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Abstract—In this paper, we address the issue of rule duplication
during network updates in Software Defined Networking (SDN).
In SDN, network update involves the controller in sending
update packets to desired set of switches, where the update
rules are installed. To ensure update consistency, old flow-
rules are stored until the total update procedure is complete.
Higher consumption of TCAMs during update increases the
cost of network update and decreases the scalability of SDN.
In this work, we propose an approach for consistent update with
redundancy reduction, named CURE, that reduces TCAM usage
during update. CURE prioritizes switches according to their
usage pattern and schedules updates based on priority zones. The
proposed approach guarantees that highly loaded switches are
updated first. CURE also maintains packet-level consistency by
implementing a multilevel queueing approach. In this framework,
each switch in the current update region stores the incoming
packets in individual device queues until the switch completes
update. Therefore, after the initiation of an update, packets are
processed according to new rules only. The results of performance
evaluation depict that the average rule space utilization during
update using CURE is 29.954% less than using the two-phase
update proposed in the existing literature.

Index Terms—SDN, Network Update, OpenFlow, TCAM, Mul-
ticlass Classification, Queueing Theory.

I. INTRODUCTION

In traditional networks, each network device or switch
includes both a control plane and a data plane. The con-
trol plane determines the forwarding rules for the incoming
packets. The data plane stores the forwarding table, which
is a collection of the forwarding rules determined by the
control plane. Therefore, traditional networks are complex and
resistant to changes. Software Defined Networking (SDN) is a
new networking paradigm, which separates the control plane
from the data plane to offer network services dynamically
[1]. In SDN, a single controller or a cluster of controllers
[2] determines the forwarding rules and installs them in the
switches. The switches store the forwarding tables and forward
the incoming packets based on matched table entries.

Similar to traditional networks, updates in SDN occur
frequently. Major reasons for network update are — (1)
optimization of flow-table, (2) flow swapping after arrival of
new flow, (3) traffic monitoring, (4) maintaining state of shut-
down switches, (5) expiration of flow-rules due to timeouts,
and (6) switch or link failure [3]. Update in traditional network
involves changing the configuration of each switch separately
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[4]. On the other hand, SDN update is triggered by the
controller, which generates forwarding rules for new network
configuration and installs those rules to the required switches.
Additionally, the controller performs garbage collection by
deleting the old rules [5].

However, according to the state-of-the-art, OpenFlow [6]
switches have Ternary Content Addressable Memory (TCAM)
to store forwarding rules. TCAMs, which are high-speed mem-
ories, can match the rules in parallel in O(1) time. However,
TCAMs consume large amount of power [7] and occupy large
footprints [8]. These constraints restrict the storage capacity
of TCAMs [9]. Moreover, multiple TCAM entries can be
generated for a single forwarding rule [10]. Therefore, the
update of a single forwarding rule causes an update of a single
or multiple TCAM entries.

In this scenario, the maximum number of flow-rules stored
in a switch during update is required to be managed optimally
considering the restricted storage capacity of TCAMs. How-
ever, existing SDN update approaches store old rules along
with new rules until all switches are updated. Hence, for
the worst case scenario, 50% of the storage space needs to
be empty before starting the network update. Therefore, the
cost of storing redundant rules decreases the scalability of
the overall network. Furthermore, the number of large-scale
applications are increasing [11]. The continuous flow of high-
volume data generates high number of update entries for each
flow-table. Therefore, provisioning storage space for redundant
TCAM entries can be a bottleneck.

In this work, we propose a SDN update policy with-
out storing the redundant rules. Consequently, the maximum
number of flow-rules present in the network during update
is reduced. Updates in SDN switches are scheduled in an
optimized manner, so that the high priority switches are
updated first. We classify the switches based on the frequency
of matched rules. Packet-level consistency is also ensured by
employing a packet-queueing mechanism. In brief, the primary
contributions of our work are listed below.

• Initially, we design a priority-based algorithm for schedul-
ing updates to SDN switches.

• We propose a packet queueing mechanism for maintain-
ing the consistency of incoming packets during update.

• Further, we design a packet processing algorithm that
process the queued packets consistently.

• We compare our approach with two-phase update [12],
timed two-phase update [5], and buffered update [13] to
highlight the benefits of the proposed scheme.
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The remainder of this paper proceeds as follows. Section II
discusses the existing approaches for SDN update. In Section
III, we define the network model and describe CURE, the pro-
posed scheme, in detail. Section IV depicts the experimental
results and comparative studies with other existing approaches.
Finally, Section V concludes the work.

II. RELATED WORK

Existing literature in this field are categorized in four parts
including ordered, incremental, timed, and buffered updates.

In case of ordered update, the controller partitions the total
update procedure into multiple stages [14], [15], [16]. It waits
for the completion of each stage, prior to starting the next
stage. The last stage is garbage collection, where older rules
are deleted. Francois et al. [14] proposed an ordered update
scheme that ensures packet-level consistency by preventing
the formation of loops. However, this approach requires a
modification of network protocols as well as of the forwarding
devices. Bera et al. [15] proposed a prediction-based mobility-
aware update mechanism for Software-Defined IoT which
inserts new rule at the next access device (AD), and performs
garbage collection at the current AD. Clad et al. [16] generated
an optimized sequence for updating the weights of links. The
ordered update policy encounters service latency as each phase
is restricted by completion of previous phase.

In the incremental update approach, the network is updated
in multiple phases or rounds, where each round updates a
portion of flow-rules or a subset of switches. Reitblatt et al.
[12] proposed a two-phase update approach where the internal
and ingress switches are updated in phase 1 and phase 2,
respectively. Updated ingress switches attach new version tags
to the incoming packets. The incoming packets are processed
by either old or new rules (not both) based on the version
tag. Older rules are deleted after all packets with old version
tag are processed. This method increases the load on the
ingress switches, as they have to modify the incoming packets.
Moreover, memory overhead is incurred for storing old rules.
In another work, Canini et al. [17] discussed an incremental
update approach, which is similar to database transactions,
where either all switches are updated or none are. Therefore,
the ordered and incremental update approaches require extra
flow-table space for accommodating duplicate rules. Moreover,
the controller is involved until all switches complete update.

To reduce this overhead, Mizrahi et al. [5] proposed an
extension of OpenFlow protocol by scheduling the update
phases at particular time instants for both ordered and incre-
mental updates. This approach preserves packet-level consis-
tency by avoiding conflicts in updates. This technique reduces
the duration required to store older rules in SDN switches.
However, synchronizing updates to all the switches encounters
computational complexity and depends on the characteristics
of particular forwarding devices.

Buffered update approach [13] identifies the incoming pack-
ets, whose routes are going to be affected by the upcoming
update, and redirects the packets to the controller by installing
an intermediate ruleset to all switches. These packets are
buffered in the control plane until the switches are updated.

After the completion of update, the packets are processed
according to the new rules. The major limitation of this
approach is that it overloads the controller and increases the
service latency. Further, additional overhead is incurred due to
the installation of the intermediate ruleset.

In this paper, we propose an update procedure where
switches are updated according to their workload. In addition,
we process packets consistently by maintaining a multilevel
queueing approach. The proposed scheme is different from
the existing ordered and incremental approaches, as we do not
store old rules, once the new rules are installed. Our approach
is also different from the buffered update approach, where the
entire network is updated at a time and all the affected packets
are buffered at the controller until the update completes. In
CURE, switches are updated incrementally based on their
usage pattern. Additionally, switch buffers are prioritized over
the controller buffer to reduce the response time and controller
load.

III. CURE: THE PROPOSED SCHEME

In this section, we describe the network model considered
for our proposed scheme, CURE. We also discuss the approach
for implementing a redundancy-free consistent update of SDN.

A. Network Model

Fig. 1: SDN architecture

We model the network as a graph G = (N ,L), where N is
the set of nodes, and L is the set of links between the nodes.
The set N is expressed mathematically as:

N = C ∪ S, (1)

where C is the set of controllers, and S is the set of
OpenFlow switches. Figure 1 shows the proposed network
model. The upper bound of the number of flow-rules which
can be stored in an OpenFlow switch Si is denoted as Ui .
Each switch Sj has an associated device queue denoted as
Q j . The set of links L is defined as:

L = Lcc ∪ Lcs ∪ Lss, (2)

where Lcc is the set of links between the controllers, Lcs

is the set of control links between the controllers and the
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OpenFlow switches, and Lss is the set of data links between
the OpenFlow switches for packet forwarding.

For simplicity, we assume a centralized control plane con-
taining a single controller C. Hence, S = {S1,S2, ...,S |N |−1},
Lcc = φ and the number of links in Lcs is |S| = |N | − 1.
Each link Li has an associate link capacity ci .

Each switch stores the flow-rules in one or multiple flow-
tables [6]. A flow-rule R j

i in Sj is a ternary string denoted
by a tuple < Pr j

i , M j
i , Aj

i >, where Pr j
i denotes rule priority,

M j
i denotes the set of match fields, and Aj

i denotes the set of
action values. Each flow-rule also contains a set of counters
for storing the rule statistics, timeout value, cookie, and flags
[6]. If an incoming packet matches with multiple rules, then
the rule with the highest priority value is selected and the
corresponding action is taken.

Definition 1 (State of a Switch). The state of Sj at time t is
defined by:

Λ j (t) = {R j (t),L j
cs (t),L j

ss (t), τ j (t)}, (3)

where R j (t) is the set of flow-rules of Sj at time t, L j
cs (t) ∈

Lcs is the set of control links involving Sj at time t, L j
ss (t) ∈

Lss is the set of data links involving Sj at time t, and τ j is
the last update time of Sj at time t.

Definition 2 (Network Configuration). Network configuration
at time t is defined by:

Γ(t) =
|S |⋃
j=1

Λ j (t) (4)

Definition 3 (Network Update). Network update in SDN
is migration from one network configuration Γ to another
configuration Γ

′

such that,

Γ(ti ) , Γ
′

(t j ), where ti , t j (5)

Major objective for this work is to minimize the maximum
TCAM usage during update without congesting the links and
to maintain packet-level consistency. For a network update
from Γ(ti ) to Γ

′

(t j ), the optimization problem is formulated
as follows:

min max
t j∑

t=ti

|S |∑
j=1

|R j (t) | (6)

Equation (6) minimizes the maximum number of rules in
the whole network, subject to the following constraints:

|R j (t) | 6 Uj,∀Sj ∈ S (7)

Equation (7) expresses the switch capacity constraint for
storing flow-rules.

M j
r = M j

s and Aj
r = Aj

s,∀Λ j (ti ) = {R j (ti ),L
j
cs (ti ),L

j
ss (ti ),

τ j (ti )},∀Λ j (tk ) = {R j (tk ),L j
cs (tk ),L j

ss (tk ), τ j (tk )}, ti < tk,
R j
r ∈ R j (ti ), R j

s ∈ R j (tk ),Duration(R j
r ) < Duration(R j

s ),
(8)

where Duration(R j
i ) is a counter [6], which denotes the

elapsed time after installation of the flow-rule R j
i . Equation

(8) prohibits the storage of older and newer versions of a rule
in a switch simultaneously.

B. Redundancy-free Consistent Update

In this section, we describe the proposed scheme, CURE,
for SDN update. Based on workload, we first classify the to-
be-updated switches into three priority regions, namely high,
medium, and low. Thereafter, we design an algorithm for
scheduling updates among the switches of different priority
regions. Next, we propose a packet queueing mechanism to
maintain packet-level consistency during update. Finally, we
propose an algorithm for processing the queued packets.

1) Switch Classification: Each OpenFlow switch flow-table
maintains a counter field, which records the details of the
matching packets. Based on the counter value, we build a
training data set. Therefore, we employ the existing One-Vs-
All (OvA) multiclass classification algorithm [18] to classify
the to-be-updated switches into three priority zones — low,
medium, and high. This classification depends on the network
topology, packet arrival rate, and existing flows in the network.
If the traffic load in all the switches are approximately equal,
CURE uses the number of active entries in each flow-table as
a metric for the classification. The number of active entries in
each flow-table is also stored as a counter field [6].

2) Rule Update: Algorithm 1 schedules the update based
on the priority zones. Before starting the update, C sends
UPDATE signal at time T0 to mark the set of switches which
are to be updated. Therefore, the network configuration before
update is Γ(T0). C waits for δ time interval before sending
the first update packet. Heavily loaded switches are updated
first at time Thigh > T0. Next, medium priority switches
are updated at time Tmedium > Thigh . Finally, low priority
switches are updated at time Tlow > Tmedium . During the
update procedure at a switch, the set of new rules is installed
first and the older rules are deleted thereafter. In other words,
garbage collection at each switch is performed right after the
completion of update at the switch. Therefore, this algorithm
complies with the constraints stated in Equations (7) and
(8). When every switch is updated, the network reaches a
configuration Γ(Tcomplete ) at time Tcomplete > Tlow .

Definition 4 (Old Packet). After T0, a packet is marked old,
if it is processed by a switch, which is yet to be updated.

Definition 5 (New Packet). After T0, a packet is marked new,
if it is processed by a updated switch.

Let Pold and Pnew denote the sets of old and new packets,
respectively. When C selects a priority region for update, all
p ∈ Pold in that region are processed before starting the
installation of new rules. This ensures that a packet, which
is already processed by an old rule, is processed by old rules
only. If an old packet reaches an updated switch, the packet
is sent to C for further decision. Similarly, if a new packet
reaches a to-be-updated switch, which is not in the current
update region, the packet is sent to C for further decision.
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Definition 6 (Update Duration). Update duration is the time
interval between the dispatch of the first update message by C,
and update completion of the last switch, including garbage
collection.

Definition 7 (Inconsistent Packet). A packet p ∈ Pold is
termed inconsistent, if it reaches an updated switch. A packet
p ∈ Pnew is termed inconsistent if it reaches a switch, which
is not updated and is not in the current update region.

3) Packet Queueing: Algorithm 2 depicts a queueing mech-
anism for the consistent processing of incoming packets during
an ongoing update procedure. The packet queueing algorithm
(PQA) is triggered for each to-be-updated switch Sj ∈ S in
the present update region after C starts update in that region.
If Sj has received an UPDATE signal recently, PQA checks
statistics at C to verify whether the switch is already updated.
PQA stores the packet if the update process is incomplete in
the corresponding switch.

Packets are stored in Q j until it is full. Thereafter, the
packets are redirected to the least priority switch Sneighbor
which belongs to a lower priority region and has free buffer

space within one-hop neighbors of Sj . In this scenario, a
switch-identifier flag is added to the packet header specifying
the switch id where the packet arrived initially. The packets
are buffered at C when no such neighbor exists. For each
switch, we maintain a counter Pcount that counts the number
of packets stored outside of the switch’s own buffer.

4) Packet Processing: After the completion of update,
each switch Su triggers C by informing that it is ready for
processing packets. Algorithm 3 describes the procedure of
processing the waiting-packets. If Qu is full and the buffer
size is K , the packet processing algorithm processes the first
K packets waiting at Qu . Then a portion of Qu is reserved
for storing the waiting packets with matching switch-identifier
flag in the one-hop neighbor. We name this buffer space as
secondary buffer. The size of secondary buffer is determined
from the available counter value. Packets waiting in Qneighbor

and/or C are shifted to the secondary buffer. After processing
these packets, the secondary buffer space is merged with the
switch’s original buffer before processing the new ones.

C. Queueing Model

Assuming a Markovian server per switch, the queue of each
switch Sj is modeled as a M/M/1/K/α queueing system [19],
[20] where the incoming packets follow Poisson’s distribution
and those packets are processed by Sj with an exponentially
distributed service time. Let, 1

µ j
and 1

λ j
denote the mean

service time and mean inter-arrival time at Sj , respectively.
We also consider that each switch has a finite queue length
K . Figure 2 depicts the queueing model for SDN.

Figure 3 shows the state-transition-rate diagram of our
proposed queueing model for a single switch. The average
packet arrival rate and average service rate for the switch be
λ and µ, respectively. Therefore, the traffic intensity is ρ = λ

µ .
The switch is in region r ∈ {high ∪ medium ∪ low}. Initially,
C sends update signal to the switch. As depicted in Figure 3,
we consider that the update procedure of an OpenFlow switch
consists of three stages. In the first stage, the switch receives
update signal and region r has not started update. The second
stage begins when r starts update. The final stage begins when
the switch completes update. The switch continues processing
until the second stage begins. During the second stage, the
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Fig. 2: SDN Queueing Model

switch queues the received packets, unless it completes an
update. Therefore, the service rate for this stage is µ = 0. If the
switch queue is full, the packets are buffered at the neighbor
queue or at the controller buffer according to Algorithm 2.
Hence, the increased traffic intensity of a neighbor switch Sa
for buffering packets of the current switch is given by:

ρovera =

(
λ + λa
µa

)
(9)

Fig. 3: State-Transition-Rate Diagram of CURE for a Switch

During the final stage, the switch processes the packets from
the neighbor buffer as well as its own buffer, as mentioned in
Algorithm 3. Therefore, the new packet arrival rate is λnew =
λ+λneighbor , where λneighbor is the rate at which the packets
arrive at the current switch from the buffer of the neighbor
switch. The traffic intensity in this scenario is ρnew = λnew

µ .
After the switch processes all the packets stored in neighbor
queue, λneighbor = 0 and λnew = λ.

The probabilities that the switch has a packets in the three
stages are denoted by P1

a , P2
a , and P3

a , respectively. However,
as per our assumption, the processing of packets at a switch
is a Poisson process. Therefore, according to queueing theory,
the steady state probability that the switch has i packets in the
first stage is given by:

P1
i = ρ

iP1
0 (10)

We consider the scenario that region r starts update when
the switch has i packets queued and completes update when it
has j packets queued. We know, P2

i = P1
i . During the second

stage, packets are added to the queue at the rate of λ and no
processing is performed. Hence, we get:

P2
i = P2

i+1 = . . . = P2
K = P1

i (11)

Similarly, from Equation (11), we get:

P3
j = P2

j = P1
i (12)

The probability P3
j is also expressed as:

P3
j = (ρnew ) jP3

0 (13)

From Equations (10), (12), and (13) we have:

P3
0 =

ρi

(ρnew ) j
P1

0 (14)

According to queueing theory for finite queue length, at
steady state:

P1
0 =

1 − ρ
1 − ρK+1 , P3

0 =
1 − ρnew

1 − (ρnew )K+1 (15)

Hence, from Equations (14) and (15), the probability P1
0 is

defined as:

P1
0 =

(ρnew ) j (1 − ρnew )
ρi (1 − (ρnew )K+1)

(16)

Let L and Lnew be the expected number of packets in
the switch before starting update and after the completion of
update, respectively. Mathematically,

L =
ρ(1 + K ρK+1 − (K + 1)ρK )

(1 − ρ)(1 − ρK+1)
(17)

Lnew =
ρnew (1 + K (ρnew )K+1 − (K + 1)(ρnew )K )

(1 − ρnew )(1 − (ρnew )K+1)
(18)

Let W and W new be the mean waiting time at the switch
before starting update and after the completion of update,
respectively. Therefore, the increase in mean waiting time at
the OpenFlow switch due to update is given by:

W new −W =
(
Lnew

λnew −
L
λ

)
= 1

µ

(
−

1+K ρK+1−(K+1)ρK

(1−ρ)(1−ρK+1)

+
1+K (ρnew )K+1−(K+1)(ρnew )K

(1−ρnew )(1−(ρnew )K+1)

) (19)

The value W new − W provides an estimate of the latency
incurred due to rule update. After the switch completes pro-
cessing the packets stored in the neighbor queue, W new −W
becomes zero, eventually.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CURE in
terms of the following metrics: (a) update duration, (b) average
rule space utilization, (c) average packet waiting time, and (d)
inconsistent packet count. To evaluate the performance, we
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Fig. 4: Test Flows in Sprint, NetRail, and Compuserve Topology
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Fig. 5: Update Duration
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Fig. 6: Average Rule Space Utilization
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Fig. 7: Update Duration and Average
Rule Space Utilization

implemented a discrete event simulator in MATLAB and per-
formed two experiments. In the first experiment, we measured
the update duration and the average rule space utilization,
while varying the number of switches in a leaf-spine topology
with 2N

3 leaf (ingress) switches and N
3 spine switches (e.g.,

[5]). In the second experiment, we simulated three network
topologies available in the Internet Topology Zoo [21], namely
Sprint, NetRail, and Compuserve. We run five test flows in
each of these topologies to compute the performance with
respect to the average packet waiting time and inconsistent
packet count.

A. Simulation Parameters

Table I depicts the simulation parameters. We implement the
leaf-spine topology by varying the total number of switches
from 6 to 48. The maximum number of flow entries in a switch
is fixed to 8000 [22]. We consider that the upper bounds on
controller-to-switch delay, end-to-end network delay, and the
time interval between generation of two consecutive update
messages are 4.865 ms, 0.262 ms, and 5.240 ms, respectively
[5]. The average packet arrival rate, average packet service
rate, and average queue size per switch are 0.005 − 0.025
million packets per second (mpps), 0.030 mpps [23], and 0.073
million packets, respectively. We consider that the flow-table
lookup time for each packet is 33.333 µsec [23].

B. Result and Discussion

1) Update Duration: The update duration is the time in-
terval between the dispatch of the first update message by
the controller, and the update completion of the last switch.
Garbage collection, i.e., the removal of old rules is included
in the update duration, as defined in Definition 6.

Figure 5 depicts the update duration for two-phase update
[12], timed two-phase update [5], Buffered Update [13],
and CURE in a leaf-spine topology. The two-phase update
approach (both untimed and timed) updates the spine switches
in phase 1, the leaf switches in phase 2 and performs garbage
collection after completion of phase 2. From Figure 5, we
can see that the update duration for timed two-phase update
is 27.919% less than that of two-phase update. The update
duration for CURE is 37.563% less than that of two-phase
update. The update duration is almost similar for timed two-
phase update and CURE. Duration for buffered update is high
due to the overhead for the installation of intermediate rules.
From Figure 5, we yield that the update duration for CURE is
short as it does not have a separate garbage collection phase.

2) Average Rule Space Utilization: We calculate the av-
erage rule space utilization as the percentage of rule space
used during different stages of update by N switches in the
leaf-spine topology.

Figure 6 shows the rule space utilization percentage for
two-phase update [12], timed two-phase update [5], Buffered
Update [13], and CURE. CURE and buffered update utilize
similar amount of rule space, as they both do not store
redundant rules. Whereas, rule space utilization is almost
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Fig. 8: Average Packet Waiting Time

Fig. 9: Average Packet Inconsistency

similar for the two-phase update and the timed two-phase
update, as they both require to store both old and new rules
until the start of the garbage collection phase. Average rule
space requirement for CURE is 29.954% and 30.348% less
than that of the two-phase update and timed two-phase update,
respectively. As shown in Figure 6, we synthesize that the
average rule space utilization is short in CURE, as storage of
both versions of rules, simultaneously, is not required.

Figure 7 portrays the relation between the number of
switches, average rule space utilization, and update duration
for two-phase update, buffered update, and CURE. We see that
CURE outperforms the others, considering both performance
metrics — average rule space utilization and update duration.

3) Average Packet Waiting Time: For each of the three
topologies — Sprint, NetRail, and Compuserve, we simulate
five test flows, and calculate the average waiting time for the
incoming packets that are either waiting in the switch queues
or are in process. Figure 4 depicts the topologies and the
test flows. We estimate the delay of each link based on the
distance between the corresponding nodes. Similar to Ref. [5],
we assume 5 microsecond delay per kilometer.

Figure 8 depicts the average packet waiting time for dif-
ferent packet arrival rate for each of the test flows in each of
the topologies. The average packet queue size is 0.073 million
packets. Average packet waiting time increases with increasing
packet arrival rate.

4) Inconsistent Packet Count: We measure inconsistency as
a percentage of inconsistent packets in the system. Inconsistent
packets are identified based on Definition 7.

Figure 9 compares inconsistency count in CURE with two-
phase update and timed two-phase update [5] for different av-
erage packet arrival rates. We simulate test flows s1, n1, and c1
in topologies Sprint, NetRail, and Compuserve, respectively.
Average queue size per switch is 0.073 million packets. In

Fig. 10: Controller Overhead in Sprint Topology

the two-phase update approaches (both untimed and timed),
inconsistency count decreases with increasing packet arrival
rate. In two-phase update, the average inconsistency counts
for Sprint, NetRail, and Compuserve are 2.976%, 1.118%, and
1.327%, respectively. In timed two-phase update, the average
inconsistency counts for Sprint, NetRail, and Compuserve are
2.629%, 1.237%, and 1.389%, respectively. However, average
inconsistency count for CURE is similar for different packet
arrival rates. The average inconsistency count for Sprint,
NetRail, and Compuserve is 0.322%, 0.205%, and 0.240%,
respectively. Therefore, we yield that in CURE an initial
percentage of incoming packets become inconsistent due to
the ongoing network update and inconsistency count reduces
as time elapses after completion of the update.

5) Controller Overhead: Controller overhead is calculated
as the percentage of packets sent to controller during an
ongoing update. In Sprint topology, CURE incurs 0.31%
controller overhead for packet arrival rate 0.005 mpps. Figure
10 depicts that the controller overhead in buffered update is
82.209% higher than that in CURE. This is because CURE
redirects packets to the controller only in the absence of a
neighbor switch having lower priority and free buffer space.
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Whereas, buffered update keeps redirecting all the affected
packets to the controller until the update completes.

V. CONCLUSION

This work emphasizes reduction of TCAM usage during
SDN update with an aim to increase scalability required
for handling large-scale data. This work modifies the update
scheme of OpenFlow-enabled SDN and proposes a multilevel
queue-based policy for ensuring packet-level consistency. We
compared our scheme with the other approaches of SDN
update to evaluate its performance. Results clearly depict
that CURE significantly reduces the update duration and the
average rule space requirement during update approximately
by 38% and 30%, respectively.

The future work will include extension of the proposed
scheme in distributed SDN control plane, where multiple con-
trollers perform network update concurrently. We will consider
flow-level consistency along with packet-level consistency.
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