. Wong, and J. Jatskevich,
“Optimal real-time pricing algorithm based on utility maximization for
smart grid,” in Proc. 1st IEEE Int. Conf. Smart Grid Commun., 2010,
pp. 415–420.

Author’s photographs and biographies not available at the time of publication.


