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Q1. [ MDP and Optimality of Policy ] 18 marks

(a) Consider the continuing MDP shown to the right. The only decision
to be made is that in the top state (say, s0), where two actions are
available, left and right. The numbers show the rewards that are
received deterministically after each action. There are exactly two
deterministic policies, πleft and πright. Calculate and show which
policy will be the optimal:
(i) if γ = 0; (ii) if γ = 0.9; (iii) if γ = 0.5. (6)

Answer:
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(b) Consider an MDP with an infinite set of states S = {1,2,3, . . .}. The start state is s = 1. Each
state s ∈ S allows a continuous set of actions a ∈ [0,1]. The transition probabilities are given by:

P
[
s+1 | s,a

]
= a, P

[
s | s,a

]
= 1−a; ∀ s ∈ S, ∀ a ∈ [0,1]

For all states s ∈ S and actions a ∈ [0,1], transitioning from s to s+1 results in a reward of 1+a;
and transitioning from s to s results in a reward of 1−a. The discount factor γ = 0.5. Calculate
the optimal value function, V ∗(s), and the optimal deterministic policy, π∗(s), for all s ∈ S. (4)

Answer:

(c) State whether the following statement is True or False with a brief justification. (2)
For every finite MDP, M = ⟨S,A,R,γ⟩, with bounded rewards (R) and γ ∈ [0,1), for all
policies π , we have: max

a∈A
qπ(s,a)≥ vπ(s), ∀s ∈ S.

Answer:
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(d) State whether the following statement is True or False with proper justification. (3)
If the only difference between two MDPs is the value of the discount factor then they
must have the same optimal policy.

Answer:

(e) Consider an infinite-horizon, discounted MDP M = ⟨S,A,R,P,γ⟩. Define the maximal reward,
RMAX = max

(s,a)∈S×A
Ra

s and for any policy π : S → A, show that V π(s)≤ RMAX
1−γ

(∀s ∈ S). (3)

Answer:

— Page 3 of 10 —



Q2. [ Value Iteration ] 15 marks

Consider a simple MDP with 3 states s1, s2, s3 and 2 actions a1, a2. The transition probabilities and
expected rewards are given in the following table. Assume discount factor γ = 1.

(from) Transition Probability (to State)
State Action Reward s1 s2 s3

s1 a1 8 0.2 0.6 0.2
a2 10 0.1 0.2 0.7

s2 a1 1 0.3 0.3 0.4
a2 −1 0.5 0.3 0.2

s3 a1 0 0 0 1.0
a2 0 0 0 1.0

Your task is to determine an optimal deterministic policy by manually working out simply the first
two iterations of value iteration algorithm.

Initialize the value function for each state to be it’s max (over actions) reward, i.e., we initialize the
value function to be v0(s1) = 10, v0(s2) = 1, v0(s3) = 0. Then answer the following:

(a) Considering all states and actions, calculate qk(·, ·) and vk(·) from vk−1(·) using the value itera-
tion update, and then calculate the greedy policy πk(·) from qk(·, ·) for 2 iterations (i.e. for k = 1
and k = 2). (10)

Answer:
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(b) Mathematically argue / show that, πk(·) for k > 2 will be the same as π2(·).
(Hint: You can make the argument by examining the structure of how you get qk(·, ·) from
vk−1(·). With such argument, there is no need to go beyond the two iterations you performed
above, and so you can proclaim π2(·) as an optimal deterministic policy for this MDP.) (5)
Answer:
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Q3. [ Monte-Carlo and Temporal Difference Learning ] 12 marks

Assume you have data in the form of just the following 5 complete episodes for an MRP.

– Episode 1: A 2 A 6 B 1 B 0 T

– Episode 2: A 3 B 2 A 4 B 2 B 0 T

– Episode 3: B 3 B 6 A 1 B 0 T

– Episode 4: A 0 B 2 A 4 B 4 B 2 B 0 T

– Episode 5: B 8 B 0 T

In the episodic data presented above, the non-terminal states are labeled A and B, the numbers denote
rewards, and all states end in a terminal state T. Assume discount factor γ = 1. Answer the following:

(a) Given only this data and experience replay (repeatedly and endlessly drawing an episode at
random from this pool of 5 episodes), calculate the value function estimates, i.e. V (A) and V (B),
that (a) First-Visit Monte-Carlo and (b) Every-Visit Monte-Carlo converge to. (4)

Answer:
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(b) Construct an MRP that TD(0) (i.e., one-step TD) essentially builds with transition probabilities
and reward function estimated, from the one-step transitions and sample rewards seen in the
episodic data presented above. (4)
Answer:

(c) From the constructed MRP in Part (b), what will be the value function estimates, i.e. V (A) and
V (B), that TD(0) converge to? Show your calculations. (4)

Answer:
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Q4. [ Q-Learning with Function Approximation ] 15 marks
Consider the grid-world given (right) and Pacman who is trying to
learn the optimal policy. If an action results in landing into one of the
shaded states the corresponding reward is awarded during that transi-
tion. All shaded states are terminal states, i.e., the MDP terminates
once arrived in a shaded state. The other states have the North, East,
South, West actions available, which deterministically move Pacman
to the corresponding neighboring state (or have Pacman stay in place
if the action tries to move out of the grid). Assume the discount factor
γ = 0.5 and the Q-learning rate α = 0.5 for all calculations. Pacman
starts in state (1,3) as shown in the figure. Answer the following:

(a) Calculate the optimal value function V ∗ for the following states: V ∗(2,2) and V ∗(1,3). (3)

Answer:

(b) The agent starts from the top left corner and you are given the following episodes from runs of
the agent through this grid-world. Each line in an Episode is a tuple containing (s,a,s′,r).

Episode 1 Episode 2 Episode 3
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(2,2), S, (2,1), -100 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0

(3,2), N, (3,3), +100 (3,2), S, (3,1), +80

Using Q-Learning updates, calculate the following Q-values for Q((3,2),N), Q((3,2),S) and
Q((2,2),E) after the above three episodes. (4.5)

Answer:
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(c) Consider a feature based representation of the Q-value function:

Q f (s,a) = w1 f1(s)+w2 f2(s)+w3 f3(a)

f1(s) : The x coordinate of the state f2(s) : The y coordinate of the state

f3(N) = 1, f3(S) = 2, f3(E) = 3, f3(W ) = 4

(i) Given that all wi are initially 0, calculate the values of these weights after Episode 1. (4.5)

Answer:
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(ii) Assume the weight vector w is equal to (1,1,1). What is the action prescribed by the Q-
function in state (2,2)? State the calculations to reason the same. (3)

Answer:

— The question paper ends here. —
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