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Q1. [ Markov Decision Process and Bellman Equation ] 14 marks

Assume an underlying Markov Decision Process (MDP), M = (S,A,P,R,γ), where s,s′ ∈ S are the
states of an MDP, a ∈ A denotes an action in MDP, r(s,a) = Ra

s denotes the reward accumulated when
applying action a to state s, P

[
s′ | s,a

]
= Pa

ss′ denotes the transition probability to s′ from s upon
executing action a, and γ ∈ (0,1] is the discount factor.

(a) The Bellman equations give us the iterative relations that relate the state value functions and the
action value functions. The Bellman expectation equations provide the relation between state
value function vπ and action value function qπ for any policy π , while the Bellman optimality
equations provide the relation between the optimal state value function v∗ and the optimal action
value function q∗. The two tables below require you to fill out the relations between the quantities
marked in the row and the column headings.

(i) Fill up the missing entries from the table for Bellman Expectation Equations as given below.
vπ qπ

vπ 1⃝ vπ(s) = ? vπ(s) = ∑
a∈A

π(a|s)qπ(s,a)

qπ 2⃝ qπ(s,a) = ? 3⃝ qπ(s,a) = ?
(3)

(ii) Fill up the missing entries from the table for Bellman Optimality Equations as given below.
v∗ q∗

v∗ 4⃝ v∗(s) = ? v∗(s) = max
a∈A

q∗(s,a)

q∗ 5⃝ q∗(s,a) = ? 6⃝ q∗(s,a) = ?
(3)

Answer:

1⃝ vπ(s) = ∑
a∈A

π(a|s)
[
r(s,a)+ γ ∑

s′∈S
P
[
s′ | s,a

]
vπ(s′)

]

2⃝ qπ(s,a) = r(s,a)+ γ ∑
s′∈S

P
[
s′ | s,a

]
vπ(s′)

3⃝ qπ(s,a) = r(s,a)+ γ ∑
s′∈S

P
[
s′ | s,a

][
∑

a′∈A
π(a′|s′)qπ(s′,a′)

]

4⃝ v∗(s) = max
a∈A

[
r(s,a)+ γ ∑

s′∈S
P
[
s′ | s,a

]
v∗(s′)

]

5⃝ q∗(s,a) = r(s,a)+ γ ∑
s′∈S

P
[
s′ | s,a

]
v∗(s′)

6⃝ q∗(s,a) = r(s,a)+ γ ∑
s′∈S

P
[
s′ | s,a

]
max
a′∈A

q∗(s′,a′)
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(b) Let π be an ε-greedy policy. Let π ′ be the ε-greedy policy inferred from the action value function
qπ (ε-greedy Policy Improvement from π to π ′), i.e.,

π
′(a|s) =

{
1− ε + ε

|A| , if a = argmax
b∈A

qπ(s,b)
ε

|A| , otherwise

Prove that, ∑
a∈A

π ′(a|s).qπ(s,a)≥ vπ(s), for all s ∈ S,

where vπ(s) is state value function for policy π . (8)

Answer:

It may be noted that,

∑
a∈A

π
′(a|s).qπ(s,a) =

ε

m ∑
a∈A

qπ(s,a)+(1− ε)max
a∈A

qπ(s,a)

Now, we make the crucial observation that a max over choices of A is greater than or equal to a
weighted average over choices of A. Specifically,

max
a∈A

qπ(s,a)≥ ∑
a∈A

wa.qπ(s,a),

for any choice of weights wa ≥ 0, a ∈ A constrained by ∑
a∈A

wa = 1. We will make a specific

choice of wa as follows:

wa =
π(a|s)− ε

m
1− ε

We note that wa ≥ 0 for all a ∈ A because π(a|s) ≥ ε

m (since π(a|s) is an ε-greedy policy). We
also note that,

∑
a∈A

wa =

∑
a∈A

π(a|s)− ∑
a∈A

ε

m

1− ε
=

1− ε

1− ε
= 1

Having established that,

max
a∈A

qπ(s,a)≥ ∑
a∈A

π(a|s)− ε

m
1− ε

.qπ(s,a)

we can go back to the initial equation and state that:

ε

m ∑
a∈A

qπ(s,a)+(1− ε)max
a∈A

qπ(s,a)≥
ε

m ∑
a∈A

qπ(s,a)+(1− ε) ∑
a∈A

π(a|s)− ε

m
1− ε

.qπ(s,a)

Therefore,

∑
a∈A

π
′(a|s).qπ(s,a) ≥

ε

m ∑
a∈A

qπ(s,a)+(1− ε) ∑
a∈A

π(a|s)− ε

m
1− ε

.qπ(s,a)

=
ε

m ∑
a∈A

qπ(s,a)+ ∑
a∈A

π(a|s).qπ(s,a)−
ε

m ∑
a∈A

qπ(s,a)

= ∑
a∈A

π(a|s).qπ(s,a) = vπ(s)

Hence, ∑
a∈A

π ′(a|s).qπ(s,a)≥ vπ(s), for all s ∈ S. [Proved]
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Q2. [ Model-free Control: Monte-Carlo vs. SARSA ] 10 marks

In this problem, we deal with the batch Monte-Carlo algorithm and the online Expected-SARSA
algorithm. We set the discount factor to γ = 1 and run 5 episodes (in all episodes first action is always
a1) in a given environment as follows:

– Episode 1: s1 a1 0 s4 a2 0 s7

– Episode 2: s1 a1 0 s4 a3 0.4 s8

– Episode 3: s2 a1 0 s4 a2 2 s6

– Episode 4: s2 a1 0 s4 a3 0.4 s8

– Episode 5: s3 a1 0.5 s4 a2 0 s7

Here, each episode starts in one of the states s1, s2, s3 and with action a1. Also, s6, s7, s8 are terminal
states. In s4 there is a choice between actions a2 and a3 which are taken with equal probability
π(a2|s4) = π(a3|s4) = 0.5. The rewards are deterministic as mentioned within the episodes with
numeric values and only depend on the transition (s,a,s′).

(a) Calculate the Q-values in states s1, s2, s3, s4 using online Expected-SARSA. For a given Q-
value Q(s,a), use η = 1 the FIRST TIME you update this value and η ∈ [0,0.5] for all LATER
(subsequent) update steps. Assume that Q(s,a) values in all states are zero intitially. (Hint: You
can neglect terms of order η2.) (5)

Answer:

After the transition (s,a,r,s′), the update Q-value equation for Expected-SARSA is:

Qnew(s,a)←

 (1−η)Qold(s,a)+η

(
r+∑

a′
π(s′a′)Qold(s′,a′)

)
, if s′ is non-teminal

(1−η)Qold(s,a)+ηr, if s′ is teminal

Based on the 5 episodes, we get the following updates sequentially:

– After Episode 1:

Q(s1,a1) ← (1−1) ·Q(s1,a1)+1 ·
(

0+
Q(s4,a2)+Q(s4,a3)

2

)
= 0

Q(s4,a2) ← (1−1) ·Q(s4,a2)+1 ·0 = 0
– After Episode 2:

Q(s1,a1) ← (1−η) ·Q(s1,a1)+η ·
(

0+
Q(s4,a2)+Q(s4,a3)

2

)
= 0

Q(s4,a3) ← (1−1) ·Q(s4,a3)+1 ·0.4 = 0.4
– After Episode 3:

Q(s2,a1) ← (1−1) ·Q(s2,a1)+1 ·
(

0+
Q(s4,a2)+Q(s4,a3)

2

)
= 0.2

Q(s4,a2) ← (1−η) ·Q(s4,a2)+η ·2 = 2η

– After Episode 4:

Q(s2,a1) ← (1−η) ·Q(s2,a1)+η ·
(

0+
Q(s4,a2)+Q(s4,a3)

2

)
= 0.2+η

2 ≈ 0.2

Q(s4,a3) ← (1−η) ·Q(s4,a3)+η ·0.4 = 0.4
– After Episode 5:

Q(s3,a1) ← (1−1) ·Q(s3,a1)+1 ·
(

0.5+
Q(s4,a2)+Q(s4,a3)

2

)
= 0.7+η

Q(s4,a2) ← (1−η) ·Q(s4,a2)+η ·0 = 2η−2η
2 ≈ 2η

As a result:

Q(s1,a1) = 0; Q(s2,a1) = 0.2; Q(s3,a1) = 0.7+η ; Q(s4,a2) = 2η ; Q(s4,a3) = 0.4
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(b) Calculate the Q-values in states s1, s2, s3, s4 using batch Monte-Carlo control (i.e., average total
returns from each starting state). (3)

Answer:

Q(s1,a1) =
(0+0)+(0+0.4)

2
= 0.2

Q(s2,a1) =
(0+2)+(0+0.4)

2
= 1.2

Q(s3,a1) =
(0.5+0)

1
= 0.5

Q(s4,a2) =
0+2+0

3
= 0.67

Q(s4,a3) =
0.4+0.4

2
= 0.4

(c) You can choose the initial state for episode 6. Which initial state looks best in Part (a), i.e. for
online Expected SARSA? Which initial state looks best in Part (b), i.e. for batch Monte-Carlo? (2)

Answer:

With online Expected-SARSA, s3 looks best.
But, with batch Monte-Carlo, s2 looks best.
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Q3. [ TD(λ ) and Eligibility Traces ] 16 marks

Sitting at hall on a rainy evening, you hear an episode of experience as follows: At the first step you
saw a lightning. At the second step you hear a thunder with a drizzle of rain. At the third step you
saw only a drizzle of rain. Then you had a powercut, worth −1 reward, and the episode terminates on
the fourth step. All other rewards were zero. The experiment is undiscounted (i.e., γ = 1).

We may represent the state s that you witnessed by a vector of three binary features, light(s) ∈ {0,1},
thunder(s) ∈ {0,1} and drizzle(s) ∈ {0,1}. So, the sequence of feature vectors corresponding to the
four steps of this episode can be expressed as, [1,0,0]⊺, [0,1,1]⊺, [0,0,1]⊺ and [0,0,0]⊺.

(a) Approximate the state-value function by a linear combination of these features with two param-
eters: φ(s) =

[
l× light(s)+ t× thunder(s)+d×drizzle(s)

]
. If l =−3, t =−2 and d = 1, then

write down the sequence of approximate values corresponding to this episode. (2)

Answer:

The activity of the presented episode is given as follows:

s1⃝
light

R2=0−−−→ s2⃝
thunder
+drizzle

R3=0−−−→ s3⃝
drizzle

R4=−1−−−−→ s4⃝
powercut

Given, l = −3, t = −2 and d = 1. Let the feature vectors corresponding to each episode are
given as, φ(s1) = [1,0,0]⊺, φ(s2) = [0,1,1]⊺, φ(s3) = [0,0,1]⊺, φ(s4) = [0,0,0]⊺.
So, the sequence of approximate values corresponding to each step in this episode is denoted as,

V (s1) = [l, t,d].φ(s1) = [−3,−2,1].[1,0,0]⊺ =−3

V (s2) = [l, t,d].φ(s2) = [−3,−2,1].[0,1,1]⊺ =−1

V (s3) = [l, t,d].φ(s3) = [−3,−2,1].[0,0,1]⊺ = 1

V (s4) = [l, t,d].φ(s4) = [−3,−2,1].[0,0,0]⊺ = 0 (for terminal state)

It may also be noted that, R2 = 0, R3 = 0, but R4 =−1.

(b) Write down the sequence of λ -returns Gλ
t (1 ≤ t ≤ 3) corresponding to this episode, for λ = 1

2
and l =−3, t =−2, d = 1. Clearly show the detailed evaluations. (6)

Answer:

The n-step return and λ -return Gλ
t are given as,

G(n)
t = Rt+1 + γRt+2 + γ

2Rt+3 + · · ·+ γ
n−1Rt+n + γ

nV (st+n)

Gλ
t = (1−λ )

∞

∑
n=1

λ
n−1.G(n)

t

where, G(∞)
t = Rt+1 + γRt+2 + γ

2Rt+3 + · · ·+ γ
T−1RT , with multiplication factor being λ

T−t−1
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Here, the calculation for G(λ )
1 goes as follows. In our case, T = 4 and hence RT = R4 =−1.

G(1)
1 = R2 + γV (s2) = 0+1× (−1) =−1

G(2)
1 = R2 + γR3 + γ

2V (s3) = 0+1×0+1×1 = 1

G(∞)
1 = R2 + γR3 + γ

2R4 = 0+1×0+1× (−1) =−1

∴ Gλ
1 =

(
1− 1

2
)
×
[(1

2
)0G(1)

1 +
(1

2
)1G(2)

1

]
+
(1

2
)4−1−1G(∞)

1 =
1
2

[
1× (−1)+

1
2
×1+

1
2
× (−1)

]
=−1

2

Similarly, the calculation for G(λ )
2 goes as follows.

G(1)
2 = R3 + γV (s3) = 0+1×1 = 1

G(∞)
2 = R3 + γR4 = 0+1× (−1) =−1

∴ Gλ
2 =

(
1− 1

2
)
×
[(1

2
)0G(1)

1

]
+
(1

2
)4−2−1G(∞)

2 =
1
2

[
1×1+1× (−1)

]
= 0

And, the calculation for G(λ )
3 goes as follows.

G(∞)
3 = R4 =−1

∴ Gλ
3 =

(1
2
)4−3−1G(∞)

3 =
(1

2
)0× (−1) =−1

(c) Using the forward-view TD(λ ) algorithm and your linear function approximator, what are the
sequence of updates to weight d corresponding to the drizzle? What is the total update to weight
d? Use λ = 1

2 , γ = 1, α = 1
2 and start with l =−3, t =−2, d = 1. (3)

Answer:

The sequence of updates to weight d is given as,

∆d1 = α

(
Gλ

1 −V (s1)
)

drizzle(s1) =
1
2
×
(
− 1

2
− (−3)

)
×0 = 0

∆d2 = α

(
Gλ

2 −V (s2)
)

drizzle(s2) =
1
2
×
(

0− (−1)
)
×1 =

1
2

∆d3 = α

(
Gλ

3 −V (s3)
)

drizzle(s3) =
1
2
×
(
−1−1

)
×1 =−1

The total update to weight d is, ∑∆d = (∆d1 +∆d2 +∆d3) = 0+ 1
2 +(−1) =−1

2 .
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(d) Using linear value function approximation, write down the sequence of TD(λ ) accumulating
eligibility trace et corresponding to the drizzle, using λ = 1

2 , γ = 1. (2)

Answer:

The equation for eligibility trace is given as, et = γαet−1 +drizzle(st).
So, the sequence of eligibility traces et corresponding to drizzle(st) are,

e1 = 1× 1
2
×0+drizzle(s1) = 0

e2 = 1× 1
2
×0+drizzle(s2) = 1

e2 = 1× 1
2
×1+drizzle(s3) =

3
2

(e) Using the backward-view TD(λ ) algorithm and your linear function approximator, what are the
sequence of updates to weight d? (Use offline updates, i.e., do not actually change your weights,
just accumulate your updates). What is the total update to weight d? Use λ = 1

2 , γ = 1, α = 1
2

and start with l =−3, t =−2, d = 1. (3)

Answer:

The sequence of updates to weight b is given as,

∆d1 = αδ1e1 = α

[
R2 + γV (s2)−V (s1)

]
e1 =

1
2
×
[
0+1× (−1)− (−3)

]
×0 = 0

∆d2 = αδ2e2 = α

[
R3 + γV (s3)−V (s2)

]
e2 =

1
2
×
[
0+1×1− (−1)

]
×1 = 1

∆d3 = αδ3e3 = α

[
R4 + γV (s4)−V (s3)

]
e3 =

1
2
×
[
−1+1×0−1

]
× 3

2
=−3

2

The total update to weight b is, ∑∆d = (∆d1 +∆d2 +∆d3) = 0+1+−3
2 =−1

2 .
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Q4. [ Policy Gradient Methods ] 12 marks

(a) Let us consider the linear MDP as shown below. Here the (shaded) states, s1 and s7 , are

s1 s2 s3 s4 s5 s6 s7
+1 0 −1 0 −1 0 +10

terminal states. The rewards presented below are received when you enter a particular state.
There are two actions, Left and Right. The action, Left, transitions from state si to si−1 with
0.5 probability and stays in state si with 0.5 probability. Similarly, the action, Right, transitions
from state si to si+1 with 0.5 probability and stays in state si with 0.5 probability. Let γ = 1.
We want to apply Monte-Carlo policy gradient algorithm, REINFORCE, to learn a policy in this
linear MDP setting. Let our feature representation be a one-hot encoding using the state, action
pair. More concretely, let us denote a1 = Left and a2 = Right. Then, assuming the vector

is 0-indexed, our feature representation is, φ(si,a j)k =

{
1, if 7( j−1)+(i−1) = k
0, otherwise

. Let

us use a softmax policy parameterized by θ : πθ (s,a) =
exp

(
φ(s,a)⊺θ

)
∑
a

exp
(

φ(s,a)⊺θ

) and run REINFORCE

algorithm. Assume θ is initialized to be all zeros. We execute one rollout of the policy πθ to
obtain the following episode: (s4,a1,−1,s3,a2,0,s4,a2,−1,s5,a2,0,s6,a1,0,s6,a2,+10). Run
REINFORCE to update θ three times using the provided episode. For simplicity, let α = 1. (6)

Answer:

The score function is: ∇θ logπθ (s,a) = φ(s,a)−Eπθ

[
φ(s, ·)

]
So, the update using REINFORCE algorithm will be:

θ ← θ +α∇θ logπθ (st ,at)Gt = θ +α

[
φ(s,a)−∑

b
πθ (s,b) ·φ(s,b)

]
Gt

Iteratively,

– After the first update:

θ = [0,0,0,0,0,0,0,0,0,0,0,0,0,0]+1 ·
[
[0,0,0,1,0,0,0,0,0,0,0,0,0,0]−(

0.5 · [0,0,0,1,0,0,0,0,0,0,0,0,0,0]+0.5 · [0,0,0,0,0,0,0,0,0,0,1,0,0,0]
)]
·8

= [0,0,0,4,0,0,0,0,0,0,−4,0,0,0]

– After the second update:

θ = [0,0,0,4,0,0,0,0,0,0,−4,0,0,0]+1 ·
[
[0,0,0,0,0,0,0,0,0,1,0,0,0,0]−(

0.5 · [0,0,1,0,0,0,0,0,0,0,0,0,0,0]+0.5 · [0,0,0,0,0,0,0,0,0,1,0,0,0,0]
)]
·9

= [0,0,−4.5,4,0,0,0,0,0,4.5,−4,0,0,0]

– After the third update:

θ = [0,0,−4.5,4,0,0,0,0,0,4.5,−4,0,0,0]+1 ·
[
[0,0,0,0,0,0,0,0,0,0,1,0,0,0]−(

0.5 · [0,0,0,1,0,0,0,0,0,0,0,0,0,0]+0.5 · [0,0,0,0,0,0,0,0,0,0,1,0,0,0]
)]
·9

= [0,0,−4.5,−0.5,0,0,0,0,0,4.5,0.5,0,0,0]

Note that, instead of updating θ in place, we use the original θ used to collect the data in the
computation of πθ .
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(b) Suppose you have a Gaussian policy, πθ , that samples actions a from a normal distribution with
mean µ = φ(s)⊺θ and variance σ2.

(Hint: Recall that, the Gaussian PDF is as follows: f (x; µ,σ) = 1√
2πσ2 e−

1
2

(
x−µ

σ

)2

.)

(i) Prove that, ∇θ logπθ (s,a) =
(

a−φ(s)⊺θ

)
φ(s)

σ2 . (show your derivation in details) (3)

Answer:

∇θ logπθ (s,a) =
1

πθ (s,a)
∇θ

1√
2πσ2

e−
1
2

(
a−φ(s)⊺θ

σ

)2

=
1

πθ (s,a)
πθ (s,a)∇θ −

1
2

(a−φ(s)⊺θ

σ

)2

= − 1
2σ2 ·2

(
a−φ(s)⊺θ

)(
−φ(s)

)
=

(
a−φ(s)⊺θ

)
φ(s)

σ2

Alternatively, writing the log density

logπθ (s,a) =−
1
2

log(2πσ
2)− 1

2

(
φ(s)⊺θ −a

σ

)2
=−1

2

(
log(2π)+2logσ +

(
φ(s)⊺θ −a

σ

)2)
and differentiating with respect to θ ,

∇θ logπθ (s,a) = −1
2

∇θ

(
φ(s)⊺θ −a

σ

)2

= −1
2
·2
((

φ(s)⊺θ −a
σ

)
φ(s)

σ

)
=

(
a−φ(s)⊺θ

)
φ(s)

σ2

(ii) Prove that, ∇σ logπθ (s,a) =
(

a−φ(s)⊺
)2

σ3 − 1
σ

. (show your derivation in details) (3)

Answer:

∇σ logπθ (s,a) =
1

πθ (s,a)
∇σ

1√
2πσ2

e−
1
2

(
a−φ(s)⊺θ

σ

)2

=
1

πθ (s,a)

[ 1√
2πσ2

∇σ e−
1
2

(
a−φ(s)⊺θ

σ

)2

+ e−
1
2

(
a−φ(s)⊺θ

σ

)2

∇σ

1√
2πσ2

]
= ∇σ

−1
2σ2

(
a−φ(s)⊺θ

)2
+

1
πθ (s,a)

e−
1
2

(
a−φ(s)⊺θ

σ

)2 1√
2π

∇σ

1
σ

=
1

σ3

(
a−φ(s)⊺

)2
+

1
πθ (s,a)

e−
1
2

(
a−φ(s)⊺θ

σ

)2 1√
2π
· −1

σ2

=

(
a−φ(s)⊺

)2

σ3 − 1
σ

Alternatively, directly differentiating the log density with respect to σ ,
∂

∂σ
logπθ (s,a) = −1

2

(
2

∂ logσ

∂σ
+

∂

∂σ

(
φ(s)⊺θ −a

σ

)2)
= −1

2

( 2
σ
−

2
(
φ(s)⊺θ −a

)2

σ3

)
=

(
a−φ(s)⊺

)2

σ3 − 1
σ
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Q5. [ Multi-arm Bandits ] 12 marks

(a) In the 2-armed bandit problem, one has to choose one of 2 actions. Assume action a1 yields a
reward of r = 1 with probability p= 0.25 and 0 otherwise. If you take action a2, you will receive
a reward of r = 0.4 with probability p = 0.75 and 0 otherwise. The 2-armed bandit game is
played several times and Q-values are updated using the update rule, ∆Q(s,a) = η

[
rt−Q(s,a)

]
.

(i) Assume that you initialize all Q-values at zero. You first try both actions: in trial 1, you
choose a1 and get r = 1; in trial 2, you choose a2 and get r = 0.4. Update your Q-values
(η = 0.2). (3)

Answer:

In the beginning, Q(a1, t = 0) = Q(a2, t = 0) = 0 (we dropped the state index s since there
is only a single state). After choosing action a1 and receiving a reward of r = 1, its Q-value
is updated to:

Q(a1, t = 1) = Q(a1, t = 0)+∆Q(a1) = 0+η
(
r−Q(a1, t = 0)

)
= 0+0.2×1 = 0.2

After choosing action a2 and receiving a reward of r = 0.4, its Q-value is updated to:

Q(a2, t = 2) = Q(a2, t = 0)+∆Q(a2) = 0+η
(
r−Q(a2, t = 0)

)
= 0+0.2×0.4 = 0.08

Continuing with a greedy method implies that in the next round, action a1 will be chosen.

(ii) In trials 3 to 5, you play greedy and always choose the action which looks best (i.e., has
the highest Q-value). Which action has the higher Q-value after trial 5? (Assume that the
actual reward is r = 0 in trials 3-5.). (3)

Answer:

In trial 3 you take action a1. If the return is 0,
Q(a1, t = 3) = Q(a1, t = 2)+η

(
r−Q(a1, t = 2)

)
= (1−η)Q(a1, t = 2)+ηr = 0.8×0.2 = 0.16

Thus, in trial 4 we take again action a1. If the return is again 0,

Q(a1, t = 4) = (1−η)Q(a1, t = 3)+ηr = 0.8×0.16 = 0.128

In trial 5 we take again action a1. If the return is again 0,

Q(a1, t = 5) = (1−η)Q(a1, t = 4)+ηr = 0.8×0.128 = 0.1024

Thus, with a greedy policy, also in trial 6 action a1 will be taken. If by chance some of
the returns were 1 instead of 0, Q(a1, t = 5) would be even higher, while Q(a2, t = 5) =
Q(a2, t = 2) = 0.08 because action a2 was never taken.
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(iii) Calculate the expected reward for both actions. Which one is the best? (2)

Answer:

For action a1, the expected reward per round is given by,

E
[
r1
]
= p ·1+(1− p) ·0 = 0.25

For action a2, the expected reward per round is evaluated to

E
[
r2
]
= 0.75×0.4+0.25×0 = 0.3

The second action yields a higher reward on average.

(b) After 12 iterations of the UCB 1 algorithm applied on a 4-arm bandit problem, we have n1 =
3, n2 = 4, n3 = 3, n4 = 2 and Q12(1) = 0.55, Q12(2) = 0.63, Q12(3) = 0.61, Q12(4) = 0.40.
Which arm should be played next? Show the calculations to justify your answer. (4)

Answer:

The next action, A13, will be the action with the maximum upper confidence bound among the
four arms. Calculating these values, we have

Q12(1)+

√
2ln12

n1
= 0.55+

√
2ln12

3
= 1.837

Q12(2)+

√
2ln12

n2
= 0.63+

√
2ln12

4
= 1.745

Q12(3)+

√
2ln12

n3
= 0.61+

√
2ln12

3
= 1.897

Q12(4)+

√
2ln12

n4
= 0.40+

√
2ln12

2
= 1.976

Clearly, arm 4 has the highest upper confidence bound and hence will be selected by the UCB 1
algorithm.
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Q6. [ Approximation Guarantees over MDPs ] 16 marks

(a) For an MDP ⟨S,A,P,R,γ⟩, let V0 : S→ R be an initial guess of the optimal value function V ∗.
Let this guess be progressively updated using Value Iteration: i.e., by setting Vt+1← T ∗(Vt) for
t = 0,1,2, . . .. Recall that T ∗ is the Bellman optimality operator.
In this question, we examine the design of a stopping condition for Value Iteration. As usual,
let || · ||∞ denote the max norm. We would like that our computed solution, Vu for some u ∈
{1,2, . . .}, be within ε of V ∗ for some given tolerance ε > 0. In other words, we would like
to stop after u applications of T ∗, so long as we can guarantee ||Vu−V ∗||∞ ≤ ε . Naturally, we
cannot use V ∗ itself in our stopping rule, since it is not known! Prove that it suffices to stop
when ||Vu−Vu−1||∞ ≤ ε(1−γ)

γ
and thereafter return Vu as the answer. (5)

You are likely to find two results handy: (1) that T ∗ is a contraction mapping with contraction
factor γ , and (2) the triangle inequality: for X : S→ R, Y : S→ R, ||X +Y ||∞ ≤ ||X ||∞ + ||Y ||∞.

Answer:

Let ε ′ = ε(1−γ)
γ

. We are given ||Vu−Vu−1||∞ ≤ ε ′; by successive application of the result that T ∗

is a contraction mapping with contraction factor γ , we get

||Vu−Vu−1||∞ ≤ ε
′

||T ∗(Vu)−T ∗(Vu−1)||∞ ≤ ε
′
γ

||(T ∗)2(Vu)− (T ∗)2(Vu−1)||∞ ≤ ε
′
γ

2

...

||(T ∗)k(Vu)− (T ∗)k(Vu−1)||∞ ≤ ε
′
γ

k

for all k ≥ 0. By using the triangle inequality, we obtain

||(T ∗)k(Vu)−Vu||∞ ≤
k

∑
j=1
||(T ∗) j(Vu)− (T ∗) j(Vu−1)||∞ ≤ ε

′(
γ + γ

2 + γ
3 + · · ·+ γ

k)
for all k ≥ 0. Taking the limit as, k→ ∞ yields

||V ∗−Vu||∞ ≤
ε ′γ

1− γ
= ε,

thereby guaranteeing the stopping condition. [Proved]
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(b) The future state distribution gives the probability of a state s appearing anywhere in a trajectory τ

when a policy π is followed. It is denoted by T π(s) =
∞

∑
t=0

P
[
St = s | π

]
. Similarly,the discounted

future state distribution provides the probability of a state s appearing anywhere in a trajectory
but discounted by when is the state visited. It is denoted by, dπ(s) and is defined as, dπ(s) =

(1−γ)
∞

∑
t=0

γ tP
[
St = s | π

]
where γ is the discount factor of an infinite horizon MDP. P

[
St = s | π

]
denotes the probability of the state s to appear at timestep t.
We can use the discounted future state distribution to rewrite the objective function of a RL
problem in the infinite horizon discounted reward setting. The objective i.e., the expectation of
the discounted sums over trajectories can be rewritten in terms of expectations over states and
actions. For any policy π and any reward function r : S×A→ R, the relation can be written as,

E
τ∼p(τ)

[ ∞

∑
t=0

γ
tr(st ,at)

]
=

1
1− γ

∑
s∈S

dπ(s) ∑
a∈A

π(a|s)r(s,a) = 1
1− γ

E
s∼ dπ (·)
a∼ π(·|s)

[
r(s,a)

]
where, s ∼ dπ(·) is a shorthand to denote the fact that states are drawn according to the dis-
counted future state distribution and similarly a ∼ π(·|s) is a shorthand to denote the fact that
actions are distributed according to π . Your task is to prove this above relation. (7)
(Hint: Start proving from the opposite direction!)

Answer:

1
1− γ

E
s∼ dπ (·)
a∼ π(·|s)

[
r(s,a)

]
=

1
1− γ

∑
s∈S

∑
a∈A

r(s,a)dπ(s)π(a|s) (Definition of Expectation)

=
1

1− γ
∑
s∈S

dπ(s) ∑
a∈A

r(s,a)π(a|s)

=
1

1− γ
∑
s∈S

(1− γ)
∞

∑
t=0

γ
tP
[
St = s | π

]
∑
a∈A

r(s,a)π(a|s) (Definition of dπ(s))

= ∑
s∈S

∞

∑
t=0

γ
tP
[
St = s | π

]
∑
a∈A

r(s,a)π(a|s)

=
∞

∑
t=0

γ
t
∑
s∈S

P
[
St = s | π

]
∑
a∈A

r(s,a)π(a|s)

=
∞

∑
t=0

γ
t
∑
s∈S

∑
a∈A

r(s,a)P
[
St = s | π

]
π(a|s)

=
∞

∑
t=0

γ
t
∑
s∈S

∑
a∈A

r(s,a)P
[
s,a | π

]
= E

τ∼p(τ)

[ ∞

∑
t=0

γ
tr(st ,at)

]
(Linearity of Expectation over summation)

Therefore, in reverse,

E
τ∼p(τ)

[ ∞

∑
t=0

γ
tr(st ,at)

]
=

1
1− γ

∑
s∈S

dπ(s) ∑
a∈A

π(a|s)r(s,a) = 1
1− γ

E
s∼ dπ (·)
a∼ π(·|s)

[
r(s,a)

]
[Proved]
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(c) Suppose an MDP ⟨S,A,R,P,γ⟩ is defined such that R(s,a) ≥ 0 for all state action pairs (s,a) ∈
S×A. Furthermore, suppose that for every state s ∈ S, there is some action as ∈ A such that
P(s′ = s | s,as) ≥ p, where 0 ≤ p ≤ 1 is some constant probability. Consider performing value
iteration on this MDP. Let Vt(s) be the value of state s after t iterations. We initialize to V0(s) = 0
for all states s ∈ S. Prove that for all states s ∈ S and t ≥ 0, Vt+1(s)≥ pγVt(s). (4)

Answer:

Consider an arbitrary state s ∈ S and an arbitrary iteration t ≥ 0. From the value iteration algo-
rithm, we have:

Vt+1(s) = max
a∈A

R(s,a)+ γ ∑
s′∈S

P(s′ | s,a)Vt(s′)

≥ R(s,as)+ γ ∑
s′∈S

P(s′ | s,as)Vt(s′)

≥ R(s,as)+ γ pVt(s)

≥ γ pVt(s)

Where the 3rd line follows by the fact that ∀s : Vt(s)≥ 0 because R(s,a)≥ 0 and initialization
is 0. Last line uses R(s,a)≥ 0. This completes the proof.

— The question paper ends here. —
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