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Q1. [ Planning using Dynamic Programming ] 16 marks

Consider an MDP, M = 〈S,A,P,R,γ〉 with n states, that is, S = {s1,s2, . . . ,sn}, and 2 actions, that is,
A = {left,right}. Assume the discount factor as, γ = 0.5. The transition probabilities are given as,

P
[
St+1 = s1 | St = s1,At = left

]
= 1 and P

[
St+1 = sk−1 | St = sk,At = left

]
= 1

(
2≤ k ≤ n

)
P
[
St+1 = sn | St = sn,At = right

]
= 1 and P

[
St+1 = sk+1 | St = sk,At = right

]
= 1

(
1≤ k ≤ n−1

)
.
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The rewards are distributed as, R(sk,left) = 0
(
1≤ k≤ n

)
, R(sk,right) = +1

(
1≤ k≤ n−1

)
, and

R(sn,right) = +10. Answer the following questions.

(a) Figure out the optimal policy, that is, π∗(sk), for every k (1≤ k ≤ n) for the MDP M. (1)
Solution:

π
∗(sk) = right, for every k (1≤ k ≤ n).
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(b) Compute the optimal value of state, sn, that is, V∗(sn). Show your calculations. (2)
Solution:
Since π∗(sn) = right, that is, P

[
At = right | St = sn

]
= 1, we have

V∗(sn) = Eπ∗
[
R(St ,right)+ γVπ∗(St+1) | St = sn

]
= R(Sn,right)+ γ ·R(Sn,right)+ γ

2 ·R(Sn,right)+ · · ·

= 10+0.5 ·10+0.52 ·10+ · · · = 10× 1
1−0.5

= 20.

(c) Compute the optimal value function, V∗(sk) as a function of n and k, for all k (1 ≤ k ≤ n− 1).
Show your calculations. (3)
Solution:
Since π∗(sk) = right, that is, P

[
At = right | St = sk

]
= 1 for every k (1≤ k ≤ n), we have

V∗(sn−1) = R(sn−1,right)+ γ ·V∗(sn) = 1+0.5 ·V∗(sn)

V∗(sn−2) = R(sn−2,right)+ γ ·V∗(sn−1) = 1+0.5+0.52 ·V∗(sn)

V∗(sn−3) = R(sn−3,right)+ γ ·V∗(sn−2) = 1+0.5+0.52 +0.53 ·V∗(sn)

· · · · · · · · ·
V∗(sn−k) = R(sn−k,right)+ γ ·V∗(sn−k+1), for every k (1≤ k ≤ n−1)

= 1+0.5+0.52 + · · ·+0.5k−1 +0.5k ·V∗(sn)

=
1−0.5k

1−0.5
+0.5k ·20 = 2+0.5k ·18

∴ V∗(sk) = 2+0.5(n−k) ·18, for all k (1≤ k ≤ n−1)
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(d) Suppose you wish to perform value iteration over the MDP M to figure out the value estimates
of each state. You plan to start with a value estimate equal to 0 for every state. Calculate the
value estimates of all states after the first and second iterations, respectively; that is, determine
V 1(sk) and V 2(sk), for all k (1≤ k ≤ n). (2 + 3)
Solution:
For ( j+1)-th iteration, the update made (as per Bellman Optimality Equations) will be:

V j+1(sn) = max
[(

R(sn,left)+ γ ·V j(sn−1)
)
,
(

R(sn,right)+ γ ·V j(sn)
)]

= max
[(

0+0.5 ·V j(sn−1)
)
,
(

10+0.5 ·V j(sn)
)]

V j+1(s1) = max
[(

R(s1,left)+ γ ·V j(s1)
)
,
(

R(s1,right)+ γ ·V j(s2)
)]

= max
[(

0+0.5 ·V j(s1)
)
,
(

1+0.5 ·V j(s2)
)]

V j+1(sn−k) = max
[(

R(sn−k,left)+ γ ·V j(sn−k−1)
)
,
(

R(sn−k,right)+ γ ·V j(sn−k+1)
)]

= max
[(

0+0.5 ·V j(sn−k−1)
)
,
(

1+0.5 ·V j(sn−k+1)
)]

, for all k (1≤ k ≤ n−2)

Given that, V 0(sk) = 0, for all k (1≤ k ≤ n).

So, iteration-wise we get,

After First Iteration:
V 1(sn) = max

[
0,10

]
= 10,

V 1(sn−k) = max
[
0,1
]

= 1, for all k (1≤ k ≤ n−1)

After Second Iteration:
V 2(sn) = max

[
(0+0.5 ·1),(10+0.5 ·10)

]
= 15,

V 2(sn−1) = max
[
(0+0.5 ·1),(1+0.5 ·10)

]
= 6,

V 2(sn−k) = max
[
(0+0.5 ·1),(1+0.5 ·1)

]
= 1.5, for all k (2≤ k ≤ n−1)
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(e) Suppose you wish to perform policy evaluation over the MDP M to figure out the value estimates
of each state for a given policy π , where π(sk,left) =

1
4 and π(sk,right) =

3
4 for every state

sk (1 ≤ k ≤ n). You plan to start with a value estimate equal to 0 for every state. Calculate the
value estimates of all states after the first and second iterations, respectively; that is, determine
V 1

π (sk) and V 2
π (sk), for all k (1≤ k ≤ n). (2 + 3)

Solution:
For ( j+1)-th iteration, the update made (as per Bellman Expectation Equations) will be:

V j+1
π (sn) =

[
π(sn,left) ·

(
R(sn,left)+ γ ·V j

π (sn−1)
)
+π(sn,right) ·

(
R(sn,right)+ γ ·V j

π (sn)
)]

=
[1

4
·
(

0+0.5 ·V j
π (sn−1)

)
+

3
4
·
(

10+0.5 ·V j
π (sn)

)]
V j+1

π (s1) =
[
π(s1,left) ·

(
R(s1,left)+ γ ·V j

π (s1)
)
+π(s1,right) ·

(
R(s1,right)+ γ ·V j

π (s2)
)]

=
[1

4
·
(

0+0.5 ·V j
π (s1)

)
+

3
4
·
(

1+0.5 ·V j
π (s2)

)]
V j+1

π (sn−k) =
[
π(sn−k,left) ·

(
R(sn−k,left)+ γ ·V j

π (sn−k−1)
)

+π(sn−k,right) ·
(

R(sn−k,right)+ γ ·V j
π (sn−k+1)

)]
=

[1
4
·
(

0+0.5 ·V j
π (sn−k−1)

)
+

3
4
·
(

1+0.5 ·V j
π (sn−k+1)

)]
, for all k (1≤ k ≤ n−2)

Given that, V 0
π (sk) = 0, for all k (1≤ k ≤ n).

So, iteration-wise we get,

After First Iteration:

V 1(sn) =

[
1
4
·0+ 3

4
·10
]

= 7.5,

V 1(sn−k) =

[
1
4
·0+ 3

4
·1
]

= 0.75, for all k (1≤ k ≤ n−1)

After Second Iteration:

V 2(sn) =

[
1
4
·
(

0+0.5 ·0.75
)
+

3
4
·
(

10+0.5 ·7.5
)]

= 10.40625,

V 2(sn−1) =

[
1
4
·
(

0+0.5 ·0.75
)
+

3
4
·
(

1+0.5 ·7.5
)]

= 3.65625,

V 2(sn−k) =

[
1
4
·
(

0+0.5 ·0.75
)
+

3
4
·
(

1+0.5 ·0.75
)]

= 1.125, for all k (2≤ k ≤ n−1)
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Q2. [ Model-Free Prediction and Control ] 20 marks

Suppose that, instead of knowing the model of the MDP M as explicitly presented in the question Q1,
you only know the states, S = {s1,s2, . . . ,sn}, and the actions, A = {left,right} (both actions are
applicable from all states). You have also observed the following trajectory of just one episode:

s1
left−−−−→

0
s1

right−−−−−→
+1

s2
left−−−−→

0
s1

right−−−−−→
+1

s2
right−−−−−→

+1
s3

left−−−−→
0

s2
right−−−−−→

+1
s3

right−−−−−→
+1

s4 · · ·

...
...

...
...

· · · sk+1
left−−−−→

0
sk

right−−−−−→
+1

sk+1
right−−−−−→

+1
sk+2

left−−−−→
0

sk+1
right−−−−−→

+1
sk+2

right−−−−−→
+1

sk+3 · · ·

...
...

...
...

· · · sn−1
left−−−−→

0
sn−2

right−−−−−→
+1

sn−1
right−−−−−→

+1
sn

left−−−−→
0

sn−1
right−−−−−→

+1
sn

right−−−−−−→
+10

sn

As shown above, the episode starts from state s1 with a left action fetching a reward of 0 and staying
in state s1, followed by a right action fetching a reward of +1 and moving to state s2 from s1. Then,
it continues with a repeated sequence of three actions, left, right, right, one after another for the
next (n−1) times, and finally terminates the episode at state sn. Answer the following questions.

(a) Given this only episode, calculate the value function estimates, V (sk), as a function of n and k
for every state sk ∈ S (1≤ k≤ n) obtained using: (i) Every-Visit Monte Carlo and (ii) First-Visit
Monte Carlo methods. (4 + 3)
Solution: (taking γ = 1, however γ may be taken as any value or simply be kept symbolically)

(i) Every-Visit Monte-Carlo:
Every-Visit Monte Carlo averages the returns starting from each occurrence of each of
the states across the episode. Therefore, Every-Visit Monte Carlo value function estimate
would converge to:

V (s1) =

[(
(0+1)+(0+1+1) · (n−2)+(0+1+10)

)
+
(
(1)+(0+1+1) · (n−2)+(0+1+10)

)
+
(
(1+1)+(0+1+1) · (n−3)+(0+1+10)

)]
/3 =

6n+23
3

V (sk) =

[(
(0+1+1) · (n− k)+(0+1+10)

)
+
(
(1)+(0+1+1) · (n− k−1)+(0+1+10)

)
+
(
(1+1)+(0+1+1) · (n− k−2)+(0+1+10)

)]
/3

=
6n−6k+30

3
= 2n−2k+10, for all k (2≤ k ≤ n−1)

V (sn) =

[(
0+1+10

)
+
(

10
)]

/2 = 10.5
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(ii) First-Visit Monte Carlo:
First-Visit Monte Carlo averages the returns starting from the first occurrence of each of the
states across the episode. Therefore, First-Visit Monte Carlo value function estimate would
converge to:

V (s1) =
(0+1)+(0+1+1) · (n−2)+(0+1+10)

1
= 2n+8

V (sk) =
(0+1+1) · (n− k)+(0+1+10)

1
= 2n−2k+11, for all k (2≤ k ≤ n)

(b) From the one-step state transitions and sample rewards seen in the given episodic data, con-
struct an MRP (ignoring the actions mentioned during state transitions) that TD(0) (that is, one-
step temporal difference learning) essentially builds with the estimated transition probabilities,
P
[
St+1 = s j | St = si

]
, and the reward function, R(sk), for all i, j,k (1≤ i, j,k ≤ n). (3 + 2)

Solution:
TD(0) essentially constructs an MRP, M′ = 〈S,P,R,γ〉, with the transition probabilities, P : S×
S→ R[0,1], and the reward function, R : S→ R, following certainty equivalence estimate from
the one-step transitions and sample rewards seen in the data.
The transition probabilities (P) would be estimated as:

P
[
St+1 = s1 | St = s1

]
=

1
3
, P

[
St+1 = s2 | St = s1

]
= 2

3 , P
[
St+1 = s j | St = s1

]
= 0,

(
2≤ j ≤ n

)
P
[
St+1 = sk−1 | St = sk

]
=

1
3
, P

[
St+1 = sk+1 | St = sk

]
= 2

3 , P
[
St+1 = s j | St = sk

]
= 0,

(
2≤ k ≤ n−1,

1≤ j ≤ n, j 6= k±1

)
P
[
St+1 = sn−1 | St = sn

]
=

1
2
, P

[
St+1 = sn | St = sn

]
= 1

2 , P
[
St+1 = s j | St = sn

]
= 0,

(
1≤ j ≤ n−2

)
The reward function (R) would be estimated as:

R(sk) =
(0+1+1)

3
=

2
3
, for all k (1≤ k ≤ n−1) and R(sn) =

(0+10)
2

= 5
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(c) From the given episodic data spanning across multiple timesteps, calculate the estimated update
values after first four timesteps, that is, determine Q1(s1,left), Q2(s1,right), Q3(s2,left)
and Q4(s1,right), using one-step SARSA approach. Assume all the initial Q-value estimates of
the states (prior to any update) as 1; the discount factor as γ = 0.5; and the step size as α = 0.1.
Here, Qt(sk, ·) denotes the estimated Q-value of state sk ∈ S after t-th timestep. (2 × 4)
Solution:
Given transitions of the form, si

ai−−→
ri

s j
a j−−−→

r j
sk, the SARSA update equation is:

Q(si,ai)← Q(si,ai)+α

[
ri + γ ·Q(s j,a j)−Q(si,ai)

]

The updated Q-values following SARSA approach will be:

Update after First Timestep:

Q1(s1,left) = Q0(s1,left)+α ·
[
R(s1,left)+ γ ·Q0(s1,right)−Q0(s1,left)

]
= 1+0.1 ·

[
0+0.5 ·1−1

]
= 0.95

Update after Second Timestep:

Q2(s1,right) = Q1(s1,right)+α ·
[
R(s1,right)+ γ ·Q1(s2,left)−Q1(s1,right)

]
= 1+0.1 ·

[
1+0.5 ·1−1

]
= 1.05

Update after Third Timestep:

Q3(s2,left) = Q2(s2,left)+α ·
[
R(s2,left)+ γ ·Q2(s1,right)−Q2(s2,left)

]
= 1+0.1 ·

[
0+0.5 ·1.05−1

]
= 0.9525

Update after Fourth Timestep:

Q4(s1,right) = Q3(s1,right)+α ·
[
R(s1,right)+ γ ·Q3(s2,right)−Q3(s1,right)

]
= 1.05+0.1 ·

[
1+0.5 ·1−1.05

]
= 1.095
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Q3. [ Q-Learning and Value Function Approximation ] 14 marks

Again consider that, instead of knowing the model of the MDP M as explicitly presented in the ques-
tion Q1, you only know the states, S = {s1,s2, . . . ,sn}, and the actions, A = {left,right} (both are
applicable from all states). You have also observed the same trajectory of just one episode presented
in the question Q2. Assume all the initial Q-value estimates of the states (prior to any update) as 1; the
discount factor as γ = 0.5; and the step size as α = 0.1. Here, Q(sk, ·) denotes the estimated Q-value
of state sk ∈ S.

(a) From the given episodic data spanning across multiple timesteps, calculate the estimated update
values after first four timesteps, that is, determine Q(s1,left), Q(s1,right), Q(s2,left) and
Q(s1,right), using tabular Q-learning approach. (2 × 4)
Solution:
Given transitions of the form, si

ai−−→
ri

s j
a j−−−→

r j
sk, the Q-learning update equation is:

Q(si,ai)← Q(si,ai)+α

[
ri + γ · max

a j∈{left,right}
Q(s j,a j)−Q(si,ai)

]

The updated Q-values following Q-learning approach will be:

Update after First Timestep:

Q(s1,left) ← Q(s1,left)+α ·
[
R(s1,left)+ γ ·max

{
Q(s1,left),Q(s1,right)

}
−Q(s1,left)

]
= 1+0.1 ·

[
0+0.5 ·max

{
1,1
}
−1
]

= 0.95

Update after Second Timestep:

Q(s1,right) ← Q(s1,right)+α ·
[
R(s1,right)+ γ ·max

{
Q(s2,left),Q(s2,right)

}
−Q(s1,right)

]
= 1+0.1 ·

[
1+0.5 ·max

{
1,1
}
−1
]

= 1.05

Update after Third Timestep:

Q(s2,left) ← Q(s2,left)+α ·
[
R(s2,left)+ γ ·max

{
Q(s1,left),Q(s1,right)

}
−Q(s2,left)

]
= 1+0.1 ·

[
0+0.5 ·max

{
0.95,1.05

}
−1
]

= 0.9525

Update after Fourth Timestep:

Q(s1,right) ← Q(s1,right)+α ·
[
R(s1,right)+ γ ·max

{
Q(s2,left),Q(s2,right)

}
−Q(s1,right)

]
= 1.05+0.1 ·

[
1+0.5 ·max

{
0.9525,1

}
−1.05

]
= 1.095
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(b) Now, we are interested in performing linear function approximation in conjunction with Q-

learning. In particular, we have a weight vector, w =

[
w0
w1
w2

]
∈ R3. Given some state sk ∈ S and

action ak ∈ {left,right}, the featurization of this state-action pair is given as, ϕ(sk,left) =[
1
k
−1

]
and ϕ(sk,right) =

[
1
k
1

]
, for all k (1 ≤ k ≤ n). Approximate Q-values are computed

as, Q̂(sk,left;w) = wᵀ ·ϕ = w0 +w1 · k−w2 and Q̂(sk,right;w) = wᵀ ·ϕ = w0 +w1 · k+w2.

Given the parameters w and sample transitions of the form, si
ai−−→

ri
s j

a j−−−→
r j

sk, the loss function

to be minimized here is, J(w) =
[
ri + γ · max

a j∈{left,right}
Q̂(s j,a j;w−)− Q̂(si,ai;w)

]2
, where Q̂(s j,a j;w−)

is a target network parametrized by fixed weights w− and 1≤ i, j ≤ n.

Suppose, you currently have weight vectors w =

[ −1
1
1

]
and w− =

[
1
0
−1

]
, and you observe a

sample transition, s1
right−−−−−→

+1
s2

left−−−−→
0

s1. Perform a single gradient update to the parameters

w given this sample. Assume the discount factor as γ = 0.5 and the step size as α = 0.1. Write
out the gradient ∇wJ(w) as well as the new parameters w′. Show all computations clearly. (6)
Solution:
The gradient of J(w) yields,

∇wJ(w) = (−2) ·
[
ri + γ · max

a j∈{left,right}
Q̂(s j,a j;w−)− Q̂(si,ai;w)

]
·∇wQ̂(si,ai;w)

= (−2) ·
[
ri + γ ·max

{
(1+w−1 · j−w−2 ),(1+w−1 · j+w−2 )

}
− (1+w1 · i±w2)

]
·

 1
i
±1


Using this, the parameter update with the sample transition, s1

right−−−−−→
+1

s2
left−−−−→

0
s1, is:

w′ ← w− 1
2

α∇wJ(w)

= w+0.1 ·
[
r1 +0.5 ·max

{
(w−0 +w−1 ·2−w−2 ),(w

−
0 +w−1 ·2+w−2 )

}
− (w0 +w1 ·1+w2)

]
·

 1
1
1


=

 −1
1
1

+0.1 ·
[
1+0.5 ·max

{
(1+0 ·2+1),(1+0 ·2−1)

}
− (−1+1 ·1+1)

]
·

 1
1
1


=

 −1
1
1

+0.1 ·1 ·

 1
1
1

 =

 −0.9
1.1
1.1


Note: Alternatively, the parameter update could also be written as: w′← w−α∇wJ(w).

This is also fine, and the subsequent answer obtained will be:

w′ ←

 −1
1
1

+0.1 ·2 ·1 ·

 1
1
1

 =

 −0.8
1.2
1.2


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Q4. [ Properties of MDP and Optimal Policy ] 10 marks

Suppose we have an infinite-horizon, discounted MDP, M = 〈S,A,P,R,γ〉, with a finite state-action
space, that is, |S×A| < ∞, and 0 ≤ γ < 1. In the questions that follow, let Q,Q′ : S×A→ R be any
two arbitrary action-value functions and consider any fixed state s∈ S. Without loss of generality, you
may assume that Q(s,a)≥ Q′(s,a), for all (s,a) ∈ S×A.

(a) Prove or disprove: |max
a∈A

Q(s,a)−max
a′∈A

Q′(s,a′)| ≤max
a∈A
|Q(s,a)−Q′(s,a)|. (3)

Solution:
This inequality is true.
We can start by simply ignoring the absolute value signs on the left-hand side.
Let a∗ = argmax

a∈A
Q(s,a). Then,

max
a∈A

Q(s,a)−max
a′∈A

Q′(s,a′) = Q(s,a∗)−max
a′∈A

Q′(s,a′)

≤ Q(s,a∗)−Q′(s,a∗)

≤ max
a∈A

(
Q(s,a)−Q′(s,a)

)
≤ max

a∈A
|Q(s,a)−Q′(s,a)|

Now, take absolute values on both sides of the inequality (the left-hand side is already non-
negative) to complete the proof.
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(c) Prove or disprove:
∣∣∣ 1
|A| ∑

a∈A
Q(s,a)− 1

|A| ∑
a′∈A

Q′(s,a′)
∣∣∣≤max

a∈A
|Q(s,a)−Q′(s,a)|. (4)

Solution:
This inequality is true.
We can start by simply ignoring the absolute value signs on the left-hand side.

1
|A| ∑a∈A

Q(s,a)− 1
|A| ∑

a′∈A
Q′(s,a′) =

1
|A| ∑a∈A

(
Q(s,a)−Q′(s,a)

)
≤ 1
|A| ∑a∈A

|Q(s,a)−Q′(s,a)|

≤ 1
|A| ∑a∈A

max
a′∈A
|Q(s,a′)−Q′(s,a′)|

≤ 1
|A|
· |A| ·max

a′∈A
|Q(s,a′)−Q′(s,a′)|

≤ max
a∈A
|Q(s,a)−Q′(s,a)|

Now, take absolute values on both sides of the inequality (the left-hand side is already non-
negative) to complete the proof.
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