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Q1. [ MDP and Optimality of Policy ] 18 marks

(a) Consider the continuing MDP shown to the right. The only decision
to be made is that in the top state (say, s0), where two actions are
available, left and right. The numbers show the rewards that are
received deterministically after each action. There are exactly two
deterministic policies, πleft and πright. Calculate and show which
policy will be the optimal:
(i) if γ = 0; (ii) if γ = 0.9; (iii) if γ = 0.5. (6)

Answer:

In an infinite-horizon MDP, the expected return from state s following a deterministic policy π

is given as,

Eπ

[
Gt | st = s

]
= Rt+1 + γRt+2 + γ

2Rt+3 + · · · =
∞

∑
k=0

γ
kRt+k

Here, for two deterministic policy πleft and πright, the expected returns from state s0 are:

Eπleft

[
G0 | s0

]
= 1+ γ ·0+ γ

2 ·1+ γ
3 ·0+ · · · =

∞

∑
k=0

γ
2k(1+ γ ·0

)
=

1
1− γ2

Eπright

[
G0 | s0

]
= 0+ γ ·2+ γ

2 ·0+ γ
3 ·2+ · · · =

∞

∑
k=0

γ
2k(0+ γ ·2

)
=

2γ

1− γ2

Putting the values of γ , we get

Eπleft

[
G0 | s0

]
=


1, if γ = 0

5.26, if γ = 0.9
1.33, if γ = 0.5

and Eπright

[
G0 | s0

]
=


0, if γ = 0

9.47, if γ = 0.9
1.33, if γ = 0.5

Hence, the optimal policies are:

(i) πleft for γ = 0,
(ii) πright for γ = 0.9,

(iii) Both πleft and πright for γ = 0.5.
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(b) Consider an MDP with an infinite set of states S = {1,2,3, . . .}. The start state is s = 1. Each
state s ∈ S allows a continuous set of actions a ∈ [0,1]. The transition probabilities are given by:

P
[
s+1 | s,a

]
= a, P

[
s | s,a

]
= 1−a; ∀ s ∈ S, ∀ a ∈ [0,1]

For all states s∈ S and actions a∈ [0,1], transitioning from s to s+1 results in a reward of 1+a;
and transitioning from s to s results in a reward of 1−a. The discount factor γ = 0.5. Calculate
the optimal value function, V ∗(s), and the optimal deterministic policy, π∗(s), for all s ∈ S. (4)

Answer:

Since this is an infinite horizon MDP and since each state has identical state transition prob-
abilities and identical reward function, each state would have the same value for the optimal
state-value function. Let us refer to this common value as V ∗.
Recall the Bellman optimality equation where we have:

v∗(s) = max
a∈A

[
R(s,a)+γ ∑

s′∈S
P
[
s′ | s,a

]
v∗(s′)

]
= max

a∈A

[
∑
s′∈S

P
[
s′ | s,a

](
R(s,a,s′)+γv∗(s′)

)]
Here, V ∗ = max

a∈[0,1]

[
a
(
(1+a)+0.5V ∗

)
+(1−a)

(
(1−a)+0.5V ∗

)]
Moving V ∗ from the RHS to the LHS, we get:

V ∗−0.5V ∗ = max
a∈[0,1]

[
2a2−a+1

]
=⇒ V ∗ = max

a∈[0,1]

[
4a2−2a+2

]
For a ∈ [0,1], the RHS maximizes for a = 1. So, the optimal policy is π∗(s) = 1 for all states
s ∈ S. Substituting for a = 1, the optimal value function is given by, V ∗ = 4×12−2×1+1 = 4.

(c) State whether the following statement is True or False with a brief justification. (2)
For every finite MDP, M = ⟨S,A,R,γ⟩, with bounded rewards (R) and γ ∈ [0,1), for all
policies π , we have: max

a∈A
qπ(s,a)≥ vπ(s), ∀s ∈ S.

Answer: True

Because, vπ(s) = ∑
a∈A

π(a|s)qπ(s,a) combined with the fact that, maximum is always better than

expectation.
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(d) State whether the following statement is True or False with proper justification. (3)
If the only difference between two MDPs is the value of the discount factor then they
must have the same optimal policy.

Answer: False

A counterexample suffices to show the statement is false. Consider an MDP with two sink states.
Transitioning into sink state A gives a reward of 1, transitioning into sink state B gives a reward
of 10. All other transitions have 0 (zero) rewards. Let A be one step North from the start state.
Let B be two steps South from the start state. Assume actions always succeed. Then if the
discount factor γ < 0.1 the optimal policy takes the agent one step North from the start state into
A, if the discount factor γ > 0.1 the optimal policy takes the agent two steps South from the start
state into B.

(e) Consider an infinite-horizon, discounted MDP M = ⟨S,A,R,P,γ⟩. Define the maximal reward,
RMAX = max

(s,a)∈S×A
Ra

s and for any policy π : S→ A, show that V π(s)≤ RMAX
1−γ

(∀s ∈ S). (3)

Answer:

V π(s) = Eπ

[ ∞

∑
t=0

γ
tRat

st

∣∣ s0 = s
]

≤ Eπ

[ ∞

∑
t=0

γ
tRMAX

∣∣ s0 = s
]

= RMAX ·Eπ

[ ∞

∑
t=0

γ
t
∣∣ s0 = s

]
=

RMAX

1− γ
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Q2. [ Value Iteration ] 15 marks

Consider a simple MDP with 3 states s1, s2, s3 and 2 actions a1, a2. The transition probabilities and
expected rewards are given in the following table. Assume discount factor γ = 1.

(from) Transition Probability (to State)
State Action Reward s1 s2 s3

s1 a1 8 0.2 0.6 0.2
a2 10 0.1 0.2 0.7

s2 a1 1 0.3 0.3 0.4
a2 −1 0.5 0.3 0.2

s3 a1 0 0 0 1.0
a2 0 0 0 1.0

Your task is to determine an optimal deterministic policy by manually working out simply the first
two iterations of value iteration algorithm.

Initialize the value function for each state to be it’s max (over actions) reward, i.e., we initialize the
value function to be v0(s1) = 10, v0(s2) = 1, v0(s3) = 0. Then answer the following:

(a) Considering all states and actions, calculate qk(·, ·) and vk(·) from vk−1(·) using the value itera-
tion update, and then calculate the greedy policy πk(·) from qk(·, ·) for 2 iterations (i.e. for k = 1
and k = 2). (10)

Answer:

Value iteration algorithm follows Bellman’s optimality equation for iterative updates:

qk(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′vk−1(s′)

vk(s) = max
a∈A

qk(s,a) = max
a∈A

[
Ra

s + γ ∑
s′∈S

Pa
ss′vk−1(s′)

]
Following this, we present the updates for two value iterations as follows:

For k = 1,

q1(s1,a1) = 8+0.2×10.0+0.6×1.0+0.2×0 = 10.6

q1(s1,a2) = 10+0.1×10.0+0.2×1.0+0.7×0 = 11.2

∴ v1(s1) = max
[
10.6,11.2

]
= 11.2 and π1(s1) = a2

q1(s2,a1) = 1+0.3×10.0+0.3×1.0+0.4×0 = 4.3

q1(s2,a2) = −1+0.5×10.0+0.3×1.0+0.2×0 = 4.3

∴ v1(s2) = max
[
4.3,4.3

]
= 4.3 and π1(s2) = a1 or a2
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For k = 2,

q2(s1,a1) = 8+0.2×11.2+0.6×4.3+0.2×0 = 12.82

q2(s1,a2) = 10+0.1×11.2+0.2×4.3+0.7×0 = 11.98

∴ v2(s1) = max
[
12.82,11.98

]
= 12.82 and π2(s1) = a1

q2(s2,a1) = 1+0.3×11.2+0.3×4.3+0.4×0 = 5.65

q2(s2,a2) = −1+0.5×11.2+0.3×4.3+0.2×0 = 5.89

∴ v2(s2) = max
[
5.65,5.89

]
= 5.89 and π2(s2) = a2

(b) Mathematically argue / show that, πk(·) for k > 2 will be the same as π2(·).
(Hint: You can make the argument by examining the structure of how you get qk(·, ·) from
vk−1(·). With such argument, there is no need to go beyond the two iterations you performed
above, and so you can proclaim π2(·) as an optimal deterministic policy for this MDP.) (5)
Answer:

qk(s1,a1)−qk(s1,a2) = (8−10)+(0.2−0.1)vk−1(s1)+(0.6−0.2)vk−1(s2)+(0.2−0.7)vk−1(s3)

= −2+0.1vk−1(s1)+0.4vk−1(s2)+0, for all k ≥ 1

qk(s2,a1)−qk(s2,a2) = (1− (−1))+(0.3−0.5)vk−1(s1)+(0.3−0.3)vk−1(s2)+(0.4−0.2)vk−1(s3)

= 2−0.2vk−1(s1)+0+0, for all k ≥ 1

Since vk−1(s1)≥ 12.82 and vk−1(s2)≥ 5.89 for all k ≥ 3, we see that:

qk(s1,a1)−qk(s1,a2) ≥ −2.0+0.1×12.82+0.4×5.89 > 0, for all k ≥ 3

qk(s2,a1)−qk(s2,a2) ≥ 2.0−0.2×12.82 < 0, for all k ≥ 3

So, we find that, qk(s1,a1)> qk(s1,a2) and qk(s2,a1)< qk(s2,a1), for all k ≥ 3.
Hence, πk(s1) = a1 and πk(s2) = a2 for all k ≥ 3.
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Q3. [ Monte-Carlo and Temporal Difference Learning ] 12 marks

Assume you have data in the form of just the following 5 complete episodes for an MRP.

– Episode 1: A 2 A 6 B 1 B 0 T

– Episode 2: A 3 B 2 A 4 B 2 B 0 T

– Episode 3: B 3 B 6 A 1 B 0 T

– Episode 4: A 0 B 2 A 4 B 4 B 2 B 0 T

– Episode 5: B 8 B 0 T

In the episodic data presented above, the non-terminal states are labeled A and B, the numbers denote
rewards, and all states end in a terminal state T. Assume discount factor γ = 1. Answer the following:

(a) Given only this data and experience replay (repeatedly and endlessly drawing an episode at
random from this pool of 5 episodes), calculate the value function estimates, i.e. V (A) and V (B),
that (a) First-Visit Monte-Carlo and (b) Every-Visit Monte-Carlo converge to. (4)

Answer:

First-Visit Monte Carlo averages the returns starting from the first occurrence of each of the
states across all episodes. Therefore, the First-Visit Monte Carlo Value Function estimate (with
experience replay) would converge to:

V (A) =
(2+6+1+0)+(3+2+4+2+0)+(1+0)+(0+2+4+4+2+0)

4
=

33
4

= 8.25

V (B) =
(1+0)+(2+4+2+0)+(3+6+1+0)+(2+4+4+2+0)+(8+0)

5
=

39
5

= 7.8

Every-Visit Monte Carlo averages the returns starting from each occurrence of each of the states
across all episodes. Therefore, the Every-Visit Monte Carlo Value Function estimate (with ex-
perience replay) would converge to:

V (A) =

[
(2+6+1+0)+(6+1+0)

]
+
[
(3+2+4+2+0)+(4+2+0)

]
+
[
(1+0)

]
+
[
(0+2+4+4+2+0)+(4+4+2+0)

]
2+2+1+2

=
(9+7)+(11+6)+(1)+(12+10)

7
=

56
7

= 8

V (B) =[
(1+0)+(0)

]
+
[
(2+4+2+0)+(2+0)+(0)

]
+
[
(3+6+1+0)+(6+1+0)+(0)

]
+
[
(2+4+4+2+0)+(4+2+0)+(2+0)+(0)

]
+
[
(8+0)+(0)

]
2+3+3+4+2

=
(1+0)+(8+2+0)+(10+7+0)+(12+6+2+0)+(8+0)

14
=

56
14

= 4
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(b) Construct an MRP that TD(0) (i.e., one-step TD) essentially builds with transition probabilities
and reward function estimated, from the one-step transitions and sample rewards seen in the
episodic data presented above. (4)
Answer:

TD(0) essentially constructs an MDP with transition probabilities and reward function estimated
from the one-step transitions and sample rewards seen in the data, and its Value Function esti-
mate is the Value Function of that estimated MDP.
The transition probabilities would be estimated as:

P
[
A→ A

]
=

1
7

P
[
A→ B

]
=

6
7

P
[
A→ T

]
= 0

P
[
B→ A

]
=

3
14

P
[
B→ B

]
=

6
14

P
[
B→ T

]
=

5
14

The reward function would be estimated as:

R(A) =
(2+6)+(3+4)+(1)+(0+4)

7
=

20
7

= 2.857

R(B) =
(1+0)+(2+2+0)+(3+6+0)+(2+4+2+0)+(8+0)

14
=

15
7

= 2.143

(c) From the constructed MRP in Part (b), what will be the value function estimates, i.e. V (A) and
V (B), that TD(0) converge to? Show your calculations. (4)
Answer:

The MRP with these transition probabilities and reward function leads to the following Bellman
Equations:

V (A) =
20
7
+

1
7

V (A)+
6
7

V (B) =⇒ 3V (A)−3V (B) = 10

V (B) =
15
7
+

3
14

V (A)+
6

14
V (B) =⇒ −3V (A)+8V (B) = 30

This yields: V (A) = 34
3 = 11.33 and V (B) = 8.
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Q4. [ Q-Learning with Function Approximation ] 15 marks
Consider the grid-world given (right) and Pacman who is trying to
learn the optimal policy. If an action results in landing into one of the
shaded states the corresponding reward is awarded during that transi-
tion. All shaded states are terminal states, i.e., the MDP terminates
once arrived in a shaded state. The other states have the North, East,
South, West actions available, which deterministically move Pacman
to the corresponding neighboring state (or have Pacman stay in place
if the action tries to move out of the grid). Assume the discount factor
γ = 0.5 and the Q-learning rate α = 0.5 for all calculations. Pacman
starts in state (1,3) as shown in the figure. Answer the following:

(a) Calculate the optimal value function V ∗ for the following states: V ∗(2,2) and V ∗(1,3). (3)

Answer:

V ∗(2,2) = 50 and V ∗(1,3) = 12.5

The optimal values for the states can be found by computing the expected reward for the agent
acting optimally from that state onwards. Note that you get a reward when you transition into
the shaded states and not out of them. So for example the optimal path starting from (2,2) is to
go to the +100 square which has a discounted reward of 0+ γ×100 = 50. For (1,3), going to
either of +25 or +100 has the same discounted reward of 0+ γ×25 = 12.5 or 0+ γ×0+ γ2×
0+ γ3×25 = 12.5.

(b) The agent starts from the top left corner and you are given the following episodes from runs of
the agent through this grid-world. Each line in an Episode is a tuple containing (s,a,s′,r).

Episode 1 Episode 2 Episode 3
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(2,2), S, (2,1), -100 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0

(3,2), N, (3,3), +100 (3,2), S, (3,1), +80

Using Q-Learning updates, calculate the following Q-values for Q((3,2),N), Q((3,2),S) and
Q((2,2),E) after the above three episodes. (4.5)

Answer:
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Q-values obtained by Q-learning updates: Q(s,a)← (1−α)Q(s,a)+α
(
R(s,a,s′)+γ max

a′∈A
Q(s′,a′)

)
So, we have,

Q((3,2),N) = 0.5× ������:0
Q((3,2),N)︸ ︷︷ ︸

since init val = 0

+0.5×
(
100+0.5×

��������:0
max

a′
Q((3,3),a′)︸ ︷︷ ︸

since no trans. from (3,3)

)
= 50

Q((3,2),S) = 0.5× ������:0
Q((3,2),S)︸ ︷︷ ︸

since init val = 0

+0.5×
(
80+0.5×

��������:0
max

a′
Q((3,1),a′)︸ ︷︷ ︸

since no trans. from (3,1)

)
= 40

Q((2,2),E) = 0.5× ������:0
Q((2,2),E)︸ ︷︷ ︸

since init val = 0

+0.5×
(
0+0.5×max[Q((3,2),N)︸ ︷︷ ︸

= 50

,Q((3,2),S)︸ ︷︷ ︸
= 40

]
)
= 12.5

(c) Consider a feature based representation of the Q-value function:

Q f (s,a) = w1 f1(s)+w2 f2(s)+w3 f3(a)

f1(s) : The x coordinate of the state f2(s) : The y coordinate of the state

f3(N) = 1, f3(S) = 2, f3(E) = 3, f3(W ) = 4

(i) Given that all wi are initially 0, calculate the values of these weights after Episode 1. (4.5)

Answer:
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Using the approximate Q-learning weight updates:

wi← wi +α

[(
R(s,a,s′)+ γ max

a′∈A
Q f (s′,a′)

)
−Q f (s,a)

]
∇wiQ f (s,a)

The only time the reward is non-zero in the first episode is when it transitions into −100 state.

∴ w1 = ��*
0w1 +0.5×

[ (
−100+0.5×max

a′∈A
�����:0
Q f (s′,a′)

)
−�����:0

Q f (s,a)
]
· f1((2,2))

= 0.5×−100×2 =−100

w2 = ��*
0w2 +0.5×

[ (
−100+0.5×max

a′∈A
�����:0
Q f (s′,a′)

)
−�����:0

Q f (s,a)
]
· f2((2,2))

= 0.5×−100×2 =−100

w3 = ��*
0w3 +0.5×

[ (
−100+0.5×max

a′∈A
�����:0
Q f (s′,a′)

)
−�����:0

Q f (s,a)
]
· f3(S)

= 0.5×−100×2 =−100

(ii) Assume the weight vector w is equal to (1,1,1). What is the action prescribed by the Q-
function in state (2,2)? State the calculations to reason the same. (3)

Answer: West

The action prescribed at (2,2) is argmax
a∈A

Q f ((2,2),a) where,

Q f ((2,2),a) = w1 f1((2,2))+w2 f2((2,2))+w3 f3(a) = 2+2+ f3(a)

is computed using the feature representation. In this case, the Q-value for West gives maximum
value with Q f ((2,2),West) = 2+2+4 = 8.

— The question paper ends here. —
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